Moving objects containing a running std::thread member - c++

How to correctly use the move semantic with running thread in object?
Sample:
#include <iostream>
#include <thread>
#include <vector>
struct A {
std::string v_;
std::thread t_;
void start() {
t_ = std::thread(&A::threadProc, this);
}
void threadProc() {
for(;;) {
std::cout << "foo-" << v_ << '\n';
std::this_thread::sleep_for(std::chrono::seconds(5));
}
}
};
int main() {
A m;
{
A a;
a.v_ = "bar";
a.start();
m = std::move(a);
}
std::cout << "v_ = " << m.v_ << '\n'; /* stdout is 'v_ = bar' as expected */
/* but v_ in thread proc was destroyed */
/* stdout in thread proc is 'foo-' */
m.t_.join();
return 0;
}
I want to use class members after moving, but when I go out scope, class members are destroyed and std::thread is moved into new object as expected but it starting use destroyed members.
It seems to me because of using this pointer in thread initialization.
What is best practice in this case?

As written, it's not going to work. After moving, the thread m.t_ refers to a thread which is still running a.threadProc(). That will be attempting to print a.v_.
There are even two problems with the snippet: not only is a.v_ moved from (so its value is unspecified), but it's also about to be destroyed in another thread, and that destruction is not sequenced-after its use.
Since the object needs to stay alive long enough, with a non-trivial lifetime due to the thread, you'll need to get it off the stack and out of the vector. Instead, use std::shared_ptr to manage the lifetime. You will probably need to pass that shared_ptr to the thread, to avoid a race condition where the object might expire before the thread starts running. You can't rely on std:shared_from_this.

What is best practice in this case?
The best practice is to delete the move constructor and move assignment operator to prevent this from happening. Your object requires that this never changes, and you're getting undefined behavior because in this case the object was whipped out from beneath your thread and subsequently destroyed.
If, for whatever reason preventing moves goes against your design requirements, then there are a some common approaches that would make the most sense to anybody fortunate enough to be reading and maintaining your code.
Use the pimpl idiom to create an internal object dynamically which can move with the outer object. The outer object is movable, but the inner object is not. The thread is bound to that object, and anything the thread needs access to is also within that object. In your case, you would basically take your structure as it is and wrap it. The basic idea is something like:
class MovableA
{
public:
MovableA() : a_(std::make_unique<A>()) {}
void start() { a_->start(); }
A & a() const { return *a_; }
private:
std::unique_ptr<A> a_;
};
The benefit of this approach is that you can move MoveableA without needing to synchronize with the running thread.
Abandon the notion of using stack allocation, and just allocate A dynamically. This has the same benefit as option 1, and is simpler because you're not having to wrap your class in anything or provide accessors.
std::unique_ptr<A> m;
{
auto a = std::make_unique<A>();
a->v_ = "bar";
a->start();
m = std::move(a);
}
std::cout << "v_ = " << m->v_ << '\n';
m->t_.join();
I started writing an option 3 that avoids dynamic allocation and instead binds a 'floating' version of this to a std::reference_wrapper but I felt I'd get it wrong without thinking about it a lot, and it seemed hacky and horrible anyway.
The bottom line is if you want to keep the object outside your thread and use it in the thread, the best practice is to use dynamic allocation.

(Alternative answer, using C++17)
Using lambda's, you can capture a copy of A. Since the thread owns the lambda and the lambda owns the copy, you don't have lifetime issues:
t_ = std::thread([*this](){threadProc();});

Related

std::shared_ptr vs std::weak_ptr in terms of application [duplicate]

