Eigen remove for in plane line(s) intersection method - c++

I'm trying to do a plane line(s) intersection method using Eigen. The code works, but I want to remove the for loop (used to process each point). The goal is to make this method run as fast as possible.
Input: planeNormal, planePoint, linesP0 (3xN), linesp1 (3xN)
Output: intersetcionsPoints (3xN)
Number of points is N
Complete code:
void PlaneLineIntersect(const Vector3f &planeNormal, const Vector3f &planeP0, const Matrix3Xf &linesP0, const Matrix3Xf &linesP1, Matrix3Xf &I, float &t)
{
Matrix3Xf p0l0(linesP0.rows(), linesP0.cols());
// ################################
// ## HOW TO REMOVE THIS FOR (colwise?) ##
for (int i = 0; i < linesP0.cols(); i++)
{
float denom = planeNormal.dot(linesP1.col(i) - linesP0.col(i));
if (denom > 1e-6 || denom < -1e-6) // há uma interseção
{
Vector3f p0l0 = planeP0 - linesP0.col(i);
t = p0l0.dot(planeNormal) / denom;
p0l0 = (t * (linesP1.col(i) - linesP0.col(i))) + linesP0.col(i);
I.col(i) = p0l0;
}
}
}
int main(cli::array<System::String ^> ^args)
{
int n = 1000;
Eigen::Vector3f planeNormal = Eigen::Vector3f(0, 0, -1);
Eigen::Vector3f planeP0 = Eigen::Vector3f(0, 0, 7);
Eigen::Matrix3Xf linesP0 = Matrix3Xf::Random(3, n);
Eigen::Matrix3Xf linesP1 = Matrix3Xf::Random(3, n);
Eigen::Matrix3Xf I = Matrix3Xf::Zero(3, n);
float t;
high_resolution_clock::time_point t1 = high_resolution_clock::now();
#pragma omp parallel for
for (int i = 0; i < 100; i++)
PlaneLineIntersect(planeNormal, planeP0, linesP0, linesP1, I, t);
high_resolution_clock::time_point t2 = high_resolution_clock::now();
double duration = (double) (duration_cast<microseconds>(t2 - t1).count());
cout << "\nTempo total = " << duration / 1000 << " ms" << endl;
cout << "\nTempo / ponto = " << duration / (n * 100) << " us\n" << endl;
system("pause");
return 0;
}

Related

Logistic Regression Returning Wrong Prediction

I'm trying to implement logistic regression in C++, but the predictions I'm getting are not even close to what I am expecting. I'm not sure if there is an error in my understanding of logistic regression or the code.
I have reviewed the algorithms and messed with the learning rate, but the results are very inconsistent.
double theta[4] = {0,0,0,0};
double x[2][3] = {
{1,1,1},
{9,9,9},
};
double y[2] = {0,1};
//prediction data
double test_x[1][3] = {
{9,9,9},
};
int test_m = sizeof(test_x) / sizeof(test_x[0]);
int m = sizeof(x) / sizeof(x[0]);
int n = sizeof(theta) / sizeof(theta[0]);
int xn = n - 1;
struct Logistic
{
double sigmoid(double total)
{
double e = 2.71828;
double sigmoid_x = 1 / (1 + pow(e, -total));
return sigmoid_x;
}
double h(int x_row)
{
double total = theta[0] * 1;
for(int c1 = 0; c1 < xn; ++c1)
{
total += theta[c1 + 1] * x[x_row][c1];
}
double final_total = sigmoid(total);
//cout << "final total: " << final_total;
return final_total;
}
double cost()
{
double hyp;
double temp_y;
double error;
for(int c1 = 0; c1 < m; ++c1)
{
//passes row of x to h to calculate sigmoid(xi * thetai)
hyp = h(c1);
temp_y = y[c1];
error += temp_y * log(hyp) + (1 - temp_y) * log(1 - hyp);
}// 1 / m
double final_error = -.5 * error;
return final_error;
}
void gradient_descent()
{
double alpha = .01;
for(int c1 = 0; c1 < n; ++c1)
{
double error = cost();
cout << "final error: " << error << "\n";
theta[c1] = theta[c1] - alpha * error;
cout << "theta: " << c1 << " " << theta[c1] << "\n";
}
}
void train()
{
for(int epoch = 0; epoch <= 10; ++epoch)
{
gradient_descent();
cout << "epoch: " << epoch << "\n";
}
}
vector<double> predict()
{
double temp_total;
double total;
vector<double> final_total;
//hypothesis equivalent function
temp_total = theta[0] * 1;
for(int c1 = 0; c1 < test_m; ++c1)
{
for(int c2 = 0; c2 < xn; ++c2)
{
temp_total += theta[c2 + 1] * test_x[c1][c2];
}
total = sigmoid(temp_total);
//cout << "final total: " << final_total;
final_total.push_back(total);
}
return final_total;
}
};
int main()
{
Logistic test;
test.train();
vector<double> prediction = test.predict();
for(int c1 = 0; c1 < test_m; ++c1)
{
cout << "prediction: " << prediction[c1] << "\n";
}
}
start with a very small learning rate wither larger iteration number at try. Haven`t tested ur code. But I guess the cost/error/energy jumps from hump to hump.
