I have to render the mandelbrot set and I was wondering if someone could point out some flaws with my code - at the moment, the output windows just shows a black screen. I think that my mandelbrot mathematics are correct, because I have used the same code to output a .tga of the mandelbrot - is it something to do with the OpenGl method I am using to output the pixels?
Full code:
#include <Windows.h>
#include <GL\glew.h>
#include <GL\freeglut.h>
#include <iostream>
#include <stdlib.h>
#include <chrono>
#include <cstdint>
#include <cstdlib>
#include <complex>
#include <fstream>
#include <thread>
#include <mutex>
#include <vector>
#include <Windows.h>
// Import things we need from the standard library
using std::chrono::duration_cast;
using std::chrono::milliseconds;
using std::complex;
using std::cout;
using std::endl;
using std::ofstream;
// ...other useful includes
using std::cout;
using std::endl;
using std::thread;
using std::mutex;
using std::lock;
using std::unique_lock;
using std::vector;
const int width = 600, height = 600; // window size
int windowID;
// The number of times to iterate before we assume that a point isn't in the
// Mandelbrot set.
// (You may need to turn this up if you zoom further into the set.)
const int MAX_ITERATIONS = 500;
bool fullScreen = false;
bool need_to_draw = true;
//****************************************
// Render the Mandelbrot set into the image array.
// The parameters specify the region on the complex plane to plot.
void compute_mandelbrot(double left, double right, double top, double bottom)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // clear the screen buffer
glBegin(GL_POINTS); // start drawing in single pixel mode
for (int y = 0; y < height; ++y)
{
for (int x = 0; x < width; ++x)
{
// Work out the point in the complex plane that
// corresponds to this pixel in the output image.
complex<double> c(left + (x * (right - left) / width),
top + (y * (bottom - top) / height));
// Start off z at (0, 0).
complex<double> z(0.0, 0.0);
// Iterate z = z^2 + c until z moves more than 2 units
// away from (0, 0), or we've iterated too many times.
int iterations = 0;
while (abs(z) < 2.0 && iterations < MAX_ITERATIONS)
{
z = (z * z) + c;
++iterations;
}
if (iterations == MAX_ITERATIONS)
{
glColor3f(1.0, 0.0, 0.0); // Set color to draw mandelbrot
// z didn't escape from the circle.
// This point is in the Mandelbrot set.
glVertex2i(x, y);
}
else
{
glColor3f(0.0, 0.0, 0.0); //Set pixel to black
// z escaped within less than MAX_ITERATIONS
// iterations. This point isn't in the set.
glVertex2i(x, y);
}
}
}
glEnd();
glutSwapBuffers();
need_to_draw = false;
}
int main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
GLsizei windowX = (glutGet(GLUT_SCREEN_WIDTH) - width) / 2;
GLsizei windowY = (glutGet(GLUT_SCREEN_HEIGHT) - height) / 2;
glutInitWindowPosition(windowX, windowY);
glutInitWindowSize(width, height);
windowID = glutCreateWindow("Mandelbrot");
if (need_to_draw)
{
compute_mandelbrot(-2.0, 1.0, 1.125, -1.125);
}
glShadeModel(GL_SMOOTH);
glEnable(GL_DEPTH_TEST);
glViewport(0, 0, (GLsizei)width, (GLsizei)height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glutMainLoop();
return 0;
}
The identity GL_PROJECTION matrix doesn't give you a 1-to-1 unit-to-pixel mapping like you're assuming, it's a +/-(1,1,1) cube.
Use glOrtho() to get the matrix you want:
glOrtho( 0, width, 0, height, -1, 1 );
All together:
#include <GL/glut.h>
#include <complex>
using std::complex;
// Render the Mandelbrot set into the image array.
// The parameters specify the region on the complex plane to plot.
void compute_mandelbrot( double left, double right, double top, double bottom )
{
// The number of times to iterate before we assume that a point isn't in the
// Mandelbrot set.