I started studying smart pointers of C++11 and I don't see any useful use of std::weak_ptr. Can someone tell me when std::weak_ptr is useful/necessary?
std::weak_ptr is a very good way to solve the dangling pointer problem. By just using raw pointers it is impossible to know if the referenced data has been deallocated or not. Instead, by letting a std::shared_ptr manage the data, and supplying std::weak_ptr to users of the data, the users can check validity of the data by calling expired() or lock().
You could not do this with std::shared_ptr alone, because all std::shared_ptr instances share the ownership of the data which is not removed before all instances of std::shared_ptr are removed. Here is an example of how to check for dangling pointer using lock():
#include <iostream>
#include <memory>
int main()
{
// OLD, problem with dangling pointer
// PROBLEM: ref will point to undefined data!
int* ptr = new int(10);
int* ref = ptr;
delete ptr;
// NEW
// SOLUTION: check expired() or lock() to determine if pointer is valid
// empty definition
std::shared_ptr<int> sptr;
// takes ownership of pointer
sptr.reset(new int);
*sptr = 10;
// get pointer to data without taking ownership
std::weak_ptr<int> weak1 = sptr;
// deletes managed object, acquires new pointer
sptr.reset(new int);
*sptr = 5;
// get pointer to new data without taking ownership
std::weak_ptr<int> weak2 = sptr;
// weak1 is expired!
if(auto tmp = weak1.lock())
std::cout << "weak1 value is " << *tmp << '\n';
else
std::cout << "weak1 is expired\n";
// weak2 points to new data (5)
if(auto tmp = weak2.lock())
std::cout << "weak2 value is " << *tmp << '\n';
else
std::cout << "weak2 is expired\n";
}
Output
weak1 is expired
weak2 value is 5
A good example would be a cache.
For recently accessed objects, you want to keep them in memory, so you hold a strong pointer to them. Periodically, you scan the cache and decide which objects have not been accessed recently. You don't need to keep those in memory, so you get rid of the strong pointer.
But what if that object is in use and some other code holds a strong pointer to it? If the cache gets rid of its only pointer to the object, it can never find it again. So the cache keeps a weak pointer to objects that it needs to find if they happen to stay in memory.
This is exactly what a weak pointer does -- it allows you to locate an object if it's still around, but doesn't keep it around if nothing else needs it.
Another answer, hopefully simpler. (for fellow googlers)
Suppose you have Team and Member objects.
Obviously it's a relationship : the Team object will have pointers to its Members. And it's likely that the members will also have a back pointer to their Team object.
Then you have a dependency cycle. If you use shared_ptr, objects will no longer be automatically freed when you abandon reference on them, because they reference each other in a cyclic way. This is a memory leak.
You break this by using weak_ptr. The "owner" typically use shared_ptr and the "owned" use a weak_ptr to its parent, and convert it temporarily to shared_ptr when it needs access to its parent.
Store a weak ptr :
weak_ptr<Parent> parentWeakPtr_ = parentSharedPtr; // automatic conversion to weak from shared
then use it when needed
shared_ptr<Parent> tempParentSharedPtr = parentWeakPtr_.lock(); // on the stack, from the weak ptr
if( !tempParentSharedPtr ) {
// yes, it may fail if the parent was freed since we stored weak_ptr
} else {
// do stuff
}
// tempParentSharedPtr is released when it goes out of scope
Here's one example, given to me by #jleahy: Suppose you have a collection of tasks, executed asynchronously, and managed by an std::shared_ptr<Task>. You may want to do something with those tasks periodically, so a timer event may traverse a std::vector<std::weak_ptr<Task>> and give the tasks something to do. However, simultaneously a task may have concurrently decided that it is no longer needed and die. The timer can thus check whether the task is still alive by making a shared pointer from the weak pointer and using that shared pointer, provided it isn't null.
When using pointers it's important to understand the different types of pointers available and when it makes sense to use each one. There are four types of pointers in two categories as follows:
Raw pointers:
Raw Pointer [ i.e. SomeClass* ptrToSomeClass = new SomeClass(); ]
Smart pointers:
Unique Pointers [ i.e. std::unique_ptr<SomeClass> uniquePtrToSomeClass ( new SomeClass() ); ]
Shared Pointers [ i.e. std::shared_ptr<SomeClass> sharedPtrToSomeClass ( new SomeClass() ); ]
Weak Pointers [ i.e. std::weak_ptr<SomeClass> weakPtrToSomeWeakOrSharedPtr ( weakOrSharedPtr ); ]
Raw pointers (sometimes referred to as "legacy pointers", or "C pointers") provide 'bare-bones' pointer behavior and are a common source of bugs and memory leaks. Raw pointers provide no means for keeping track of ownership of the resource and developers must call 'delete' manually to ensure they are not creating a memory leak. This becomes difficult if the resource is shared as it can be challenging to know whether any objects are still pointing to the resource. For these reasons, raw pointers should generally be avoided and only used in performance-critical sections of the code with limited scope.