Somewhat unrelated to your question, but rather than computing e^-total using pow, use exp instead (it's a hell of a lot faster!). Also there is no need to make the sigmoid function a member func, make it static or just a normal C func (it doesn't require any member variable from your struct).
static double sigmoid(double total)
{
return 1.0 / (1.0 + exp(-total));
}

Matrix inversion slower using threads

I made a function that makes the inverse and then another multithreaded, as long I have to make inverse of arrays >2000 x 2000.
A 1000x1000 array unthreated takes 2.5 seconds (on a i5-4460 4 cores 2.9ghz)
and multithreaded takes 7.25 seconds
I placed the multithreads in the part that most time consumption is taken. Whai is wrong?
Is due vectors are used instead of 2 dimensions arrays?
This is the minimum code to test both versions:
#include<iostream>
#include <vector>
#include <stdlib.h>
#include <time.h>
#include <chrono>
#include <thread>
const int NUCLEOS = 8;
#ifdef __linux__
#include <unistd.h> //usleep()
typedef std::chrono::system_clock t_clock; //try to use high_resolution_clock on new linux x64 computer!
#else
typedef std::chrono::high_resolution_clock t_clock;
#pragma warning(disable:4996)
#endif
using namespace std;
std::chrono::time_point<t_clock> start_time, stop_time = start_time; char null_char = '\0';
void timer(char *title = 0, int data_size = 1) { stop_time = t_clock::now(); double us = (double)chrono::duration_cast<chrono::microseconds>(stop_time - start_time).count(); if (title) printf("%s time = %7lgms = %7lg MOPs\n", title, (double)us*1e-3, (double)data_size / us); start_time = t_clock::now(); }
//makes columns 0
void colum_zero(vector< vector<double> > &x, vector< vector<double> > &y, int pos0, int pos1,int dim, int ord);
//returns inverse of x, x is not modified, not threaded
vector< vector<double> > inverse(vector< vector<double> > x)
{
if (x.size() != x[0].size())
{
cout << "ERROR on inverse() not square array" << endl; getchar(); return{};//returns a null
}
size_t dim = x.size();
int i, j, ord;
vector< vector<double> > y(dim,vector<double>(dim,0));//initializes output = 0
//init_2Dvector(y, dim, dim);
//1. Unity array y:
for (i = 0; i < dim; i++)
{
y[i][i] = 1.0;
}
double diagon, coef;
double *ptrx, *ptry, *ptrx2, *ptry2;
for (ord = 0; ord<dim; ord++)
{
//2 Hacemos diagonal de x =1
int i2;
if (fabs(x[ord][ord])<1e-15) //If that element is 0, a line that contains a non zero is added
{
for (i2 = ord + 1; i2<dim; i2++)
{
if (fabs(x[i2][ord])>1e-15) break;
}
if (i2 >= dim)
return{};//error, returns null
for (i = 0; i<dim; i++)//added a line without 0
{
x[ord][i] += x[i2][i];
y[ord][i] += y[i2][i];
}
}
diagon = 1.0/x[ord][ord];
ptry = &y[ord][0];
ptrx = &x[ord][0];
for (i = 0; i < dim; i++)
{
*ptry++ *= diagon;
*ptrx++ *= diagon;
}
//uses the same function but not threaded:
colum_zero(x,y,0,dim,dim,ord);
}//end ord
return y;
}
//threaded version
vector< vector<double> > inverse_th(vector< vector<double> > x)
{
if (x.size() != x[0].size())
{
cout << "ERROR on inverse() not square array" << endl; getchar(); return{};//returns a null
}
int dim = (int) x.size();
int i, ord;
vector< vector<double> > y(dim, vector<double>(dim, 0));//initializes output = 0
//init_2Dvector(y, dim, dim);
//1. Unity array y:
for (i = 0; i < dim; i++)
{
y[i][i] = 1.0;
}
std::thread tarea[NUCLEOS];
double diagon;
double *ptrx, *ptry;// , *ptrx2, *ptry2;
for (ord = 0; ord<dim; ord++)
{
//2 Hacemos diagonal de x =1
int i2;