// (You may need to turn this up if you zoom further into the set.)
const int MAX_ITERATIONS = 500;
const int width = glutGet( GLUT_WINDOW_WIDTH );
const int height = glutGet( GLUT_WINDOW_HEIGHT );
glBegin( GL_POINTS ); // start drawing in single pixel mode
for( int y = 0; y < height; ++y )
{
for( int x = 0; x < width; ++x )
{
// Work out the point in the complex plane that
// corresponds to this pixel in the output image.
complex<double> c( left + ( x * ( right - left ) / width ),
top + ( y * ( bottom - top ) / height ) );
// Start off z at (0, 0).
complex<double> z( 0.0, 0.0 );
// Iterate z = z^2 + c until z moves more than 2 units
// away from (0, 0), or we've iterated too many times.
int iterations = 0;
while( abs( z ) < 2.0 && iterations < MAX_ITERATIONS )
{
z = ( z * z ) + c;
++iterations;
}
if( iterations == MAX_ITERATIONS )
{
glColor3f( 1.0, 0.0, 0.0 ); // Set color to draw mandelbrot
// z didn't escape from the circle.
// This point is in the Mandelbrot set.
glVertex2i( x, y );
}
else
{
glColor3f( 0.0, 0.0, 0.0 ); //Set pixel to black
// z escaped within less than MAX_ITERATIONS
// iterations. This point isn't in the set.
glVertex2i( x, y );
}
}
}
glEnd();
}
void display()
{
glClearColor( 0.0f, 0.0f, 0.0f, 0.0f );
glClear( GL_COLOR_BUFFER_BIT );
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
const int width = glutGet( GLUT_WINDOW_WIDTH );
const int height = glutGet( GLUT_WINDOW_HEIGHT );
glOrtho( 0, width, 0, height, -1, 1 );
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
compute_mandelbrot( -2.0, 1.0, 1.125, -1.125 );
glutSwapBuffers();
}
int main( int argc, char** argv )
{
glutInit( &argc, argv );
glutInitDisplayMode( GLUT_DOUBLE | GLUT_RGBA );
glutInitWindowSize( 300, 300 );
glutCreateWindow( "Mandelbrot" );
glutDisplayFunc( display );
glutMainLoop();
return 0;
}
Related
I need to make a game for a project on college. Everything works fine, the only problem is translating mouse coords (0,0 in top left corner) to openGL coords (0,0 in center of the screen).
In class we got the formula for doing this:
double openglX = ((double)x - [half horizontal res]) / [horizontal res] * [horizontal opengl range];
double openglY = -((double)y - [half vertical res]) / [vertical res] * [vertical opengl range];
#include <iostream>
#include <list>
#include <vector>
#include <cstdlib>
#include <ctime>
#define NDEBUG
#include <GL/freeglut.h>
const int GAME_LOGIC_REFRESH_TIME = 10;
/* GLUT callback Handlers */
void resize(int width, int height)
{
const float ar = (float)width / (float)height;
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-ar, ar, -1.0, 1.0, 2.0, 100.0);
gluLookAt(0, 0, 45, 0, 0, 0, 0, 1, 0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
void gameLogic(int value)
{
if (value == 0)
{
}
else if(value==1)
{
}
}
void move_ship(int x, int y)
{
double openglX = ((double)x - 600) / 1200 * 46;
double openglY = -((double)y - 500) / 1000 * 38;
player.SetPosition(openglX);
}
/* helper functions for settings options and parameters */
void InitGLUTScene(const char* window_name)
{
glutInitWindowSize(1200, 1000);
glutInitWindowPosition(40, 40);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH | GLUT_MULTISAMPLE);
glutCreateWindow(window_name);
glClearColor(0, 0, 0, 0);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glEnable(GL_LIGHT0);
glEnable(GL_NORMALIZE);
glEnable(GL_COLOR_MATERIAL);
}
void SetCallbackFunctions()
{
glutReshapeFunc(resize);
glutDisplayFunc(display);
glutIdleFunc(idle);
glutTimerFunc(GAME_LOGIC_REFRESH_TIME, gameLogic, 0);
glutMouseFunc(mouse);
glutPassiveMotionFunc(move_ship);
}
void SetObjectsPositions()
{
}
int main(int argc, char *argv[])
{
srand(time(NULL));
glutInit(&argc, argv);
InitGLUTScene("Space Invaders");
SetCallbackFunctions();
SetObjectsPositions();
glutMainLoop();
return 0;
}
Calculations in move_ship are quite good close to center of the screen, but at the edges they are off enough, that it's a big problem and the player can't reach the edge of the screen.