Unique pointers are a basic smart pointer that 'owns' the underlying raw pointer to the resource and is responsible for calling delete and freeing the allocated memory once the object that 'owns' the unique pointer goes out of scope. The name 'unique' refers to the fact that only one object may 'own' the unique pointer at a given point in time. Ownership may be transferred to another object via the move command, but a unique pointer can never be copied or shared. For these reasons, unique pointers are a good alternative to raw pointers in the case that only one object needs the pointer at a given time, and this alleviates the developer from the need to free memory at the end of the owning object's lifecycle.
Shared pointers are another type of smart pointer that are similar to unique pointers, but allow for many objects to have ownership over the shared pointer. Like unique pointer, shared pointers are responsible for freeing the allocated memory once all objects are done pointing to the resource. It accomplishes this with a technique called reference counting. Each time a new object takes ownership of the shared pointer the reference count is incremented by one. Similarly, when an object goes out of scope or stops pointing to the resource, the reference count is decremented by one. When the reference count reaches zero, the allocated memory is freed. For these reasons, shared pointers are a very powerful type of smart pointer that should be used anytime multiple objects need to point to the same resource.
Finally, weak pointers are another type of smart pointer that, rather than pointing to a resource directly, they point to another pointer (weak or shared). Weak pointers can't access an object directly, but they can tell whether the object still exists or if it has expired. A weak pointer can be temporarily converted to a shared pointer to access the pointed-to object (provided it still exists). To illustrate, consider the following example:
You are busy and have overlapping meetings: Meeting A and Meeting B
You decide to go to Meeting A and your co-worker goes to Meeting B
You tell your co-worker that if Meeting B is still going after Meeting A ends, you will join
The following two scenarios could play out:
Meeting A ends and Meeting B is still going, so you join
Meeting A ends and Meeting B has also ended, so you can't join
In the example, you have a weak pointer to Meeting B. You are not an "owner" in Meeting B so it can end without you, and you do not know whether it ended or not unless you check. If it hasn't ended, you can join and participate, otherwise, you cannot. This is different than having a shared pointer to Meeting B because you would then be an "owner" in both Meeting A and Meeting B (participating in both at the same time).
The example illustrates how a weak pointer works and is useful when an object needs to be an outside observer, but does not want the responsibility of sharing ownership. This is particularly useful in the scenario that two objects need to point to each other (a.k.a. a circular reference). With shared pointers, neither object can be released because they are still 'strongly' pointed to by the other object. When one of the pointers is a weak pointer, the object holding the weak pointer can still access the other object when needed, provided it still exists.
They are useful with Boost.Asio when you are not guaranteed that a target object still exists when an asynchronous handler is invoked. The trick is to bind a weak_ptr into the asynchonous handler object, using std::bind or lambda captures.
void MyClass::startTimer()
{
std::weak_ptr<MyClass> weak = shared_from_this();
timer_.async_wait( [weak](const boost::system::error_code& ec)
{
auto self = weak.lock();
if (self)
{
self->handleTimeout();
}
else
{
std::cout << "Target object no longer exists!\n";
}
} );
}
This is a variant of the self = shared_from_this() idiom often seen in Boost.Asio examples, where a pending asynchronous handler will not prolong the lifetime of the target object, yet is still safe if the target object is deleted.
shared_ptr : holds the real object.
weak_ptr : uses lock to connect to the real owner or returns a NULL shared_ptr otherwise.
Roughly speaking, weak_ptr role is similar to the role of housing agency. Without agents, to get a house on rent we may have to check random houses in the city. The agents make sure that we visit only those houses which are still accessible and available for rent.
weak_ptr is also good to check the correct deletion of an object - especially in unit tests. Typical use case might look like this:
std::weak_ptr<X> weak_x{ shared_x };
shared_x.reset();
BOOST_CHECK(weak_x.lock());
... //do something that should remove all other copies of shared_x and hence destroy x
BOOST_CHECK(!weak_x.lock());
Apart from the other already mentioned valid use cases std::weak_ptr is an awesome tool in a multithreaded environment, because
It doesn't own the object and so can't hinder deletion in a different thread
std::shared_ptr in conjunction with std::weak_ptr is safe against dangling pointers - in opposite to std::unique_ptr in conjunction with raw pointers
std::weak_ptr::lock() is an atomic operation (see also About thread-safety of weak_ptr)