if (fabs(x[ord][ord])<1e-15) //If a diagonal element=0 it is added a column that is not 0 the diagonal element
{
for (i2 = ord + 1; i2<dim; i2++)
{
if (fabs(x[i2][ord])>1e-15) break;
}
if (i2 >= dim)
return{};//error, returns null
for (i = 0; i<dim; i++)//It is looked for a line without zero to be added to make the number a non zero one to avoid later divide by 0
{
x[ord][i] += x[i2][i];
y[ord][i] += y[i2][i];
}
}
diagon = 1.0 / x[ord][ord];
ptry = &y[ord][0];
ptrx = &x[ord][0];
for (i = 0; i < dim; i++)
{
*ptry++ *= diagon;
*ptrx++ *= diagon;
}
int pos0 = 0, N1 = dim;//initial array position
if ((N1<1) || (N1>5000))
{
cout << "It is detected out than 1-5000 simulations points=" << N1 << " ABORT or press enter to continue" << endl; getchar();
}
//cout << "Initiation of " << NUCLEOS << " threads" << endl;
for (int thread = 0; thread<NUCLEOS; thread++)
{
int pos1 = (int)((thread + 1)*N1 / NUCLEOS);//next position
tarea[thread] = std::thread(colum_zero, std::ref(x), std::ref(y), pos0, pos1, dim, ord);//ojo, coil current=1!!!!!!!!!!!!!!!!!!
pos0 = pos1;//next thread will work at next point
}
for (int thread = 0; thread<NUCLEOS; thread++)
{
tarea[thread].join();
//cout << "Thread num: " << thread << " end\n";
}
}//end ord
return y;
}
//makes columns 0
void colum_zero(vector< vector<double> > &x, vector< vector<double> > &y, int pos0, int pos1,int dim, int ord)
{
double coef;
double *ptrx, *ptry, *ptrx2, *ptry2;
//Hacemos '0' la columna ord salvo elemento diagonal:
for (int i = pos0; i<pos1; i++)//Begin to end for every thread
{
if (i == ord) continue;
coef = x[i][ord];//element to make 0
if (fabs(coef)<1e-15) continue; //If already zero, it is avoided
ptry = &y[i][0];
ptry2 = &y[ord][0];
ptrx = &x[i][0];
ptrx2 = &x[ord][0];
for (int j = 0; j < dim; j++)
{
*ptry++ = *ptry - coef * (*ptry2++);//1ª matriz
*ptrx++ = *ptrx - coef * (*ptrx2++);//2ª matriz
}
}
}
void test_6_inverse(int dim)
{
vector< vector<double> > vec1(dim, vector<double>(dim));
for (int i=0;i<dim;i++)
for (int j = 0; j < dim; j++)
{
vec1[i][j] = (-1.0 + 2.0*rand() / RAND_MAX) * 10000;
}
vector< vector<double> > vec2,vec3;
double ini, end;
ini = (double)clock();
vec2 = inverse(vec1);
end = (double)clock();
cout << "=== Time inverse unthreaded=" << (end - ini) / CLOCKS_PER_SEC << endl;
ini=end;
vec3 = inverse_th(vec1);
end = (double)clock();
cout << "=== Time inverse threaded=" << (end - ini) / CLOCKS_PER_SEC << endl;
cout<<vec2[2][2]<<" "<<vec3[2][2]<<endl;//to make the sw to do de inverse
cout << endl;
}
int main()
{
test_6_inverse(1000);
cout << endl << "=== END ===" << endl; getchar();
return 1;
}
After looking deeper in the code of the colum_zero() function I have seen that one thread rewrites in the data to be used by another threads, so the threads are not INDEPENDENT from each other. Fortunately the compiler detect it and avoid it.
Conclusions:
It is not recommended to try Gauss-Jordan method alone to make multithreads
If somebody detects that in multithread is slower and the initial function is spreaded correctly for every thread, perhaps is due one thread results are used by another
The main function inverse() works and can be used by other programmers, so this question should not be deleted
Non answered question:
What is a matrix inverse method that could be spreaded in a lot of independent threads to be used in a gpu?

C++ Eigen Library

I'm having trouble compiling this program with #include. I see that if I comment out this line it compiles.
