How can I edit this function to find multiple modes? Right now if there are multiple, it will display the smallest.
Example
Input 5 5 2 2
Output 5 2
What it actually does
Input 5 5 1 1
Output 1
void calculateMode(int array[], int big)
{
int counter = 1;
int max = 0;
int mode = array[0];
for (int pass = 0; pass < big - 1; pass++)
{
if ( array[pass] == array[pass+1] )
{
counter++;
if ( counter > max )
{
max = counter;
mode = array[pass];
}
} else
counter = 1; // reset counter.
}
cout << "The mode is: " << mode << endl;
}
Anything helps!
I like also the stdlib option as one of the comments refers. However, I tried to solve this problem without using it as you (as an exercise). I had as a requirement to have a constant array as a function parameter, so I could not order it (nor remove the constant nor copy it in a new non-const one). In addition, if there are multiple modes or no elements, I had to return zero.
At the end a came up with something like the following. Hopefully, it might help.
#include <iostream>
#include <stdexcept>
template <typename T> T mode(const T *values, size_t length) {
// check if it has zero length
if (!length)
return 0;
if (!values)
throw std::invalid_argument{"Invalid input array"};
int count{}, maxOccurrences{};
int multipleModes{};
T mode{};
// check every element unless the mode's occurrences are greater than the
// remaining list
for (int k{}; k < length && maxOccurrences <= (length - k); ++k) {
// reset the count for every individual element
count = 0;
// count the number of occurrences
for (int i{}; i < length; ++i) {
if (values[k] == values[i])
count++;
}
if (count > maxOccurrences && mode != values[k]) {
mode = values[k];
maxOccurrences = count;
multipleModes = 0;
/*std::cout << "Count:" << count << " - MaxOccur:" << maxOccurrences
<< " - Mode:" << mode << std::endl;*/
}
if (count == maxOccurrences && mode != values[k]) {
// if the array has multiple modes
multipleModes = 1;
}
}
if (multipleModes == 1)
return 0;
else
return mode;
}
Thanks for you attention!
you can try adding this
else if (counter==max){
mode += array[pass]
}
can't test it on my own system. see if it's of any help.
Related
if ( n % 2 == 0)
cout << n << " is even.";
else
cout << n << " is odd.";
I know how to check if the numbers are odd, but unsure of how to write the rest of the code.
bool isOdd(int int_arr[], int arr_size)
{
bool is_all_odd = true;
for(int i = 0; i < arr_size; i++)
{
if(int_arr[i] % 2 == 0)
{
is_all_odd = false;
break;
}
}
return is_all_odd;
}
You'll want to take in the array like you mentioned, the size, and traverse through it. In this case we just assume all is odd, and check for an even, if we find an even number we change the return value, stop traversing and return.
My code doesn't seem to work and I cannot understand why.
When the user enters a number to search for its location it doesn't show anything. If anyone could explain it to me I would greatly appreciate it.
void Array::binarySearch(vector<int> vect)
{
int search_val;
int high = (int)vect.size();
int low = 0;
int mid = 0;
bool found = false;
cout << "Enter Number to search : ";
cin>>search_val;
while (low <= high && !found) {
mid = (high + low)/2;
if (search_val > vect[mid]) {
low = mid + 1;
} else if (search_val < vect[mid]) {
high = mid - 1;
} else {
cout << "Number you entered " << search_val << " was found in position " << mid << endl;
found = true;
}
}
if (!found) {
cout << " The value isn't found " << endl;
}
}
sorted algo:
void Array::arrSort(vector<int> vect)
{
for (unsigned int i = 0; i < vect.size()-1; i++)
{
for (unsigned int j = 0; j < vect.size()-i-1; j++)
{
if (vect[j] > vect[j+1])
{
int x = vect[j+1];
vect[j+1] = vect[j];
vect[j] = x;
}
}
}
cout<<"Sorted output is "<<endl;
printArr(vect);
}
Your arrSort function takes its parameter by value, so it receives (and sorts) a copy of the original array.
To sort the array you're passing in, take the parameter by reference:
void Array::arrSort(vector<int> &vect)
As someone has pointed out, you must ensure that you are performing binary search on a sorted array. Perhaps, you should build and test each algorithm separately to ensure correctness before combining them together.
Check out std::sort to get your binary search function working, then work on your sort function––or vice versa.
Also, if you have found the item you are looking for say, vect[mid] == search_val you can go ahead and return true (or print like you've done) and terminate the algorithm.
First of all, sorry for the mis-worded title. I couldn't imagine a better way to put it.