Consider a task to load all images of a directory (~10.000) simultaneously into memory (e.g. as a thumbnail cache). Obviously the best way to do this is a control thread, which handles and manages the images, and multiple worker threads, which load the images. Now this is an easy task. Here's a very simplified implementation (join() etc is omitted, the threads would have to be handled differently in a real implementation etc)
// a simplified class to hold the thumbnail and data
struct ImageData {
std::string path;
std::unique_ptr<YourFavoriteImageLibData> image;
};
// a simplified reader fn
void read( std::vector<std::shared_ptr<ImageData>> imagesToLoad ) {
for( auto& imageData : imagesToLoad )
imageData->image = YourFavoriteImageLib::load( imageData->path );
}
// a simplified manager
class Manager {
std::vector<std::shared_ptr<ImageData>> m_imageDatas;
std::vector<std::unique_ptr<std::thread>> m_threads;
public:
void load( const std::string& folderPath ) {
std::vector<std::string> imagePaths = readFolder( folderPath );
m_imageDatas = createImageDatas( imagePaths );
const unsigned numThreads = std::thread::hardware_concurrency();
std::vector<std::vector<std::shared_ptr<ImageData>>> splitDatas =
splitImageDatas( m_imageDatas, numThreads );
for( auto& dataRangeToLoad : splitDatas )
m_threads.push_back( std::make_unique<std::thread>(read, dataRangeToLoad) );
}
};
But it becomes much more complicated, if you want to interrupt the loading of the images, e.g. because the user has chosen a different directory. Or even if you want to destroy the manager.
You'd need thread communication and have to stop all loader threads, before you may change your m_imageDatas field. Otherwise the loaders would carry on loading until all images are done - even if they are already obsolete. In the simplified example, that wouldn't be too hard, but in a real environment things can be much more complicated.
The threads would probably be part of a thread pool used by multiple managers, of which some are being stopped, and some aren't etc. The simple parameter imagesToLoad would be a locked queue, into which those managers push their image requests from different control threads with the readers popping the requests - in an arbitrary order - at the other end. And so the communication becomes difficult, slow and error-prone. A very elegant way to avoid any additional communication in such cases is to use std::shared_ptr in conjunction with std::weak_ptr.
// a simplified reader fn
void read( std::vector<std::weak_ptr<ImageData>> imagesToLoad ) {
for( auto& imageDataWeak : imagesToLoad ) {
std::shared_ptr<ImageData> imageData = imageDataWeak.lock();
if( !imageData )
continue;
imageData->image = YourFavoriteImageLib::load( imageData->path );
}
}
// a simplified manager
class Manager {
std::vector<std::shared_ptr<ImageData>> m_imageDatas;
std::vector<std::unique_ptr<std::thread>> m_threads;
public:
void load( const std::string& folderPath ) {
std::vector<std::string> imagePaths = readFolder( folderPath );
m_imageDatas = createImageDatas( imagePaths );
const unsigned numThreads = std::thread::hardware_concurrency();
std::vector<std::vector<std::weak_ptr<ImageData>>> splitDatas =
splitImageDatasToWeak( m_imageDatas, numThreads );
for( auto& dataRangeToLoad : splitDatas )
m_threads.push_back( std::make_unique<std::thread>(read, dataRangeToLoad) );
}
};
This implementation is nearly as easy as the first one, doesn't need any additional thread communication, and could be part of a thread pool/queue in a real implementation. Since the expired images are skipped, and non-expired images are processed, the threads never would have to be stopped during normal operation.
You could always safely change the path or destroy your managers, since the reader fn checks, if the owning pointer isn't expired.
I see a lot of interesting answers that explain reference counting etc., but I am missing a simple example that demonstrates how you prevent memory leak using weak_ptr. In first example I use shared_ptr in cyclically referenced classes. When the classes go out of scope they are NOT destroyed.
#include<iostream>
#include<memory>
using namespace std;
class B;
class A
{
public:
shared_ptr<B>bptr;
A() {
cout << "A created" << endl;
}
~A() {
cout << "A destroyed" << endl;
}
};
class B
{
public:
shared_ptr<A>aptr;
B() {
cout << "B created" << endl;
}
~B() {
cout << "B destroyed" << endl;
}
};
int main()
{
{
shared_ptr<A> a = make_shared<A>();
shared_ptr<B> b = make_shared<B>();
a->bptr = b;
b->aptr = a;
}
// put breakpoint here
}
If you run the code snippet you will see as classes are created, but not destroyed:
A created
B created
Now we change shared_ptr's to weak_ptr:
class B;
class A
{
public:
weak_ptr<B>bptr;
A() {
cout << "A created" << endl;
}
~A() {
cout << "A destroyed" << endl;
}
};
class B
{
public:
weak_ptr<A>aptr;
B() {
cout << "B created" << endl;
}
~B() {
cout << "B destroyed" << endl;
}
};
int main()
{
{
shared_ptr<A> a = make_shared<A>();
shared_ptr<B> b = make_shared<B>();
a->bptr = b;
b->aptr = a;
}
// put breakpoint here
}
This time, when using weak_ptr we see proper class destruction:
A created
B created
B destroyed
A destroyed
I see std::weak_ptr<T> as a handle to a std::shared_ptr<T>: It allows me
to get the std::shared_ptr<T> if it still exists, but it will not extend its