MatrixXd A = (1.0 / (double) d) * (p * U * p.transpose() - (p * u) * (p * u).transpose()).inverse();
I am unable to change the header since I need to run this code in ROS and I have to use the Eigen library built within. I am using the code as described in this link
How to fit a bounding ellipse around a set of 2D points.
Any help is greatly appricated.
pound include iostream
pound include Eigen/Dense
using namespace std;
using Eigen::MatrixXd;
int main ( )
{
//The tolerance for error in fitting the ellipse
double tolerance = 0.2;
int n = 12; // number of points
int d = 2; // dimension
MatrixXd p(d,n); //Fill matrix with random points
p(0,0) = -2.644722;
p(0,1) = -2.644961;
p(0,2) = -2.647504;
p(0,3) = -2.652942;
p(0,4) = -2.652745;
p(0,5) = -2.649508;
p(0,6) = -2.651345;
p(0,7) = -2.654530;
p(0,8) = -2.651370;
p(0,9) = -2.653966;
p(0,10) = -2.661322;
p(0,11) = -2.648208;
p(1,0) = 4.764553;
p(1,1) = 4.718605;
p(1,2) = 4.676985;
p(1,3) = 4.640509;
p(1,4) = 4.595640;
p(1,5) = 4.546657;
p(1,6) = 4.506177;
p(1,7) = 4.468277;
p(1,8) = 4.421263;
p(1,9) = 4.383508;
p(1,10) = 4.353276;
p(1,11) = 4.293307;
cout << p << endl;
MatrixXd q = p;
q.conservativeResize(p.rows() + 1, p.cols());
for(size_t i = 0; i < q.cols(); i++)
{
q(q.rows() - 1, i) = 1;
}
int count = 1;
double err = 1;
const double init_u = 1.0 / (double) n;
MatrixXd u = MatrixXd::Constant(n, 1, init_u);
while(err > tolerance)
{
MatrixXd Q_tr = q.transpose();
cout << "1 " << endl;
MatrixXd X = q * u.asDiagonal() * Q_tr;
cout << "1a " << endl;
MatrixXd M = (Q_tr * X.inverse() * q).diagonal();
cout << "1b " << endl;
int j_x, j_y;
double maximum = M.maxCoeff(&j_x, &j_y);
double step_size = (maximum - d - 1) / ((d + 1) * (maximum + 1));
MatrixXd new_u = (1 - step_size) * u;
new_u(j_x, 0) += step_size;
cout << "2 " << endl;
//Find err
MatrixXd u_diff = new_u - u;
for(size_t i = 0; i < u_diff.rows(); i++)
{
for(size_t j = 0; j < u_diff.cols(); j++)
u_diff(i, j) *= u_diff(i, j); // Square each element of the matrix
}
err = sqrt(u_diff.sum());
count++;
u = new_u;
}
cout << "3 " << endl;
MatrixXd U = u.asDiagonal();
MatrixXd A = (1.0 / (double) d) * (p * U * p.transpose() - (p * u) * (p * u).transpose()).inverse();
MatrixXd c = p * u;
cout << A << endl;
cout << c << endl;
return 0;
}
If I replace the obvious pound include bogus by
#include <iostream>
#include <Eigen/Dense>
it compiles just fine. It also runs, prints some numbers and returns 0.

error converting pi example to multi thread to increase speed in c++

I need to convert this program which runs a iteration, Divide the iteration steps into 4 threads. If the iteration is n then I execute it using 4 threads. The program takes a average 4.7 sec to run. The sum is accessible to all the 4 threads and while updating there is a issue. I'm getting 1.5 as answer instead of 3.1457 for the value of pi.Also threading does not decrease the time. Please help me
#include "stdafx.h"
#include <iostream>
#include <chrono>
#include <thread>
#include <functional>
#include <mutex>
//std::mutex m;
long num_rects = 100000000;
struct params
{
int start;
int end;
double mid;
double height;
double width;
params(int st,int en)
{
start = st;
end = en;
width = 1.0 / (double)num_rects;
}
};
double sum = 0.0;
void sub1(params param){
for (int i = param.start; i < param.end; i++)
{
param.mid = (i + 0.5)*param.width;
param.height = 4.0 / (1.0 + param.mid*param.mid);
//m.lock();
sum += param.height;
//m.unlock();
}
}
int _tmain(int argc, _TCHAR* argv[])
{
int i;
double mid, height, width;
double area;
auto begin = std::chrono::high_resolution_clock::now();
params par(0, num_rects / 4);
std::thread t(sub1, par);
params par1(num_rects / 4, num_rects / 2);
std::thread t1(sub1, par1);
params par2(num_rects / 2, (num_rects *3)/ 4);
std::thread t2(sub1, par2);
params par3((num_rects * 3) / 4, num_rects );
std::thread t3(sub1, par3);
t.join();
t1.join();
t2.join();
t3.join();
/*
sub1(par);
sub1(par1);
sub1(par2);
sub1(par3);
*/
width = 1.0 / (double)num_rects;
area = sum*width;
std::cout << area << std::endl;
auto end = std::chrono::high_resolution_clock::now();
std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - begin).count() << "ms" << std::endl;
std::cin.get();
return 0;
}
You are suffering from a race condition to write sum, so 2 threads could overwrite sum with different values and then the updated value gets overwritten.