The first thing I notice is you have some magical numbers in your method move_ship() . Your callback resize() is able to change the width and height, so using constants in move_ship() seems like a bug to me.
The formula should be
void mouseToGl(
double& x, double& y, // output GL coords
double mx, double my, // mouse coords in pixels (0,0 is top left)
double W, double H) // screen dimension width, height
{
x = 2.0 * (mx / W) - 1.0;
y = 2.0 * ((my - W + 1) / W) - 1.0;
}
I am attempting to translate one circle independent of a separate, stationary circle, utilizing glTranslatef();. However, with my current, full code, each of my circles remains immobile. To investigate why this may be so, I have researched several answers, each comparable to those found here and here. Additionally, I read up on glLoadIdentity as well as the differences between GL_MODELVIEW and GL_PROJECTION, just to see if their details would offer any further clarification. I've also consulted the OpenGL API for the proper definitions of each of the above.
In the style of these solutions, I produced the following do...while loop:
do{
glClear(GL_COLOR_BUFFER_BIT);
glDisable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, fb_width, fb_height, 0, 0, 1);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glTranslatef(0,1,0);
drawCircle(1280 * 0.50, 720 * 0.25,e[2]);
glPopMatrix();
glPushMatrix();
glTranslatef(0,0,0);
drawTarget(1280 * 0.50, 720 * 0.75,50);
glPopMatrix();
glfwSwapBuffers(w);
glfwPollEvents();
}
while (!glfwWindowShouldClose(w));
In this snippet, the drawCircle drawing remains stationary, but I would like for it to follow the written glTranslatef(0,1,0) instead. Is the stationary nature of the circle due to misplaced a glMatrixMode or glLoadIdentity, or perhaps due to the fact that they are being called within the do...while loop and the proper matrix is never really being utilized? I would appreciate any guidance you may have as to why the aforementioned and accepted answers are not functioning quite as well within my program.
For the sake of full transparency, here is the entirety of my code:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <stdint.h>
#include <math.h>
#include <stddef.h>
#include <stdbool.h>
#include <GL/glew.h>
#include <GLFW/glfw3.h>
GLFWwindow *w;
int fb_width, fb_height;
static void error(int error, const char *desc)
{
fputs(desc, stderr);
}
static void key_callback(GLFWwindow *w, int key, int scancode, int action, int mods)
{
if ((key == GLFW_KEY_ESCAPE || key == GLFW_KEY_Q) && action == GLFW_PRESS)
glfwSetWindowShouldClose(w, GL_TRUE);
}
void drawCircle(float cx, float cy, float radius)
{
float num_segments = 360;
float theta = 2 * 3.1415926 / num_segments;
float c = cosf(theta);//precalculate the sine and cosine
float s = sinf(theta);
float t;
float x = radius;//we start at angle = 0
float y = 0;
glBegin(GL_TRIANGLE_FAN);
glColor3f(1, 0, 1);
for(int ii = 0; ii < num_segments; ii++)
{
glVertex2f(x + cx, y + cy);//output vertex
//apply the rotation matrix
t = x;
x = c * x - s * y;
y = s * t + c * y;
}
glEnd();
}
void drawTarget(float cx, float cy, float radius)
{
float num_segments = 360;
float theta = 2 * 3.1415926 / num_segments;
float c = cosf(theta);//precalculate the sine and cosine
float s = sinf(theta);
float t;
float x = radius;//we start at angle = 0
float y = 0;
glBegin(GL_LINE_LOOP);
glColor3f(1, 1, 1);
for(int ii = 0; ii < num_segments; ii++)
{
glVertex2f(x + cx, y + cy);//output vertex
//apply the rotation matrix
t = x;
x = c * x - s * y;
y = s * t + c * y;
}
glEnd();
}
int main(void)
{
int i;
float e[3] = {140,120,100};
float m[3] = {90,80,70};
float h[3] = {60,50,40};
glfwSetErrorCallback(error);
if (!glfwInit())
exit(EXIT_FAILURE);
w = glfwCreateWindow(1280, 720, "AxTest", NULL, NULL);
if (!w)
{
glfwTerminate();
return 1;
}
glfwMakeContextCurrent(w);
glfwSetKeyCallback(w, key_callback);
glfwGetFramebufferSize(w, &fb_width, &fb_height);
do{
glClear(GL_COLOR_BUFFER_BIT);
glDisable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, fb_width, fb_height, 0, 0, 1);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glTranslatef(0,1,0);
drawCircle(1280 * 0.50, 720 * 0.25,e[2]);
glPopMatrix();
glPushMatrix();
glTranslatef(0,0,0);
drawTarget(1280 * 0.50, 720 * 0.75,50);
glPopMatrix();
glfwSwapBuffers(w);
glfwPollEvents();
}
while (!glfwWindowShouldClose(w));
glfwDestroyWindow(w);
glfwTerminate();
exit(EXIT_SUCCESS);
return 0;
}
The values for the vertex positions with which you draw your circles are in the order of hundreds (likely, because you want to address pixels as indicated by the values for the projection matrix). But glTranslates sees only a small number, so the shift is miniscule (one pixel) and hence you think nothing did happen. If you rewrite your code so that you don't specify the circle/target center by explicit modification of the vertex position offset it'd be clearer.