lifetime. There are several scenarios when such point of view is useful:
// Some sort of image; very expensive to create.
std::shared_ptr< Texture > texture;
// A Widget should be able to quickly get a handle to a Texture. On the
// other hand, I don't want to keep Textures around just because a widget
// may need it.
struct Widget {
std::weak_ptr< Texture > texture_handle;
void render() {
if (auto texture = texture_handle.get(); texture) {
// do stuff with texture. Warning: `texture`
// is now extending the lifetime because it
// is a std::shared_ptr< Texture >.
} else {
// gracefully degrade; there's no texture.
}
}
};
Another important scenario is to break cycles in data structures.
// Asking for trouble because a node owns the next node, and the next node owns
// the previous node: memory leak; no destructors automatically called.
struct Node {
std::shared_ptr< Node > next;
std::shared_ptr< Node > prev;
};
// Asking for trouble because a parent owns its children and children own their
// parents: memory leak; no destructors automatically called.
struct Node {
std::shared_ptr< Node > parent;
std::shared_ptr< Node > left_child;
std::shared_ptr< Node > right_child;
};
// Better: break dependencies using a std::weak_ptr (but not best way to do it;
// see Herb Sutter's talk).
struct Node {
std::shared_ptr< Node > next;
std::weak_ptr< Node > prev;
};
// Better: break dependencies using a std::weak_ptr (but not best way to do it;
// see Herb Sutter's talk).
struct Node {
std::weak_ptr< Node > parent;
std::shared_ptr< Node > left_child;
std::shared_ptr< Node > right_child;
};
Herb Sutter has an excellent talk that explains the best use of language
features (in this case smart pointers) to ensure Leak Freedom by Default
(meaning: everything clicks in place by construction; you can hardly screw it
up). It is a must watch.
http://en.cppreference.com/w/cpp/memory/weak_ptr
std::weak_ptr is a smart pointer that holds a non-owning ("weak") reference to an object that is managed by std::shared_ptr. It must be converted to std::shared_ptr in order to access the referenced object.
std::weak_ptr models temporary ownership: when an object needs to be accessed only if it exists, and it may be deleted at any time by someone else, std::weak_ptr is used to track the object, and it is converted to std::shared_ptr to assume temporary ownership. If the original std::shared_ptr is destroyed at this time, the object's lifetime is extended until the temporary std::shared_ptr is destroyed as well.
In addition, std::weak_ptr is used to break circular references of std::shared_ptr.
There is a drawback of shared pointer:
shared_pointer can't handle the parent-child cycle dependency. Means if the parent class uses the object of child class using a shared pointer, in the same file if child class uses the object of the parent class. The shared pointer will be failed to destruct all objects, even shared pointer is not at all calling the destructor in cycle dependency scenario. basically shared pointer doesn't support the reference count mechanism.
This drawback we can overcome using weak_pointer.
When we does not want to own the object:
Ex:
class A
{
shared_ptr<int> sPtr1;
weak_ptr<int> wPtr1;
}
In the above class wPtr1 does not own the resource pointed by wPtr1. If the resource is got deleted then wPtr1 is expired.
To avoid circular dependency:
shard_ptr<A> <----| shared_ptr<B> <------
^ | ^ |
| | | |
| | | |
| | | |
| | | |
class A | class B |
| | | |
| ------------ |
| |
-------------------------------------
Now if we make the shared_ptr of the class B and A, the use_count of the both pointer is two.
When the shared_ptr goes out od scope the count still remains 1 and hence the A and B object does not gets deleted.
class B;
class A
{
shared_ptr<B> sP1; // use weak_ptr instead to avoid CD
public:
A() { cout << "A()" << endl; }
~A() { cout << "~A()" << endl; }
void setShared(shared_ptr<B>& p)
{
sP1 = p;
}
};
class B
{
shared_ptr<A> sP1;
public:
B() { cout << "B()" << endl; }
~B() { cout << "~B()" << endl; }
void setShared(shared_ptr<A>& p)
{
sP1 = p;
}
};
int main()
{
shared_ptr<A> aPtr(new A);
shared_ptr<B> bPtr(new B);
aPtr->setShared(bPtr);
bPtr->setShared(aPtr);
return 0;
}
output:
A()
B()
As we can see from the output that A and B pointer are never deleted and hence memory leak.
To avoid such issue just use weak_ptr in class A instead of shared_ptr which makes more sense.
Inspired by #offirmo's response I wrote this code and then ran the visual studio diagnostic tool:
#include <iostream>
#include <vector>
#include <memory>
using namespace std;
struct Member;
struct Team;
struct Member {
int x = 0;
Member(int xArg) {
x = xArg;
}
shared_ptr<Team> teamPointer;
};
struct Team {
vector<shared_ptr<Member>> members;
};
void foo() {
auto t1 = make_shared<Team>();
for (int i = 0; i < 1000000; i++) {
t1->members.push_back(make_shared<Member>(i));
t1->members.back()->teamPointer = t1;
}
}
int main() {
foo();
while (1);
return 0;
}
When the member pointer to the team is shared_ptr teamPointer the memory is not free after foo() is done, i.e. it stays at around 150 MB.
But if it's changed to weak_ptr teamPointer in the diagnostic tool you'll see a peak and then memory usage returns to about 2MB.