This change should work.
double sub1(params param){
double sum = 0.0; // thread local
for (int i = param.start; i < param.end; i++)
{
param.mid = (i + 0.5)*param.width;
param.height = 4.0 / (1.0 + param.mid*param.mid);
sum += param.height;
}
return sum;
}
#include <future>
int SubMain() {
int i;
double mid, height, width;
double area;
auto begin = std::chrono::high_resolution_clock::now();
params par(0, num_rects / 4);
std::future<double> fut1 = std::async (sub1, par);
params par1(num_rects / 4, num_rects / 2);
std::future<double> fut2 = std::async (sub1, par1);
params par2(num_rects / 2, (num_rects *3)/ 4);
std::future<double> fut3 = std::async (sub1, par2);
params par3((num_rects * 3) / 4, num_rects );
std::future<double> fut4 = std::async (sub1, par3);
sum = fut1.get() + fut2.get() + fut3.get() + fut4.get();
width = 1.0 / (double)num_rects;
area = sum*width;
std::cout << area << std::endl;
auto end = std::chrono::high_resolution_clock::now();
std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - begin).count() << "ms" << std::endl;
std::cin.get();
return 0;
}
made some chnages to surt's code this is the final optimized version
double sub1(params param){
double sum = 0.0; // thread local
for (int i = param.start; i < param.end; i++)
{
param.mid = (i + 0.5)*param.width;
param.height = 4.0 / (1.0 + param.mid*param.mid);
sum += param.height;
}
return sum;
}
#include <future>
#include <vector>
int SubMain() {
int i;
double mid, height, width;
double area;
auto begin = std::chrono::high_resolution_clock::now();
std::vector<std::future<double>> futures;
double k = 0;
for (int j = 0; j < 4; j++)
{
params par(num_rects *k, num_rects *(k + 0.25));
k += 0.25;
futures.push_back(std::async(sub1, par));
}
for (std::vector<std::future<double>> ::iterator it = futures.begin(); it != futures.end(); it++)
{
sum += it->get();
}
/* params par(0, num_rects / 4);
std::future<double> fut1 = std::async(sub1, par);
params par1(num_rects / 4, num_rects / 2);
std::future<double> fut2 = std::async(sub1, par1);
params par2(num_rects / 2, (num_rects * 3) / 4);
std::future<double> fut3 = std::async(sub1, par2);
params par3((num_rects * 3) / 4, num_rects);
std::future<double> fut4 = std::async(sub1, par3);
sum = fut1.get() + fut2.get() + fut3.get() + fut4.get();*/
width = 1.0 / (double)num_rects;
area = sum*width;
std::cout << area << std::endl;
auto end = std::chrono::high_resolution_clock::now();
std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - begin).count() << "ms" << std::endl;
std::cin.get();
return 0;
}

C++ Spline interpolation from an array of points

I am writing a bit of code to animate a point using a sequence of positions. In order to have a decent result, I'd like to add some spline interpolation
to smoothen the transitions between positions. All the positions are separated by the same amount of time (let's say 500ms).
int delay = 500;
vector<Point> positions={ (0, 0) , (50, 20), (150, 100), (30, 120) };
Here is what i have done to make a linear interpolation (which seems to work properly), juste to give you an idea of what I'm looking for later on :
Point getPositionAt(int currentTime){
Point before, after, result;
int currentIndex = (currentTime / delay) % positions.size();
before = positions[currentIndex];
after = positions[(currentIndex + 1) % positions.size()];
// progress between [before] and [after]
double progress = fmod((((double)currentTime) / (double)delay), (double)positions.size()) - currentIndex;
result.x = before.x + (int)progress*(after.x - before.x);
result.y = before.y + (int)progress*(after.y - before.y);
return result;
}
So that was simple, but now what I would like to do is spline interpolation. Thanks !