void drawCircle(float radius)
{
/* ... */
for(int ii = 0; ii < num_segments; ii++)
{
glVertex2f(x, y); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
/* ... */
}
void drawTarget(float radius)
{
/* ... */
for(int ii = 0; ii < num_segments; ii++)
{
glVertex2f(x, y); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
/* ... */
}
int main(void)
{
/* ... */
glPushMatrix();
glTranslatef(1280*0.50, 720*0.25, 0);
drawCircle(e[2]);
glPopMatrix();
glPushMatrix();
glTranslatef(1280 * 0.50, 720 * 0.25, 0);
drawTarget(50);
glPopMatrix();
/* ... */
}
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, fb_width, fb_height, 0, 0, 1);
You don't have to make the projection matrix at every loop, put it before the loop.
Then the error you have is surely due to :
glMatrixMode(GL_MODELVIEW);
// it miss glLoadIdentity() here
glPushMatrix();
glTranslatef(0,1,0);
Here's the screenshot of what I am doing. Currently, I'm stuck from drawing a curved borders into this rectangle.
My first solution was: draw a quartered circle behind the rectangle, but if I adjust the opacity of the shape, as you can see, the quartered circle gets shown.
I know this is pretty basic for you guys but I'm not really good at math.
I did try to reuse the computed edges of the arc and add the size of border but I got this as a result.
I also think of bezier curves as a replacement but I think it is more efficient to just reuse the computed vertices and add all the missing ones. Also, I don't know how to compute for the curved points of bezier curves and finding the right amount of t would be very computationally expensive so I don't implement it.
Here's the code how I draw the inner quartered circle and I think I can just reuse it.
void drawArc(int x, int y,
int startAngle, int endAngle,
uint32_t radiusX, uint32_t radiusY,
int border_x, int border_y,
const rgb color,
const rgb bcX, const rgb bcY,
uint8_t opacity)
{
if (radiusX <= 0 || radiusY <= 0) return;
static constexpr float DTR = 3.14159 / 180;
float cx, cy;
int step;
static std::vector<float> verts;
static std::vector<uint8_t> colors;
if (startAngle < endAngle)
{
step = +1;
++ endAngle;
} else
{
step = -1;
-- endAngle;
}
verts.clear();
colors.clear();
verts.push_back(x);
verts.push_back(y);
colors.push_back(color[R]);
colors.push_back(color[G]);
colors.push_back(color[B]);
colors.push_back(opacity);
while (startAngle != endAngle)
{
cx = cos(DTR * startAngle) * radiusX;
cy = sin(DTR * startAngle) * radiusY;
verts.push_back(x + cx);
verts.push_back(y - cy);
colors.push_back(color[R]);
colors.push_back(color[G]);
colors.push_back(color[B]);
colors.push_back(opacity);
startAngle += step;
}
drawElements(GL_POLYGON, sizeof(arcIndices) / sizeof(arcIndices[0]), GL_FLOAT,
&verts[0], &colors[0], &arcIndices[0]);
if (border_x != 0 || border_y != 0)
{
//remove (x, y)
verts.erase(verts.begin(), verts.begin() + 2);
// float px, py;
//
// px = *(verts.begin() + 0);
// py = *(verts.begin() + 1);
//
// glPointSize(5);
//
// glBegin(GL_POINTS);
//
// glColor3ub(0,0,255);
// glVertex2i(px, py);
//
// px = *(verts.end() - 2);
// py = *(verts.end() - 1);
//
// glColor3ub(255,0,0);
// glVertex2i(px , py);
// glEnd();
//attempting to reuse the edges
//I think the last vertices are opposed
//that's why I got a crossed out lines??