std::shared_ptr Thread Safe

Is a shared pointer (std::shared_ptr) safe to use in a multi-threaded program?
I am not considering read/write accesses to the data owned by the shared pointer but rather the shared pointer itself.
I am aware that certain implementations (such as MSDN) do provide this extra guarantee; but I want to understand if this is guaranteed by the standard and as such is portable.
#include <thread>
#include <memory>
#include <iostream>
void function_to_run_thread(std::shared_ptr<int> x)
{
std::cout << x << "\n";
}
// Shared pointer goes out of scope.
// Is its destruction here guaranteed to happen only once?
// Or is this a "Data Race" situation that is UB?
int main()
{
std::thread threads[2];
{
// A new scope
// So that the shared_ptr in this scope has the
// potential to go out of scope before the threads have executed.
// So leaving the shared_ptr in the scope of the threads only.
std::shared_ptr<int> data = std::make_shared<int>(5);
// Create workers.
threads[0] = std::thread(function_to_run_thread, data);
threads[1] = std::thread(function_to_run_thread, data);
}
threads[0].join();
threads[1].join();
}
Any links to sections in the standard most welcome.
I would be happy if people have reference to the major implementations so we could consider it portable to most normal developers.
MSDN: Check. Thread Safe.
G++: ?
clang: ?
I would consider those the major implementations but happy to consider others.
I don't have links to the standard. I did check this a long time ago, std::shared_ptr is thread-safe under certain conditions, which summarizes to: every thread should have its own copy.
As documented on cppreference:
All member functions (including copy constructor and copy assignment) can be called by multiple threads on different instances of shared_ptr without additional synchronization even if these instances are copies and share ownership of the same object. If multiple threads of execution access the same shared_ptr without synchronization and any of those accesses uses a non-const member function of shared_ptr then a data race will occur.
So just like any other class in the standard, reading from the same instance from multiple threads is allowed. Writing to this instance from 1 thread is not.
int main()
{
std::vector<std::thread> threads;
{
// A new scope
// So that the shared_ptr in this scope has the
// potential to go out of scope before the threads have executed.
// So leaving the shared_ptr in the scope of the threads only.
std::shared_ptr<int> data = std::make_shared<int>(5);
// Perfectly legal to read access the shared_ptr
threads.emplace_back(std::thread([&data]{ std::cout << data.get() << '\n'; }));
threads.emplace_back(std::thread([&data]{ std::cout << data.get() << '\n'; }));
// This line will result in a race condition as you now have read and write on the same instance
threads.emplace_back(std::thread([&data]{ data = std::make_shared<int>(42); }));
for (auto &thread : threads)
thread.join();
}
}
Once we are dealing with multiple copies of the shared_ptr, everything is fine:
int main()
{
std::vector<std::thread> threads;
{
// A new scope
// So that the shared_ptr in this scope has the
// potential to go out of scope before the threads have executed.
// So leaving the shared_ptr in the scope of the threads only.
std::shared_ptr<int> data = std::make_shared<int>(5);
// Perfectly legal to read access the shared_ptr copy
threads.emplace_back(std::thread([data]{ std::cout << data.get() << '\n'; }));
threads.emplace_back(std::thread([data]{ std::cout << data.get() << '\n'; }));
// This line will no longer result in a race condition the other threads are using a copy
threads.emplace_back(std::thread([&data]{ data = std::make_shared<int>(42); }));
for (auto &thread : threads)
thread.join();
}
}
Also destruction of the shared_ptr will be fine, as every thread will call the destructor of the local shared_ptr and the last one will clean up the data. There are some atomic operations on the reference count to ensure this happens correctly.
int main()
{
std::vector<std::thread> threads;
{
// A new scope
// So that the shared_ptr in this scope has the
// potential to go out of scope before the threads have executed.
// So leaving the shared_ptr in the scope of the threads only.
std::shared_ptr<int> data = std::make_shared<int>(5);
// Perfectly legal to read access the shared_ptr copy
threads.emplace_back(std::thread([data]{ std::cout << data.get() << '\n'; }));
threads.emplace_back(std::thread([data]{ std::cout << data.get() << '\n'; }));
// Sleep to ensure we have some delay
threads.emplace_back(std::thread([data]{ std::this_thread::sleep_for(std::chrono::seconds{2}); }));
}
for (auto &thread : threads)
thread.join();
}
As you already indicated, the access to the data in the shared_ptr ain't protected. So similar to the first case, if you would have 1 thread reading and 1 thread writing, you still have a problem. This can be solved with atomics or mutexes or by guaranteeing read-onlyness of the objects.
Quoting the latest draft:
For purposes of determining the presence of a data race, member functions shall access and modify only the shared_ptr and weak_ptr objects themselves and not objects they refer to. Changes in use_count() do not reflect modifications that can introduce data races.
So, this is a lot to take in. The first sentence talks about member functions not accessing the pointee, i.e. that accessing the pointee is not thread-safe.
However, then there is the second sentence. Effectively, this forces any operation that would change use_count() (e.g. copy construction, assignment, destruction, calling reset) to be thread-safe - but only as far as they are affecting use_count().
Which makes sense: Different threads copying the same std::shared_ptr (or destroying the same std::shared_ptr) must not cause a data race regarding ownership of the pointee. The internal value of use_count() must be synchronized.
I checked, and this exact wording was also present in N3337, Section 20.7.2.2 Paragraph 4, so it should be safe to say that this requirement has been there since the introduction of std::shared_ptr in C++11 (and was not something introduced later on).
shared_ptr (and also weak_ptr) utilizes atomic integer to keep use count, so sharing between threads is safe but of course, access to data still requires mutexes or any other synchronization.

shared_ptr and threads issue

The code I'm currently working on had it's own RefPtr implementation which was failing at random.
I suspect that this could be a classic data race. RefPtr has a pointer to original object that inherits from the RefCounted class. This class contains a reference counter (m_refCount) that is not atomic and an application was crashing inside some threadwork accessing object through RefPtr stuff. Just like the object under RefPtr got destroyed. Quite impossible.
The object instance that is held by RefPtr is also held by two other objects that do not modify it (or its contents) and I'm 100% sure that they have shared ownership of it (so m_refCount should never go below 2)
I did try to replace the pointer with std::shared_ptr, but the crash is still there.
The distilled code representing this issue:
class SharedObjectA
{
public:
int a;
}
class Owner
{
public:
shared_ptr<SharedObjectA> objectA;
}
class SecondOwner
{
shared_ptr<SharedObjectA> objcectA;
public:
shared_ptr<SharedObjectA> GetSharedObject() { return objectA;}
void SetSharedObject(shared_ptr<SharedObjectA> objA) { objectA = objA;}
}
void doSomethingThatTakesTime(SecondOwnerA* owner)
{
sleep(1000+rand()%1000);
shared_ptr<SharedObjectA> anObject = owner->GetSharedObject();
int value = anObject.a;
std::cout << " says: " << value;
}
int main()
{
Owner ownerA;
ownerA.objectA.reset(new SharedObjectA());
SecondOwner secondOwner;
secondOwner.SetSharedObject(ownerA.objectA);
//objectA instance
while(true)
{
for(int i=0;i<4;i++)
{
std::thread tr(doSomethingThatTakesTime,secondOwner);
}
sleep(4*1000);
}
}
What's happening is up to 4 threads access SharedObject using GetSharedObject and do something with it.
However, after giving it some time - the use_count() of shared_ptr will go down below 2 (it should not) and eventually below 1 so the object(objectA) will get destroyed.
Edit
Obviously there is no synchronization in this code. However i don't see how this could be related to the fact the use_count() getting below 2. the shared_ptr is guaranteed to be thread safe for the sake of reference counting, isn't it?
You don't have any kind of synchronization on access to the shared object. shared_ptr does not do any synchronization in access to the pointed-to object, it just ensures that the memory pointed to gets released after all references to it are destroyed.
You also need to join() your threads at some point.