I had to write a Bezier spline creation routine for an "entity" that was following a path in a game I am working on. I created a base class to handle a "SplineInterface" and the created two derived classes, one based on the classic spline technique (e.g. Sedgewick/Algorithms) an a second one based on Bezier Splines.
Here is the code. It is a single header file, with a few includes (most should be obvious):
#ifndef __SplineCommon__
#define __SplineCommon__
#include "CommonSTL.h"
#include "CommonProject.h"
#include "MathUtilities.h"
/* A Spline base class. */
class SplineBase
{
private:
vector<Vec2> _points;
bool _elimColinearPoints;
protected:
protected:
/* OVERRIDE THESE FUNCTIONS */
virtual void ResetDerived() = 0;
enum
{
NOM_SIZE = 32,
};
public:
SplineBase()
{
_points.reserve(NOM_SIZE);
_elimColinearPoints = true;
}
const vector<Vec2>& GetPoints() { return _points; }
bool GetElimColinearPoints() { return _elimColinearPoints; }
void SetElimColinearPoints(bool elim) { _elimColinearPoints = elim; }
/* OVERRIDE THESE FUNCTIONS */
virtual Vec2 Eval(int seg, double t) = 0;
virtual bool ComputeSpline() = 0;
virtual void DumpDerived() {}
/* Clear out all the data.
*/
void Reset()
{
_points.clear();
ResetDerived();
}
void AddPoint(const Vec2& pt)
{
// If this new point is colinear with the two previous points,
// pop off the last point and add this one instead.
if(_elimColinearPoints && _points.size() > 2)
{
int N = _points.size()-1;
Vec2 p0 = _points[N-1] - _points[N-2];
Vec2 p1 = _points[N] - _points[N-1];
Vec2 p2 = pt - _points[N];
// We test for colinearity by comparing the slopes
// of the two lines. If the slopes are the same,
// we assume colinearity.
float32 delta = (p2.y-p1.y)*(p1.x-p0.x)-(p1.y-p0.y)*(p2.x-p1.x);
if(MathUtilities::IsNearZero(delta))
{
_points.pop_back();
}
}
_points.push_back(pt);
}
void Dump(int segments = 5)
{
assert(segments > 1);
cout << "Original Points (" << _points.size() << ")" << endl;
cout << "-----------------------------" << endl;
for(int idx = 0; idx < _points.size(); ++idx)
{
cout << "[" << idx << "]" << " " << _points[idx] << endl;
}
cout << "-----------------------------" << endl;
DumpDerived();
cout << "-----------------------------" << endl;
cout << "Evaluating Spline at " << segments << " points." << endl;
for(int idx = 0; idx < _points.size()-1; idx++)
{
cout << "---------- " << "From " << _points[idx] << " to " << _points[idx+1] << "." << endl;
for(int tIdx = 0; tIdx < segments+1; ++tIdx)
{
double t = tIdx*1.0/segments;
cout << "[" << tIdx << "]" << " ";
cout << "[" << t*100 << "%]" << " ";
cout << " --> " << Eval(idx,t);
cout << endl;
}
}
}
};
class ClassicSpline : public SplineBase
{
private:
/* The system of linear equations found by solving
* for the 3 order spline polynomial is given by:
* A*x = b. The "x" is represented by _xCol and the
* "b" is represented by _bCol in the code.
*
* The "A" is formulated with diagonal elements (_diagElems) and
* symmetric off-diagonal elements (_offDiagElemns). The
* general structure (for six points) looks like:
*
*
* | d1 u1 0 0 0 | | p1 | | w1 |
* | u1 d2 u2 0 0 | | p2 | | w2 |
* | 0 u2 d3 u3 0 | * | p3 | = | w3 |
* | 0 0 u3 d4 u4 | | p4 | | w4 |
* | 0 0 0 u4 d5 | | p5 | | w5 |
*
*
* The general derivation for this can be found
* in Robert Sedgewick's "Algorithms in C++".
*
*/
vector<double> _xCol;
vector<double> _bCol;
vector<double> _diagElems;
vector<double> _offDiagElems;
public:
ClassicSpline()
{
_xCol.reserve(NOM_SIZE);
_bCol.reserve(NOM_SIZE);
_diagElems.reserve(NOM_SIZE);
_offDiagElems.reserve(NOM_SIZE);
}
/* Evaluate the spline for the ith segment
* for parameter. The value of parameter t must
* be between 0 and 1.