The problem I'm facing is as follows: In a part of my program, the program counts occurences of different a-zA-Z letters and then tells how many of each letters can be found in an array. The problem, however, is this:
If I have an array that consists of A;A;F;A;D or anything similar, the output will be this:
A - 3
A - 3
F - 1
A - 3
D - 1
But I am required to make it like this:
A - 3
F - 1
D - 1
I could solve the problem easily, however I can't use an additional array to check what values have been already echoed. I know why it happens, but I don't know a way to solve it without using an additional array.
This is the code snippet (the array simply consists of characters, not worthy of adding it to the snippet):
n is the size of array the user is asked to choose at the start of the program (not included in the snippet).
initburts is the current array member ID that is being compared against all other values.
burts is the counter that is being reset after the loop is done checking a letter and moves onto the next one.
do {
for (i = 0; i < n; i++) {
if (array[initburts] == array[i]) {
burts++;
}
}
cout << "\n\n" << array[initburts] << " - " << burts;
initburts++;
burts = 0;
if (initburts == n) {
isDone = true;
}
}
while (isDone == false);
Do your counting first, then loop over your counts printing the results.
std::map<decltype(array[0]), std::size_t> counts;
std::for_each(std::begin(array), std::end(array), [&counts](auto& item){ ++counts[item]; });
std::for_each(std::begin(counts), std::end(counts), [](auto& pair) { std::cout << "\n\n" << pair.first << " - " pair.second; });
for (i = 0; i < n; i++)
{
// first check if we printed this character already;
// this is the case if the same character occurred
// before the current one:
bool isNew = true;
for (j = 0; j < i; j++)
{
// you find out yourself, do you?
// do not forget to break the loop
// in case of having detected an equal value!
}
if(isNew)
{
// well, now we can count...
unsigned int count = 1;
for(int j = i + 1; j < n; ++j)
count += array[j] == array[i];
// appropriate output...
}
}
That would do the trick and retains the array as is, however is an O(n²) algorithm. More efficient (O(n*log(n))) is sorting the array in advance, then you can just iterate over the array once. Of course, original array sequence gets lost then:
std::sort(array, array + arrayLength);
auto start = array;
for(auto current = array + 1; current != array + arrayLength; ++current)
{
if(*current != *start)
{
auto char = *start;
auto count = current - start;
// output char and count appropriately
}
}
// now we yet lack the final character:
auto char = *start;
auto count = array + arrayLength - start;
// output char and count appropriately
Pointer arithmetic... Quite likely that your teacher gets suspicious if you just copy this code, but it should give you the necessary hints to make up your own variant (use indices instead of pointers...).
I would do it this way.
#include <iostream>
#include <string>
#include <vector>
using namespace std;
int main()
{
string s;
vector<int> capCount(26, 0), smallCount(26, 0);
cout << "Enter the string\n";
cin >> s;
for(int i = 0; i < s.length(); ++i)
{
char c = s.at(i);
if(c >= 'A' && c <= 'Z')
++capCount[(int)c - 65];
if(c >= 'a' && c <= 'z')
++smallCount[(int)c - 97];
}
for(int i = 0; i < 26; ++i)
{
if(capCount[i] > 0)
cout << (char) (i + 65) << ": " << capCount[i] << endl;
if(smallCount[i] > 0)
cout << (char) (i + 97) << ": " << smallCount[i] << endl;
}
}
Note: I have differentiated lower and upper case characters.
Here's is the sample output:
output
*Sorry about my poor English. If there is anything that you don't understand, please tell me so that I can give you more information that 'make sence'.
**This is first time asking question in Stackoverflow. I've searched some rules for asking questions correctly here, but there should be something I missed. I welcome all feedback.
I'm currently solving algorithm problems to improve my skill, and I'm struggling with one question for three days. This question is from https://algospot.com/judge/problem/read/RESTORE , but since this page is in KOREAN, I tried to translate it in English.
Question
If there are 'k' pieces of partial strings given, calculate shortest string that includes all partial strings.
All strings consist only lowercase alphabets.
If there are more than 1 result strings that satisfy all conditions with same length, choose any string.
Input
In the first line of input, number of test case 'C'(C<=50) is given.
For each test case, number of partial string 'k'(1<=k<=15) is given in the first line, and in next k lines partial strings are given.
Length of partial string is between 1 to 40.
Output
For each testcase, print shortest string that includes all partial strings.
Sample Input
3
3
geo
oji
jing
2
world
hello
3
abrac
cadabra
dabr
Sample Output
geojing
helloworld
cadabrac
And here is my code. My code seems to work perfect with Sample Inputs, and when I made test inputs for my own and tested, everything worked fine. But when I submit this code, they say my code is 'wrong'.
Please tell me what is wrong with my code. You don't need to tell me whole fixed code, I just need sample inputs that causes error with my code. Added code description to make my code easier to understand.
Code Description
Saved all input partial strings in vector 'stringParts'.
Saved current shortest string result in global variable 'answer'.
Used 'cache' array for memoization - to skip repeated function call.