for (int i = 0;i <= 90; ++i)
{
verts.push_back(verts[i + 0] + border_x);
verts.push_back(verts[i + 1] + border_y);
colors.push_back(bcX[R]);
colors.push_back(bcX[G]);
colors.push_back(bcX[B]);
colors.push_back(opacity);
}
//91 = steps from 0-90 degree revolution
//182 = 91 * 2
unsigned int index[182 + 91 * 2];
for (int i = 0;i < 182 + 91 * 2; ++i)
index[i] = i;
drawElements(GL_LINE_LOOP, verts.size() / 2, GL_FLOAT,
&verts[0], &colors[0], &index[0]);
}
}
Edit:
Can't I just reuse the pre-calculated (x,y) before?
Sorry for too much use of pictures
The red dots are pre-calculated (x, y) I'm referring to and just append the next arc base on this.
I'm gonna render many of this kind so I need as efficient as possible(w/o too much use to trigo functions).
Update:
And here is the result I got from using stencil buffer as what Andon M. Coleman suggested:
Btw, as you can see, I am trying to emulate my own UI using OpenGL :D
You expressed an interest in seeing how this could be solved using the stencil buffer yesterday, so I am following up with some basic pseudo-code.
glClearStencil (0x0);
glClear (GL_STENCIL_BUFFER_BIT);
glEnable (GL_STENCIL_TEST);
glStencilFunc (GL_ALWAYS, 0x0, 0x0);
// Add 1 to stencil buffer at every location the object to be bordered is visible
glStencilOp (GL_KEEP, GL_KEEP, GL_INCR);
// Draw your grey object
// Only draw the red border where the grey object was never drawn (stencil = 0x0)
glStencilFunc (GL_EQUAL, 0x0, 0xff);
// Draw your red quarter circles
glDisable (GL_STENCIL_TEST);
Clearing the stencil buffer everytime you draw your outlined object is probably overkill. If you opt to clear the stencil buffer once per-frame instead, you can do some pretty interesting things. For instance, if you drew the outlines as a separate pass after all non-outlined shapes are drawn you could use this stencil buffer setup to outline the union (instead of including the intersection of objects as part of the drawn outline) of any overlapping objects.. this would allow you to construct more complicated shapes from your simple rounded rectangles.
Of course for this to work, your pixel format must have a stencil buffer. I will have to leave that part up to you, because the process of setting that up is implementation specific.
GL_POLYGON is only for convex polygons.