"delete this" to an object that's allocated with std::shared_ptr?

I know that it's possible to say delete this in C++ whenever you allocated something with new, using traditional pointers. In fact, I also know that it's good practice IF you handle it carefully. Can I have an object say delete this if it's being held by an std::shared_ptr? And that ought to call the destructor, right? To give you an idea, I'm making a game where a ship can shoot missiles, and I'd like to have the missiles delete themselves.
No, it's not safe, the lifetime of the object is determined by holders of shared_ptr, so the object itself cannot decide whether it wants to die or not. If you do that, you'll get double
delete when last shared_ptr dies. The only solution I can offer is "rethink your design" (you probably don't need shared_ptr in the first place, and missiles probably could be values or pooled objects).
For a missile to delete itself it must own itself, or at the very least, share ownership of itself with others. Since you say that there is a shared_ptr to the missile, I am assuming that you already have multiple objects sharing ownership of the missile.
It is possible for the missile to hold a shared_ptr to itself, and thus share in the ownership of itself. However this will always create a cyclic ownership pattern: For as long as the missile's shared_ptr data member refers to itself, the reference count can never drop to zero, and thus the missile is leaked.
You could have an external object or event tell the missile to delete itself but then I'm not sure what the point is. In order to tell the missile to delete itself, that communication should take place via a shared_ptr, and then the delete isn't really going to happen until that shared_ptr lets go of the missile.
Yes, it is possible. No, I don't think it is a good idea. It looks prone to memory leakage to me and doesn't actually add value. But for the curious, here is how you would do it:
#include <iostream>
#include <memory>
class missile
: public std::enable_shared_from_this<missile>
{
std::shared_ptr<missile> self_;
public:
missile()
{}
~missile() {std::cout << "~missile()\n";}
void set_yourself()
{
self_ = shared_from_this();
}
void delete_yourself()
{
if (self_)
self_.reset();
}
};
int main()
{
try
{
std::shared_ptr<missile> m = std::make_shared<missile>();
m->set_yourself();
std::weak_ptr<missile> wp = m;
std::cout << "before first reset()\n";
m.reset();
std::cout << "after first reset()\n";
// missile leaked here
m = wp.lock();
m->delete_yourself();
std::cout << "before second reset()\n";
m.reset(); // missile deleted here
std::cout << "after second reset()\n";
}
catch (const std::exception& e)
{
std::cout << e.what() << '\n';
}
}
I know I'm late to the show but I ran into wanting to do this myself just now and realized that it is "kind-of-possible" but you need to take care of a few things.
Howard's answer is on the right track but misses the mark as you shouldn't leave construction of the original shared_ptr to the client. This is what opens up the risk of memory leaks. Instead you should encapsulate the construction and only allow weak pointers.
Here is an example:
class Missile{
private:
Missile(...){ }; // No external construction allowed
Missile(const Missile&) = delete; // Copying not allowed
void operator = (const Missile&) = delete; // -||-
std::shared_ptr<Missile> m_self;
public:
template<typename... Args>
static MissilePtr makeMissile(Args... args){
auto that = std::make_shared<Misile>(args...);
that.m_self = that; // that holds a reference to itself (ref count = 2)
return that; // 'that' is destroyed and ref-count reaches 1.
}
void die(){
m_self.reset();
}
...
};
typedef std::weak_ptr<Missile> MissilePtr;
void useMissile(MissilePtr ptr){
auto missile = ptr.lock(); // Now ptr cannot be deleted until missile goes out of scope
missile->die(); // m_self looses the reference but 'missile' still holds a reference
missile->whatever(); // Completely valid. Will not invoke UB
} // Exiting the scope will make the data in missile be deleted.
Calling die() will result in semantically the same effect as delete this with the added benefit that all MissilePtr that are referring to the deleted object will be expired. Also if any of the MissilePtr are used for accessing this then the deletion will be delayed until the temporary std::shared_ptr used for the access is destroyed saving you life-time headaches.
However you must make sure that you always keep at least one MissilePtr around and at some point call die() otherwise you will end up with a memory leak. Just like you would with a normal pointer.
This question is quite old, but I had a similar issue (in this case a "listener" object that had to manage its own lifecycle while still being able to share weak pointers), and googling around did not provide a solution for me, so I am sharing the solution I found, assuming that:
The object manages it's own lifecycle, and hence will never share a
share_ptr, but a weak_ptr (if you need shared_ptr's a similar
solution + use_shared_from_this could do it).
It is a bad idea to break RAII, and hence we will not do it: what we
adress here is the issue of having a shared_ptr owned by an object
itself, as containing a member share_ptr leads to double call to
the object destruction and normally a crash (or at least undefined
behaviour), as the destructor is called twice (once at normal
object destruction and a second one when destroying the self
contained shared_ptr member).
Code:
#include <memory>
#include <stdio.h>
using std::shared_ptr;
using std::weak_ptr;
class A {
struct D {
bool deleted = false;
void operator()(A *p) {
printf("[deleter (%s)]\n", p, deleted ? "ignored":"deleted");
if(!deleted) delete p;
}
};
public: shared_ptr<A> $ptr = shared_ptr<A>(this, D());
public: ~A() {
std::get_deleter<A::D>($ptr)->deleted = true;
}
public: weak_ptr<A> ptr() { return $ptr; }
};
void test() {
A a;
printf("count: %d\n", a.ptr().lock().use_count());
printf("count: %d\n", a.ptr().use_count());
}
int main(int argc, char *argv[]) {
puts("+++ main");
test();
puts("--- main");
}
Output:
$ g++ -std=c++11 -o test test.cpp && ./test
+++ main
count: 2
count: 1
[deleter (ignored)]
--- main
The shared_ptr deleter should never get called for an object allocated in stack, so when it does at normal object destruction, it just bypasses the delete (we got to this point because the default object destructor was already called).