*/
inline virtual Vec2 Eval(int seg, double t)
{
const vector<Vec2>& points = GetPoints();
assert(t >= 0);
assert(t <= 1.0);
assert(seg >= 0);
assert(seg < (points.size()-1));
const double ONE_OVER_SIX = 1.0/6.0;
double oneMinust = 1.0 - t;
double t3Minust = t*t*t-t;
double oneMinust3minust = oneMinust*oneMinust*oneMinust-oneMinust;
double deltaX = points[seg+1].x - points[seg].x;
double yValue = t * points[seg + 1].y +
oneMinust*points[seg].y +
ONE_OVER_SIX*deltaX*deltaX*(t3Minust*_xCol[seg+1] - oneMinust3minust*_xCol[seg]);
double xValue = t*(points[seg+1].x-points[seg].x) + points[seg].x;
return Vec2(xValue,yValue);
}
/* Clear out all the data.
*/
virtual void ResetDerived()
{
_diagElems.clear();
_bCol.clear();
_xCol.clear();
_offDiagElems.clear();
}
virtual bool ComputeSpline()
{
const vector<Vec2>& p = GetPoints();
_bCol.resize(p.size());
_xCol.resize(p.size());
_diagElems.resize(p.size());
for(int idx = 1; idx < p.size(); ++idx)
{
_diagElems[idx] = 2*(p[idx+1].x-p[idx-1].x);
}
for(int idx = 0; idx < p.size(); ++idx)
{
_offDiagElems[idx] = p[idx+1].x - p[idx].x;
}
for(int idx = 1; idx < p.size(); ++idx)
{
_bCol[idx] = 6.0*((p[idx+1].y-p[idx].y)/_offDiagElems[idx] -
(p[idx].y-p[idx-1].y)/_offDiagElems[idx-1]);
}
_xCol[0] = 0.0;
_xCol[p.size()-1] = 0.0;
for(int idx = 1; idx < p.size()-1; ++idx)
{
_bCol[idx+1] = _bCol[idx+1] - _bCol[idx]*_offDiagElems[idx]/_diagElems[idx];
_diagElems[idx+1] = _diagElems[idx+1] - _offDiagElems[idx]*_offDiagElems[idx]/_diagElems[idx];
}
for(int idx = (int)p.size()-2; idx > 0; --idx)
{
_xCol[idx] = (_bCol[idx] - _offDiagElems[idx]*_xCol[idx+1])/_diagElems[idx];
}
return true;
}
};
/* Bezier Spline Implementation
* Based on this article:
* http://www.particleincell.com/blog/2012/bezier-splines/
*/
class BezierSpine : public SplineBase
{
private:
vector<Vec2> _p1Points;
vector<Vec2> _p2Points;
public:
BezierSpine()
{
_p1Points.reserve(NOM_SIZE);
_p2Points.reserve(NOM_SIZE);
}
/* Evaluate the spline for the ith segment
* for parameter. The value of parameter t must
* be between 0 and 1.
*/
inline virtual Vec2 Eval(int seg, double t)
{
assert(seg < _p1Points.size());
assert(seg < _p2Points.size());
double omt = 1.0 - t;
Vec2 p0 = GetPoints()[seg];
Vec2 p1 = _p1Points[seg];
Vec2 p2 = _p2Points[seg];
Vec2 p3 = GetPoints()[seg+1];
double xVal = omt*omt*omt*p0.x + 3*omt*omt*t*p1.x +3*omt*t*t*p2.x+t*t*t*p3.x;
double yVal = omt*omt*omt*p0.y + 3*omt*omt*t*p1.y +3*omt*t*t*p2.y+t*t*t*p3.y;
return Vec2(xVal,yVal);
}
/* Clear out all the data.
*/
virtual void ResetDerived()
{
_p1Points.clear();
_p2Points.clear();
}
virtual bool ComputeSpline()
{
const vector<Vec2>& p = GetPoints();
int N = (int)p.size()-1;
_p1Points.resize(N);
_p2Points.resize(N);
if(N == 0)
return false;
if(N == 1)
{ // Only 2 points...just create a straight line.
