Conversion errors? (i.e '!=' no conversion FDHPolynomial from 'nullptr' to 'int') - c++

I was making this add function definition but I keep getting these conversion errors and I think I called a class or function wrong but I do not really understand or can find what's causing the errors. (Sorry about the long function, I tried to cut it down)
template<class ItemType>
bool FDHPolynomial<ItemType>::add(const ItemType& newCoefficient, const ItemType& newExponent)
{
if (newCoefficient == 0)//not wasting memory to store 0
{
return false;//no node added
}
else if (isEmpty())//if this is the first node added
{
FDHNode<ItemType>* newNodePtr = new FDHNode<ItemType>();//create new node
newNodePtr->setCoeffi(newCoefficient);//set contents
newNodePtr->setExpon(newExponent);
newNodePtr->setNext(nullptr);//since this is the only node, next value is nullptr
headPtr = newNodePtr;//first node is the head node
itemCount++;
}
else if (contains(newExponent))//if a node of this degree exists, add to its exponent
{
FDHNode<ItemType>* nodeToModifyPtr = getPointedTo(newExponent);//find the existing node
ItemType sumCoefficient = newCoefficient + nodeToModifyPtr->getCoeffi();//add new coefficient to existing coefficient
if (sumCoefficient == 0)//if added value cancels out a value
{
remove(newExponent);
}
else
{
nodeToModifyPtr->setCoeffi(sumCoefficient);//apply sum of coefficients
}
//itemCount does not increment
}
else if (newExponent > degree())//if new exponent is greater than any existing exponents
{
FDHNode<ItemType>* newNodePtr = new FDHNode<ItemType>();//create new node
newNodePtr->setCoeffi(newCoefficient);//set contents
newNodePtr->setExpon(newExponent);
newNodePtr->setNext(headPtr);//place at front of the chain
headPtr = newNodePtr;//new node is now the head node
itemCount++;
}
else//if new node needs to be inserted somewhere after the head node
{
FDHNode<ItemType>* newNodePtr = new FDHNode<ItemType>();//create new node
newNodePtr->setCoeffi(newCoefficient);//set contents
newNodePtr->setExpon(newExponent);
FDHNode<ItemType>* curPtr = headPtr;//this pointer will cycle through nodes until either a node with a degree smaller than newExponent is found or the last node is reached
while ((curPtr->getExpon() > newExponent) && (curPtr->getNext() != nullptr))
{
curPtr = curPtr->getNext();//advance curPtr
}

Related

Selection sort in single linked list without using swap

I have been trying to solve the selection sort in single linked list without using swap nodes. Using a temp list to store nodes and assign the current list with a new one
//my addlastnode function
void AddLastNODE(LIST &mylist, NODE *p)
{
//Check the list is empty or not
if(isEmpty(mylist))
mylist.pHead = mylist.pTail = p;
else
mylist.pTail->pNext = p;
mylist.pTail = p;
}
void selectionSort(LIST &mylist)
{
//Initialize a temp list to store nodes
LIST mylisttemp;
IntList(mylisttemp);
//Create node
NODE *p;
NODE *i;
//Create min node
NODE *min;
//Check if list is empty or has one node
if(mylist.pHead == mylist.pTail)
return;
//Traverse the list till the last node
for(p=mylist.pHead; p->pNext!=NULL && p!=NULL; p = p->pNext)
{
min=p;
for(i=p->pNext; i!=NULL;i=i->pNext)
{
////Find the smallest data in list
if(i->data < min->data)
min=i;
}
////Add the smallest to a new list
AddLastNODE(mylisttemp, min);
}
//Fill the current list to the new list
if(!isEmpty(mylisttemp))
mylist = mylisttemp;
}
Your code does not reduce the list you are selecting nodes from: the selected node should be removed from it. To make that happen, you need a reference to the node before the selected node, so that you can rewire the list to exclude that selected node.
There is also a small issue in your AddLastNODE function: it does not force the tail node to have a null as pNext pointer. This may be a cause of errors when the function is called with a node that still has a non-null pNext pointer. Secondly, the indentation is off around the else block. It does not lead to a bug in this case, but still it is better to avoid the confusion:
void AddLastNODE(LIST &mylist, NODE *p)
{
if(isEmpty(mylist))
mylist.pHead = p;
else
mylist.pTail->pNext = p;
mylist.pTail = p; // indentation!
p->pNext = nullptr; // <--- better safe than sorry!
}
Then to the main algorithm. It is quite tedious to work with a previous node reference when looking for the node with the minimum value. It helps a bit when you temporarily make the input list cyclic:
void selectionSort(LIST &mylist) {
if (mylist.pHead == mylist.pTail) return;
// Make list temporarily cyclic
mylist.pTail->pNext = mylist.pHead;
LIST mytemplist;
IntList(mytemplist);
while (mylist.pHead != mylist.pTail) {
// Select node:
NODE * beforemin = mylist.pTail;
for (NODE * prev = mylist.pHead; prev != mylist.pTail; prev = prev->pNext) {
if (prev->pNext->data < beforemin->pNext->data) {
beforemin = prev;
}
}
NODE * min = beforemin->pNext;
// Extract selected node:
if (min == mylist.pTail) mylist.pTail = beforemin;
if (min == mylist.pHead) mylist.pHead = min->pNext;
beforemin->pNext = min->pNext;
// And insert it:
AddLastNODE(mytemplist, min);
}
// Move last remaining node
AddLastNODE(mytemplist, mylist.pHead);
// Copy back
mylist = mytemplist;
}
As a side note: You might even want to always keep your list cyclic. This will mean some changes in other functions you may have, as there will be no pNext pointers that are null then.