Algorithm I designed to solve this problem is divided into two function -
restore() & eraseOverlapped().
restore() function calculates shortest string that includes all partial strings in 'stringParts'.
Result of resotre() is saved in 'answer'.
For restore(), there are three parameters - 'curString', 'selected' and 'last'.
'curString' stands for currently selected and overlapped string result.
'selected' stands for currently selected elements of 'stringParts'. Used bitmask to make my algorithm concise.
'last' stands for last selected element of 'stringParts' for making 'curString'.
eraseOverlapped() function does preprocessing - it deletes elements of 'stringParts' that can be completly included to other elements before executing restore().
#include <algorithm>
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#define MAX 15
using namespace std;
int k;
string answer; // save shortest result string
vector<string> stringParts;
bool cache[MAX + 1][(1 << MAX) + 1]; //[last selected string][set of selected strings in Bitmask]
void restore(string curString, int selected=0, int last=0) {
//base case 1
if (selected == (1 << k) - 1) {
if (answer.empty() || curString.length() < answer.length())
answer = curString;
return;
}
//base case 2 - memoization
bool& ret = cache[last][selected];
if (ret != false) return;
for (int next = 0; next < k; next++) {
string checkStr = stringParts[next];
if (selected & (1 << next)) continue;
if (curString.empty())
restore(checkStr, selected + (1 << next), next + 1);
else {
int check = false;
//count max overlapping area of two strings and overlap two strings.
for (int i = (checkStr.length() > curString.length() ? curString.length() : checkStr.length())
; i > 0; i--) {
if (curString.substr(curString.size()-i, i) == checkStr.substr(0, i)) {
restore(curString + checkStr.substr(i, checkStr.length()-i), selected + (1 << next), next + 1);
check = true;
break;
}
}
if (!check) { // if there aren't any overlapping area
restore(curString + checkStr, selected + (1 << next), next + 1);
}
}
}
ret = true;
}
//check if there are strings that can be completely included by other strings, and delete that string.
void eraseOverlapped() {
//arranging string vector in ascending order of string length
int vectorLen = stringParts.size();
for (int i = 0; i < vectorLen - 1; i++) {
for (int j = i + 1; j < vectorLen; j++) {
if (stringParts[i].length() < stringParts[j].length()) {
string temp = stringParts[i];
stringParts[i] = stringParts[j];
stringParts[j] = temp;
}
}
}
//deleting included strings
vector<string>::iterator iter;
for (int i = 0; i < vectorLen-1; i++) {
for (int j = i + 1; j < vectorLen; j++) {
if (stringParts[i].find(stringParts[j]) != string::npos) {
iter = stringParts.begin() + j;
stringParts.erase(iter);
j--;
vectorLen--;
}
}
}
}
int main(void) {
int C;
cin >> C; // testcase
for (int testCase = 0; testCase < C; testCase++) {
cin >> k; // number of partial strings
memset(cache, false, sizeof(cache)); // initializing cache to false
string inputStr;
for (int i = 0; i < k; i++) {
cin >> inputStr;
stringParts.push_back(inputStr);
}
eraseOverlapped();
k = stringParts.size();
restore("");
cout << answer << endl;
answer.clear();
stringParts.clear();
}
}
After determining which string-parts can be removed from the list since they are contained in other string-parts, one way to model this problem might be as the "taxicab ripoff problem" problem (or Max TSP), where each potential length reduction by overlap is given a positive weight. Considering that the input size in the question is very small, it seems likely that they expect a near brute-force solution, with possibly some heuristic and backtracking or other form of memoization.
Thanks Everyone who tried to help me solve this problem. I actually solved this problem with few changes on my previous algorithm. These are main changes.
In my previous algorithm I saved result of restore() in global variable 'answer' since restore() didn't return anything, but in new algorithm since restore() returns mid-process answer string I no longer need to use 'answer'.
Used string type cache instead of bool type cache. I found out using bool cache for memoization in this algorithm was useless.
Deleted 'curString' parameter from restore(). Since what we only need during recursive call is one previously selected partial string, 'last' can replace role of 'curString'.