Singleton instance freeing

I have such singleton structure:
// Hpp
class Root : public boost::noncopyable
{
public:
~Root();
static Root &Get();
void Initialize();
void Deinitialize();
private:
Root(); // Private for singleton purposes
static Root *mInstance;
Manager1 *mManager1;
Manager2 *mManager2;
};
// Cpp
Root *Root::mInstance = nullptr;
Root::Root()
{
mInstance = this;
// Managers are using `mInstance` in their constructors
mManager1 = new Manager1();
mManager2 = new Manager2();
mInstance->Initialize();
}
Root::~Root() { delete mManager1; delete mManager2; }
Root &Root::Get()
{
if (mInstance == nullptr) mInstance = new Root();
return *mInstance;
}
void Root::Deinitialize()
{
delete mInstance;
}
And here is the usage of this singleton:
Root::Get();
// Some code calling related to mManager1 and mManager2
Root::Get().Deinitialize();
The questions are:
This is memory safely to use such singleton structure?
How can I automate deletion of mInstance (call dtor manually). Because the user could forget to call Deinitialize() method.
For a single-threaded application where the singleton isn't accessed after exiting main() you can use a fairly simple approach which does everything automatically:
Root& Root::get() {
static std::unique_ptr<Root> rc(new Root());
return *rc;
}
The static in this context means that the variable is initialized the first time the function is called and then stays put. The C++ run-time arranges for the static variable rc to be destroyed at some point. For multi-threaded appplications where threads are started before entering main() you need a different approach which makes sure that the static variable is initialized only by on thread.
That said, please note that I strongly recommend not to employ the anti-pattern Singleton (also known as Global Data). The above code sample doesn't constitute a recommendation of any sort! There are few valid uses where you want to use a singleton, most uses are not. All valid uses I have seen use an immutable Singleton. Mutable singleton objects tend to become a synchronization point and tend to obfuscate the use data as global data does.
If you aren't using Visual Studio or C++11, you won't have a unique_ptr<>. In that case, you should stick with boost::scoped_ptr.hpp, since std::auto_ptr will soon be completely deprecated.
#include <boost/scoped_ptr.hpp>
#include <iostream>
class Foo {
Foo() { std::cout << "constructor" << std::endl; }
public:
static Foo& Get() {
static boost::scoped_ptr<Foo> ptr(new Foo);
return *ptr;
}
~Foo() { std::cout << "destructor" << std::endl; }
};
int main() {
Foo& f = Foo::Get();
// f is now valid until the program exits.
//Then it is destroyed before the program finishes exiting.
std::cout << "Work here" << std::endl;
}
Or you can write your own simplified scoped_ptr.
template<typename _T>
class scoped_ptr {
_T* const mPtr;
public:
scoped_ptr(_T* const t) : mPtr(t) {}
~scoped_ptr() { delete mPtr; }
operator _T* () { return const_cast<_T*>(mPtr); }
// add more operators like -> if you want them
};
Have you considered what would happened if your singleton wasn't deleted at all?
By definition, a singleton is an single object shared by many client objects as the clients tend to come and go. Most of the time your singleton will live as long as your process.
When your process shuts down, OS will reclaim most resources (memory, file handles, sockets...) and it is perfectly normal to allocate that singleton and then just let it die. This would be my recommendation.
The code is simpler. Less function calls, less complexity. No need to consider when terminate should be called and that's what brought you here.
With explicit cleanup, as your application becomes more complex (and they tend to as you keep adding features), you introduce the risk that some other object will attempt to access singleton reference after it was terminated and destroyed. Now instead of harmless memory leak which gets wiped up by the OS immediately, you have an ugly unhandled exception dialog that your users get to look at.
It is also a good practice to put Initialize() function for the singleton inside GetInstance() (as pdillon3 demonstrated) instead of having your application explicitly call Initialize(). You didn't specify this part, and if your project is an executable, you should be ok with existing design. But just be careful if you put this code inside a DLL. Some people assume DllMain is a good place to initialize singleton objects and it's not. During DllMain, loader lock global critical section is locked and singleton initializations tend to cause all kinds of trouble.
Plus now instead of 3 methods in your singleton interface, you are down to just one: GetInstance(), nice and simple.
Lastly, as Dietmar mentioned (although I still consider Singleton to be a pattern, not an anti-pattern and GoF agree with me), you should really consider whether or not you actually need a singleton. I use them from time to time, but only when I have no choice, not because they are convenient. They really are a design pattern of last resort when alternative is even more evil. Don't use them just because they are convenient.