c++ reference type as recursive function parameter

Node * BST::insert_real(int key, Node *& node)
{
if (node == nullptr)
return node = new Node(key);
if (key < node->key)
return insert_real(key, node->left);
else if (key > node->key)
return insert_real(key, node->right);
else
return nullptr;
}
Node * BST::insert(int key)
{
return insert_real(key, header->left);
}
BinarySearchTree, the insert function.
If the key always goes left, when the function insert_all() runs to the position node = new Node(key) , whether the node is equivalent to header->left->left->left->left->left->......->left->left?
if my guess above is right, the code header->left->left->left->left->left->......->left->left will bring some burden.(if so, i will replace Node*& with Node**)
The words I say above is right?
If the key always goes left, when the function insert_all() runs to the position node = new Node(key) , whether the node is equivalent to header->left->left->left->left->left->......->left->left
No, in the below call you are not changing node parameter which you received.You are just calling insert_real() with some other parameter.
return insert_real(key, node->left);
The only time you change node is below
if (node == nullptr)
return node = new Node(key);

Adding to a Sorted Doubly LinkedList (C++)

I've implemented a program that creates a sorted doubly linked list. Everything works fine except the fact that I can't seem to figure out where program is accepting the node 66 as head, and 44 (which is smaller) as the node after. Here's my add function.
bool SortedDoublyLinkedList<ItemType>::add(const ItemType &newEntry) {
Node<ItemType> *newNode = new Node<ItemType>();
newNode->setItem(newEntry);
if (size == 0) //checks if linked list is empty -> add elements if so.
{
head = newNode;
newNode->setNext(NULL);
newNode->setPrev(NULL);
tail = newNode;
}
// checks if the new node to be added is small than node that head is currently pointing to. If so, add new node before head and make it the new head of list.
else if (newNode->getItem() < head->getItem()) {
head->setPrev(newNode);
newNode->setNext(head);
newNode->setPrev(NULL);
head = newNode;
}
// checks if new node is bigger than the tail node (or last node). If so, add new node to end of list. Then make that new node the tail (end) of list.
else if (newNode->getItem() > tail->getItem()) {
tail->setNext(newNode);
newNode->setNext(NULL);
newNode->setPrev(tail);
tail = newNode;
}
// if the new node is neither of the mentioned situations, add the new node in the correct position in middle of the list. TempPtr1 acts as a ptr and the new node will be added directly in front of it.
else {
Node<ItemType> *tempPtr1;
tempPtr1 = head;
while (newNode->getItem() > tempPtr1->getItem()) {
tempPtr1 = tempPtr1->getNext();
}
newNode->setPrev(tempPtr1->getPrev());
newNode->setNext(tempPtr1); // = tempPtr1;
tempPtr1->getPrev()->setNext(newNode);
tempPtr1->setPrev(newNode);
}
size++;
return true;
}
Output:
66
44
88
88