// Constraint: 3*P1 = 2*P0 + P3
_p1Points[0] = (2.0/3.0*p[0] + 1.0/3.0*p[1]);
// Constraint: P2 = 2*P1 - P0
_p2Points[0] = 2.0*_p1Points[0] - p[0];
return true;
}
/*rhs vector*/
vector<Vec2> a(N);
vector<Vec2> b(N);
vector<Vec2> c(N);
vector<Vec2> r(N);
/*left most segment*/
a[0].x = 0;
b[0].x = 2;
c[0].x = 1;
r[0].x = p[0].x+2*p[1].x;
a[0].y = 0;
b[0].y = 2;
c[0].y = 1;
r[0].y = p[0].y+2*p[1].y;
/*internal segments*/
for (int i = 1; i < N - 1; i++)
{
a[i].x=1;
b[i].x=4;
c[i].x=1;
r[i].x = 4 * p[i].x + 2 * p[i+1].x;
a[i].y=1;
b[i].y=4;
c[i].y=1;
r[i].y = 4 * p[i].y + 2 * p[i+1].y;
}
/*right segment*/
a[N-1].x = 2;
b[N-1].x = 7;
c[N-1].x = 0;
r[N-1].x = 8*p[N-1].x+p[N].x;
a[N-1].y = 2;
b[N-1].y = 7;
c[N-1].y = 0;
r[N-1].y = 8*p[N-1].y+p[N].y;
/*solves Ax=b with the Thomas algorithm (from Wikipedia)*/
for (int i = 1; i < N; i++)
{
double m;
m = a[i].x/b[i-1].x;
b[i].x = b[i].x - m * c[i - 1].x;
r[i].x = r[i].x - m * r[i-1].x;
m = a[i].y/b[i-1].y;
b[i].y = b[i].y - m * c[i - 1].y;
r[i].y = r[i].y - m * r[i-1].y;
}
_p1Points[N-1].x = r[N-1].x/b[N-1].x;
_p1Points[N-1].y = r[N-1].y/b[N-1].y;
for (int i = N - 2; i >= 0; --i)
{
_p1Points[i].x = (r[i].x - c[i].x * _p1Points[i+1].x) / b[i].x;
_p1Points[i].y = (r[i].y - c[i].y * _p1Points[i+1].y) / b[i].y;
}
/*we have p1, now compute p2*/
for (int i=0;i<N-1;i++)
{
_p2Points[i].x=2*p[i+1].x-_p1Points[i+1].x;
_p2Points[i].y=2*p[i+1].y-_p1Points[i+1].y;
}
_p2Points[N-1].x = 0.5 * (p[N].x+_p1Points[N-1].x);
_p2Points[N-1].y = 0.5 * (p[N].y+_p1Points[N-1].y);
return true;
}
virtual void DumpDerived()
{
cout << " Control Points " << endl;
for(int idx = 0; idx < _p1Points.size(); idx++)
{
cout << "[" << idx << "] ";
cout << "P1: " << _p1Points[idx];
cout << " ";
cout << "P2: " << _p2Points[idx];
cout << endl;
}
}
};
#endif /* defined(__SplineCommon__) */
Some Notes
The classic spline will crash if you give it a vertical set of
points. That is why I created the Bezier...I have lots of vertical
lines/paths to follow.
The base class has an option to remove colinear points as you add
them. This uses a simple slope comparison of two lines to figure out
if they are on the same line. You don't have to do this, but for
long paths that are straight lines, it cuts down on cycles. When you
do a lot of pathfinding on a regular-spaced graph, you tend to get a
lot of continuous segments.
Here is an example of using the Bezier Spline:
/* Smooth the points on the path so that turns look
* more natural. We'll only smooth the first few
* points. Most of the time, the full path will not
* be executed anyway...why waste cycles.
*/
void SmoothPath(vector<Vec2>& path, int32 divisions)
{
const int SMOOTH_POINTS = 6;
BezierSpine spline;
if(path.size() < 2)
return;
// Cache off the first point. If the first point is removed,
// the we occasionally run into problems if the collision detection
// says the first node is occupied but the splined point is too
// close, so the FSM "spins" trying to find a sensor cell that is
// not occupied.
// Vec2 firstPoint = path.back();
// path.pop_back();
// Grab the points.
for(int idx = 0; idx < SMOOTH_POINTS && path.size() > 0; idx++)
{
spline.AddPoint(path.back());
path.pop_back();
}
// Smooth them.
spline.ComputeSpline();
// Push them back in.
for(int idx = spline.GetPoints().size()-2; idx >= 0; --idx)
{
for(int division = divisions-1; division >= 0; --division)
{
double t = division*1.0/divisions;
path.push_back(spline.Eval(idx, t));
}
}
// Push back in the original first point.
// path.push_back(firstPoint);
}
Notes
While the whole path could be smoothed, in this application, since
the path was changing every so often, it was better to just smooth
the first points and then connect it up.
The points are loaded in "reverse" order into the path vector. This
may or may not save cycles (I've slept since then).
This code is part of a much larger code base, but you can download it all on github and see a blog entry about it here.
You can look at this in action in this video.
Was this helpful?