Link together the vertices on your inner and outer radii to form quads/triangles:
#include <GL/glut.h>
#include <cmath>
void Torus2d
(
float angle, // starting angle in radians
float length, // length of arc in radians, >0
float radius, // inner radius, >0
float width, // width of torus, >0
unsigned int samples // number of circle samples, >=3
)
{
if( samples < 3 ) samples = 3;
const float outer = radius + width;
glBegin( GL_QUAD_STRIP );
for( unsigned int i = 0; i <= samples; ++i )
{
float a = angle + ( i / (float)samples ) * length;
glVertex2f( radius * cos( a ), radius * sin( a ) );
glVertex2f( outer * cos( a ), outer * sin( a ) );
}
glEnd();
}
void display()
{
glClear( GL_COLOR_BUFFER_BIT );
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
double w = glutGet( GLUT_WINDOW_WIDTH );
double h = glutGet( GLUT_WINDOW_HEIGHT );
double ar = w / h;
glOrtho( -4 * ar, 4 * ar, -4, 4, -1, 1);
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
glColor3ub( 255, 0, 0 );
Torus2d( 0, 1.57079633, 2, 1, 20 );
glutSwapBuffers();
}
int main( int argc, char **argv )
{
glutInit( &argc, argv );
glutInitDisplayMode( GLUT_RGBA | GLUT_DOUBLE );
glutInitWindowSize( 640, 480 );
glutCreateWindow( "GLUT" );
glutDisplayFunc( display );
glutMainLoop();
return 0;
}
how can i draw shape like (sin) if i describe the shape like half circle closed and the other half circle connected with the first one. using Cartesian method this is my trying:
#include <windows.h>
#include <gl/Gl.h>
#include <gl/glut.h>
#include<math.h>
#include<cstdlib>
static void myDisplay()
{
glClear(GL_COLOR_BUFFER_BIT); // clear the screen
glColor3f(1.0,0.0,0.0);
glColor3f(0.0,0.0,0.0);
glBegin(GL_LINE_LOOP);
double xc=200, yc=200,r=100;
double x,y;
for (x = xc - r; x<= xc + r;x++)
{
y = sqrt((r*r)-((xc - x)*(xc - x)));
glVertex2d(x, yc + y);
}
for (x = xc +r ; x<= xc - r ; x++)
{
y = sqrt((r*r)-((xc - x)*(xc - x)));
glVertex2d(x , yc - y);
}
glEnd();
glFlush();
}
void myInit(void)
{
glClearColor(1.0,1.0,1.0,0.0); // set white background color
glColor3f(0.0f, 0.0f, 0.0f); // set the drawing color
glPointSize(4.0); // a ‘dot’ is 4 by 4 pixels
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, 640.0, 0.0, 480.0);
}
void main(int argc, char** argv)
{
glutInit(&argc, argv); // initialize the toolkit
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); // set display mode
glutInitWindowSize(640,480); // set window size
glutInitWindowPosition(100, 150); // set window position on screen
glutCreateWindow("Line Scan Conversion"); // open the screen window
glutDisplayFunc(myDisplay); // register redraw function
myInit();
glutMainLoop(); // go into a perpetual loop
}
Just sample the function (sin()) directly:
#include <GL/glut.h>
#include <cmath>
static void myDisplay()
{
glClearColor( 0, 0, 0, 1 ); // set white background color
glClear(GL_COLOR_BUFFER_BIT); // clear the screen
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho( -0.5, 7, -1.2, 1.2, -1, 1 );
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
// axes
glColor3ub( 255, 255, 255 );
glBegin( GL_LINES );
glVertex2i( 0, 0 );
glVertex2i( 7, 0 );
glVertex2i( 0, -1 );
glVertex2i( 0, 1 );
glEnd();
// sin() function plot
glColor3ub( 255, 0, 0 );
glBegin(GL_LINE_STRIP);
const unsigned int samples = 100;
for( unsigned int i = 0; i <= samples; ++i )
{
const float pct = ( (float)i / samples );
const float x = 2 * 3.14159 * pct;
const float y = sin( x );
glVertex2f( x, y );
}
glEnd();
glutSwapBuffers();
}
void main(int argc, char** argv)
{
glutInit(&argc, argv); // initialize the toolkit
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB); // set display mode
glutInitWindowSize(600, 600); // set window size
glutCreateWindow("Line Scan Conversion"); // open the screen window
glutDisplayFunc(myDisplay); // register redraw function
glutMainLoop(); // go into a perpetual loop
}
There is an issue in your second for loop:
for( x = xc + r; x <= xc - r; x++ )
this is being executed as x = 400; x <= 0; x++ which clearly will never run. Your issue (other than the obvious pointed out above) is that you are trying to account for the x offset in the loop iterations. I suggest changing to the following:
for( x = 0; x < 2r; x++ )
and then instead of
glVertex2d(x, yc + y);
glVertex2d(x, yc - y);
do
glVertex2d((xc - r) + x, yc + y);
glVertex2d((xc + r) + x, yc - y);
or something similar (not in a position to actual test this, but you should get the idea).
I've seen a similar post about this subject here, however, my question is a little bit different.
I have a 2D plot which will be comprised of circles at varying locations with varying sizes. Currently, my rendering scheme uses a display list to store a pre-drawn circle which can be actively re-sized and translated by the user using glScalef/glTranslatef. However, because I am rendering thousands of circles, the resize and drawing becomes extremely slow. Each circle can have a different radius and color so these things must be done within the loop.