C++ Binary Search Tree Insertion functions

Helly everyone,
I took a C++ coding course with practically no prior knowledge(my understanding of pointers is still somewhat shakey)at University this semester.
I have to implement a binary search tree in C++ and my problem is as follows:
Over a predefined Node structure with values and pointers to a left and a right node I am supposed to implement several functions, two of them being:
void InsertNode(Node* root, Node* node)
which is supposed to fit the handed node into the given tree "root",
and another one called
void InsertValue(Node* root, int value)
which should create a new instance of the node struct with the passed value and fit it in the given tree "root". To do so I am supposed to use both CreateNode (simple function to create Node* pointer of a new Node instance with int value and left/right pointers set to NULL) and InsertNode.
Im kind of running in a treadmill here and i dont think i really understand how the functions are supposed to work(eg. the difference between them).
Yesterday i wrote this function:
void InsertNode(Node* root, Node* node){
if(root == NULL){
root = CreateNode(node->value);
}
else if(root->value < node->value){
if(node->left != NULL){
InsertNode(root, node->left);
}
else{
node->left = CreateNode(root->value);
}
}
else if(root->value > node->value){
if(node->right != NULL){
InsertNode(root, node->right);
}
else{
node->right = CreateNode(root->value);
}
}
}
Since im not really able to test these functions without the later functions that will actually build the tree with given nodes i was curious if i could get some help here with the next functions InsertValue(what is it supposed to do that InsertNode doesnt do already? :S)
Greetings and thanks in advance.
Initial note: This answer assumes that the InsertNode function is initially called with root being the root of the tree, and node being the node to insert into the tree.
One problem is this statement:
root = CreateNode(node->value);
Since the argument root is passed by value, which means that it is copied, the assignment will only change the local copy. Once the function returns the original pointer that you pass to the function will not have changed.
You need to pass the pointer by reference, meaning the root argument references the original variable passed in to the function, instead of it being copied. You do this by using an ampersand when declaring the argument:
Node*& root
The above means that root is a reference to a pointer to Node.
So the complete InsertNode declaration should look like
void InsertNode(Node*& root, Node* node)
There are also other problems, for example these lines are not correct:
if(node->left != NULL){
InsertNode(root, node->left);
}
else{
node->left = CreateNode(root->value);
}
This is not correct because node->left should be NULL always, which makes you create a new node using the value from the root of the tree, and assign it to node->left, but you never insert node in the tree.
What you should instead do is simply
InsertNode(node->left, node);
Of course you should do the same change for setting the right branch.
Combining the two solutions above, your function would look like
void InsertNode(Node*& root, Node* node)
{
if (root == 0)
root = node;
else if (root->value < node->value)
InsertNode(root->left, node);
else
InsertNode(root->right, node);
}
This function also solves a third problem with your current code: What if node->value is equal to root->value? The above function puts it in the right branch.
When you are creating a tree, value are also assigned with each node. See following code:
typedef struct BST {
int data;
struct BST *lchild, *rchild;
} node;
void insert(node *root, node *new_node) {
if (new_node->data < root->data) {
if (root->lchild == NULL)
root->lchild = new_node;
else
insert(root->lchild, new_node);
}
if (new_node->data > root->data) {
if (root->rchild == NULL)
root->rchild = new_node;
else
insert(root->rchild, new_node);
}
}
node *new_node, *root;
int main()
{
new_node = get_node();
printf("\nEnter The Element ");
scanf("%d", &new_node->data);
if (root == NULL) /* Tree is not Created */
root = new_node;
else
insert(root, new_node)
}
The below code is in Python and is used for insertion in a BST ::
class Node :
def __init__(self.key):
self.left = None
self.right = None
self.val = key
def insert(root.node):
if root is None :
root = node
else :
if root.val < node.val:
if root.right is None :
root.right = node
else :
insert(root.right, node)
else :
if root.left is None :
root.left = node
else :
insert(root.left, node)
def inorder(root):
if root :
inorder(root.left)
print(root.val)
inorder(root.right)
# Driver program to test the above functions
# Let us create the following BST
# 50
# / \
# 30 70
# / \ / \
# 20 40 60 80
r = Node(50)
insert(r,Node(30))
insert(r,Node(20))
insert(r,Node(40))
insert(r,Node(70))
insert(r,Node(60))
insert(r,Node(80))
# Print inoder traversal of the BST
inorder(r)