CODE
#include <algorithm>
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#define MAX 15
using namespace std;
int k;
vector<string> stringParts;
string cache[MAX + 1][(1 << MAX) + 1];
string restore(int selected = 0, int last = -1) {
if (selected == (1 << k) - 1) {
return stringParts[last];
}
if (last == -1) {
string ret = "";
for (int next = 0; next < k; next++) {
string resultStr = restore(selected + (1 << next), next);
if (ret.empty() || ret.length() > resultStr.length())
ret = resultStr;
}
return ret;
}
string& ret = cache[last][selected];
if (!ret.empty()) {
cout << "cache used in [" << last << "][" << selected << "]" << endl;
return ret;
}
string curString = stringParts[last];
for (int next = 0; next < k; next++) {
if (selected & (1 << next)) continue;
string checkStr = restore(selected + (1 << next), next);
int check = false;
string resultStr;
for (int i = (checkStr.length() > curString.length() ? curString.length() : checkStr.length())
; i > 0; i--) {
if (curString.substr(curString.size() - i, i) == checkStr.substr(0, i)) {
resultStr = curString + checkStr.substr(i, checkStr.length() - i);
check = true;
break;
}
}
if (!check)
resultStr = curString + checkStr;
if (ret.empty() || ret.length() > resultStr.length())
ret = resultStr;
}
return ret;
}
void EraseOverlapped() {
int vectorLen = stringParts.size();
for (int i = 0; i < vectorLen - 1; i++) {
for (int j = i + 1; j < vectorLen; j++) {
if (stringParts[i].length() < stringParts[j].length()) {
string temp = stringParts[i];
stringParts[i] = stringParts[j];
stringParts[j] = temp;
}
}
}
vector<string>::iterator iter;
for (int i = 0; i < vectorLen - 1; i++) {
for (int j = i + 1; j < vectorLen; j++) {
if (stringParts[i].find(stringParts[j]) != string::npos) {
iter = stringParts.begin() + j;
stringParts.erase(iter);
j--;
vectorLen--;
}
}
}
}
int main(void) {
int C;
cin >> C;
for (int testCase = 0; testCase < C; testCase++) {
cin >> k;
for (int i = 0; i < MAX + 1; i++) {
for (int j = 0; j < (1 << MAX) + 1; j++)
cache[i][j] = "";
}
string inputStr;
for (int i = 0; i < k; i++) {
cin >> inputStr;
stringParts.push_back(inputStr);
}
EraseOverlapped();
k = stringParts.size();
string resultStr = restore();
cout << resultStr << endl;
stringParts.clear();
}
}
This algorithm is much slower than the 'ideal' algorithm that the book I'm studying suggests, but it was fast enough to pass this question's time limit.
Working on below algorithm puzzle of finding minimum number of jumps. Posted detailed problem statement and two code versions to resolve this issue. I have did testing and it seems both version works, and my 2nd version is an optimized version of version one code, which makes i starts from i=maxIndex, other than continuous increase, which could save time by not iteration all the slots of the array.
My question is, wondering if my 2nd version code is 100% correct? If anyone found any logical issues, appreciate for pointing out.
Problem Statement
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Your goal is to reach the last index in the minimum number of jumps.
For example:
Given array A = [2,3,1,1,4]
The minimum number of jumps to reach the last index is 2. (Jump 1 step from index 0 to 1, then 3 steps to the last index.)
First version code
class Solution {
public:
int jump(vector<int>& nums) {
int i = 0, n = nums.size(), step = 0, end = 0, maxend = 0;
while (end < n - 1) {
step++;
for (;i <= end; i++) {
maxend = max(maxend, i + nums[i]);
if (maxend >= n - 1) return step;
}
if(end == maxend) break;
end = maxend;
}
return n == 1 ? 0 : -1;
}
};
2nd version code
class Solution {
public:
int jump(vector<int>& nums) {
int i = 0, n = nums.size(), step = 0, end = 0, maxend = 0;
int maxIndex = 0;
while (end < n - 1) {
step++;
for (i=maxIndex;i <= end; i++) {
if ((i + nums[i]) > maxend)
{
maxend = i + nums[i];
maxIndex = i;
}
if (maxend >= n - 1) return step;
}
if(end == maxend) break;
end = maxend;
}
return n == 1 ? 0 : -1;
}
};
thanks in advance,
Lin
The best way is always to test it. A human cannot always think about special cases but a automated test can cover the most of speciale cases. If you think that your first version works well, you can compare the result of the first with the second one. Here an exemple:
/*
* arraySize : array size to use for the test
* min : min jump in the array
* max : max jump in the array
*/
void testJumps(int arraySize, int min, int max){
static int counter = 0;
std::cout << "-----------Test " << counter << "------------" << std::endl;
std::cout << "Array size : " << arraySize << " Minimum Jump : " << min << " Max Jump" << max << std::endl;
//Create vector with random numbers
std::vector<int> vecNumbers(arraySize, 0);
for(unsigned int i = 0; i < vecNumbers.size(); i++)
vecNumbers[i] = rand() % max + min;
//Value of first function
int iVersion1 = jump1(vecNumbers);
//Second fucntion
int iVersion2 = jump2(vecNumbers);
assert(iVersion1 == iVersion2);
std::cout << "Test " << counter << " succeeded" << std::endl;
std::cout << "-----------------------" << std::endl;
counter++;
}
int main()
{
//Two test
testJumps(10, 1, 100);
testJumps(20, 10, 200);
//You can even make a loop of test
//...
}