What would be some things I could try to improve the speed of circle rendering when the user changes say the size of the circles? I've looked into VBO like the above link says but it was ambiguous to how much of a performance gain I would receive for this type of application where my object is constantly changing in size.
because I am rendering thousands of circles, the resize and drawing becomes extremely slow
With just vertex arrays this is getting about 60ms per frame on an Intel HD Graphics 3000 with 10,000 circles:
// g++ -O3 circles.cpp -o circles -lglut -lGL
#include <GL/glut.h>
#include <vector>
#include <iostream>
#include <cmath>
using namespace std;
// returns a GL_TRIANGLE_FAN-able buffer containing a unit circle
vector< float > glCircle( unsigned int subdivs = 20 )
{
vector< float > buf;
buf.push_back( 0 );
buf.push_back( 0 );
for( unsigned int i = 0; i <= subdivs; ++i )
{
float angle = i * ((2.0f * 3.14159f) / subdivs);
buf.push_back( cos(angle) );
buf.push_back( sin(angle) );
}
return buf;
}
struct Circle
{
Circle()
{
x = ( rand() % 200 ) - 100;
y = ( rand() % 200 ) - 100;
scale = ( rand() % 10 ) + 4;
r = rand() % 255;
g = rand() % 255;
b = rand() % 255;
a = 1;
}
float x, y;
float scale;
unsigned char r, g, b, a;
};
vector< Circle > circles;
vector< float > circleGeom;
void init()
{
srand( 0 );
for( size_t i = 0; i < 10000; ++i )
circles.push_back( Circle() );
circleGeom = glCircle( 100 );
}
void display()
{
int beg = glutGet( GLUT_ELAPSED_TIME );
glClear( GL_COLOR_BUFFER_BIT );
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
double w = glutGet( GLUT_WINDOW_WIDTH );
double h = glutGet( GLUT_WINDOW_HEIGHT );
double ar = w / h;
glOrtho( -100 * ar, 100 * ar, -100, 100, -1, 1);
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
glEnableClientState( GL_VERTEX_ARRAY );
glVertexPointer( 2, GL_FLOAT, 0, &circleGeom[0] );
for( size_t i = 0; i < circles.size(); ++i )
{
Circle& c = circles[i];
c.scale = ( rand() % 10 ) + 4;
glPushMatrix();
glTranslatef( c.x, c.y, 0 );
glScalef( c.scale, c.scale, 0 );
glColor3ub( c.r, c.g, c.b );
glDrawArrays( GL_TRIANGLE_FAN, 0, circleGeom.size() / 2 );
glPopMatrix();
}
glDisableClientState( GL_VERTEX_ARRAY );
glutSwapBuffers();
int end = glutGet( GLUT_ELAPSED_TIME );
double elapsed = (double)( end - beg );
cout << elapsed << "ms" << endl;
}
void timer(int extra)
{
glutPostRedisplay();
glutTimerFunc(16, timer, 0);
}
int main( int argc, char **argv )
{
glutInit( &argc, argv );
glutInitDisplayMode( GLUT_RGBA | GLUT_DOUBLE );
glutInitWindowSize( 600, 600 );
glutCreateWindow( "Circles" );
init();
glutDisplayFunc( display );
glutTimerFunc(0, timer, 0);
glutMainLoop();
return 0;
}
ARB_instanced_arrays-based instancing would probably be the cleanest.
You'll have a single circle with M vertices you'll draw N times, storing your per-circle x/y position, radius, and color as vertex attributes and using glVertexAttribDivisor() appropriately.
Gets trickier if you want radius-adaptive LOD. You'll probably have to dig into geometry shaders for that.
Second using instanced arrays with glDrawElementsInstanced or glDrawArraysInstanced as a clean solution that transfers well to other types of geometry.
If you want/need to stick to OpenGL 2 (eg has to run on an iThing for example) and you only need circles, also consider point sprites. Origin of each circle is the point vertex value. Store the radius as the S value of a texture coordinate, the X value of a surface normal, whatever. Enable blending, GL_PROGRAM_POINT_SIZE, maybe point smoothing; and write a vertex shader which just sets gl_PointSize to the radius you want. Instant circles.