Deleting Root Node of a Binary Search Tree

I have this function for deleting a node in a binary search tree which seems to be working EXCEPT in the case where I ask it to delete the root node. It is supposed to take the right-most value on the left and replace the node with that; however, once that happens, the new root node's children pointers don't seem to point to the original root node's children. Code is as follows:
bool delete_node(Node*& root, TYPE data) {
Node* toDelete;
Node* parent;
// This function is defined appropriately elsewhere, and finds the target to be deleted
toDelete = find(data, root);
if (!toDelete) {
return false;
}
// This function is defined appropriately elsewhere, and finds the parent of the node to be deleted
parent = find_parent(root, toDelete);
// Other cases left out because they work
// If the target node has two children:
if (toDelete->left && toDelete->right)
{
// find rightmost child on left that is a leaf
Node *replacement = toDelete->left;
while (replacement->right)
{
replacement = replacement->right;
}
// set the target node's data
toDelete->data = replacement->data;
if (parent)
{
if ( parent->data < toDelete->data )
{
parent->right = replacement;
} else
{
parent->left = replacement;
}
} else
{
// if node has no parents, then it is the root and should be replaced with replacement
// This line here is what seems to be causing my trouble...I think
root = replacement;
}
parent = find_parent(toDelete, replacement);
if (parent)
{
if (parent->left == replacement)
parent->left = NULL;
else
parent->right = NULL;
}
delete toDelete;
return true;
}
}
Thanks in advance!
what I ended coming up with was this: keep track of the parent node that is one above the node that replaces the node to be deleted. there will then be 2 cases to consider: the parent is the node to be deleted and parent is not the node to be deleted. by replacing the appropriate parts of the tree at the right case, the structure and invariants of the tree remained ok and the node to be deleted was successfully deleted. technically, it would be the data at the node to be deleted.
else if (toDelete->left != NULL && toDelete->right != NULL) {
// find rightmost child on left that is a leaf
Node* replacement = toDelete->left;
parent = toDelete;
// parent is now the parent of the replacement
while ( replacement->right ) {
parent = replacement;
replacement = replacement->right;
} // By the end, parent will be the node one above replacement
toDelete->key = replacement->key;
if (parent == target)
parent->left = replacement->left;
else
parent->right = replacement->left;
delete replacement;
return true;
}
This is what I did to make it work. Just check if the node is the root node, and if so, set the new root. Below is the working code I have. The three places marked by asterisks is what I added to make it work. All the other lines of code is just standard textbook theory.
inline NamesBinaryTree::Node* NamesBinaryTree::Node::removeNode (Node*& node, const Female* female, stringComparisonFunction s) { // Taken from p.253 of Alex Allain's "Jumping Into C++".
if (!node)
return nullptr;
if (node->femaleInfo.first == female->getName()) {
if (!node->left) { // i.e. node has either one child or zero children.
Node* rightNode = node->right;
if (node->isRoot()) // ***
namesBinaryTree.setRoot(rightNode); // Tested to work correctly. Note that we cannot call 'delete node;', since that will delete the very root that we are setting!
else
delete node;
return rightNode; // This will return nullptr if node->right is also nullptr, which is what we would want to do anyway since that would mean that node has zero children.
}
if (!node->right) { // i.e. node has exactly one child, namely its left child, in which case return that left child.
Node* leftNode = node->left;
if (node->isRoot()) // ***
namesBinaryTree.setRoot(leftNode);
else
delete node;
return leftNode; // This will never be nullptr, else the previous if condition would have been met instead.
}
Node* maxNode = findMaxNode(node->left); // node has two children, so it shall be replaced by the largest valued node in its left subtree.
maxNode->left = removeMaxNode(node->left, maxNode); // Note that maxNode->left = node->left is not enough because without actually removing maxNode, the node that was pointing to maxNode will now be pointing to maxNode in its new position (and the subtree under it), and the subtree that was under maxNode will now be gone.
maxNode->right = node->right;
if (node->isRoot()) // ***
namesBinaryTree.setRoot(maxNode); // Tested to work correctly.
else
delete node;
return maxNode;
}
else {
const int result = (*s)(female->getName(), node->femaleInfo.first);
if (result < 0)
node->left = removeNode(node->left, female, s); // This assignment can only work if node is passed by reference (hence the parameter Node*& node), at least this is what "C++ Essentials" did in their solution, p.247.
else // Don't use 'else if (result > 0)'. Let the equality case be covered here too (just as in NamesBinaryTree::Node::insertNode).
node->right = removeNode(node->right, female, s); // Again, this assignment can only work if node is passed by reference (hence the parameter Node*& node).
}
return node; // So if node->femaleInfo.first != female->getName(), then the same node is returned, which means that the two assignment lines above don't change any values.
}