Sequential numbers in a list haskell - list

I am new to haskell and I was attempting a few coding problems that I previously completed for java, however the following problem has me stumped.
Basically the idea is to write a function that takes in a list of integers ([Int]) establishes whether a list of integers has consecutive 1's within it. For example the output of the following would be:
Input: func [0,0,1,1,0]
Output: True
A sample solution for this problem in haskell would be greatly appreciated,
Thanks

One way would be to use pattern matching to look for consecutive ones at the head of the list, and advance down the list until you find them, or you run out of elements to look at.
consecutiveOnes [] = False
consecutiveOnes (1:1:_) = True
consecutiveOnes (_:xs) = consecutiveOnes xs

This is a solution:
consecutiveOnes :: [Int] -> Bool
consecutiveOnes xs = auxOnes False xs
auxOnes :: Bool -> [Int] -> Bool
auxOnes b [] = False
auxOnes b (x:xs) = case (x==1 && b) of {
True -> True;
False -> auxOnes (x==1) xs;
};
Another way would be using the isInfixOf method and asking if [1,1] appears anywhere on your list:
consecutiveOnes :: [Int] -> Bool
consecutiveOnes xs = isInfixOf [1,1] xs
The isInfixOf function takes two lists and returns True iff the first
list is contained, wholly and intact, anywhere within the second.
But I'm sure there are many other ways of doing it.

You could also do it this way:
consecutiveOnes [] = False
consecutiveOnes xs = any (== (1,1)) $ zip xs (tail xs)
If
xs == [0,1,1,2,3,4]
Then
tail xs == [1,1,2,3,4]
Zipping them together you get a list of pairs, where each pair is an element of the list and the element after it.
zip xs (tail xs) == [(0,1),(1,1),(1,2),(2,3),(3,4)]

Related

How to get the Index of an element in a list, by not using "list comprehensions"?

I'm new in haskell programming and I try to solve a problem by/not using list comprehensions.
The Problem is to find the index of an element in a list and return a list of the indexes (where the elements in the list was found.)
I already solved the problem by using list comprehensions but now i have some problems to solve the problem without using list comprehensions.
On my recursive way:
I tried to zip a list of [0..(length list)] and the list as it self.
then if the element a equals an element in the list -> make a new list with the first element of the Tupel of the zipped list(my index) and after that search the function on a recursive way until the list is [].
That's my list comprehension (works):
positions :: Eq a => a -> [a] -> [Int]
positions a list = [x | (x,y) <- zip [0..(length list)] list, a == y]
That's my recursive way (not working):
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
let ((n,m):ns) = zip [0..(length (x:xs))] (x:xs)
in if (a == m) then n:(positions' a xs)
else (positions' a xs)
*sorry I don't know how to highlight words
but ghci says:
*Main> positions' 2 [1,2,3,4,5,6,7,8,8,9,2]
[0,0]
and it should be like that (my list comprehension):
*Main> positions 2 [1,2,3,4,5,6,7,8,8,9,2]
[1,10]
Where is my mistake ?
The problem with your attempt is simply that when you say:
let ((n,m):ns) = zip [0..(length (x:xs))] (x:xs)
then n will always be 0. That's because you are matching (n,m) against the first element of zip [0..(length (x:xs))] (x:xs), which will necessarily always be (0,x).
That's not a problem in itself - but it does mean you have to handle the recursive step properly. The way you have it now, positions _ _, if non-empty, will always have 0 as its first element, because the only way you allow it to find a match is if it's at the head of the list, resulting in an index of 0. That means that your result will always be a list of the correct length, but with all elements 0 - as you're seeing.
The problem isn't with your recursion scheme though, it's to do with the fact that you're not modifying the result to account for the fact that you don't always want 0 added to the front of the result list. Since each recursive call just adds 1 to the index you want to find, all you need to do is map the increment function (+1) over the recursive result:
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
let ((0,m):ns) = zip [0..(length (x:xs))] (x:xs)
in if (a == m) then 0:(map (+1) (positions' a xs))
else (map (+1) (positions' a xs))
(Note that I've changed your let to be explicit that n will always be 0 - I prefer to be explicit this way but this in itself doesn't change the output.) Since m is always bound to x and ns isn't used at all, we can elide the let, inlining the definition of m:
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
if a == x
then 0 : map (+1) (positions' a xs)
else map (+1) (positions' a xs)
You could go on to factor out the repeated map (+1) (positions' a xs) if you wanted to.
Incidentally, you didn't need explicit recursion to avoid a list comprehension here. For one, list comprehensions are basically a replacement for uses of map and filter. I was going to write this out explicitly, but I see #WillemVanOnsem has given this as an answer so I will simply refer you to his answer.
Another way, although perhaps not acceptable if you were asked to implement this yourself, would be to just use the built-in elemIndices function, which does exactly what you are trying to implement here.
We can make use of a filter :: (a -> Bool) -> [a] -> [a] and map :: (a -> b) -> [a] -> [b] approach, like:
positions :: Eq a => a -> [a] -> [Int]
positions x = map fst . filter ((x ==) . snd) . zip [0..]
We thus first construct tuples of the form (i, yi), next we filter such that we only retain these tuples for which x == yi, and finally we fetch the first item of these tuples.
For example:
Prelude> positions 'o' "foobaraboof"
[1,2,8,9]
Your
let ((n,m):ns) = zip [0..(length (x:xs))] (x:xs)
is equivalent to
== {- by laziness -}
let ((n,m):ns) = zip [0..] (x:xs)
== {- by definition of zip -}
let ((n,m):ns) = (0,x) : zip [1..] xs
== {- by pattern matching -}
let {(n,m) = (0,x)
; ns = zip [1..] xs }
== {- by pattern matching -}
let { n = 0
; m = x
; ns = zip [1..] xs }
but you never reference ns! So we don't need its binding at all:
positions' a (x:xs) =
let { n = 0 ; m = x } in
if (a == m) then n : (positions' a xs)
else (positions' a xs)
and so, by substitution, you actually have
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
if (a == x) then 0 : (positions' a xs) -- NB: 0
else (positions' a xs)
And this is why all you ever produce are 0s. But you want to produce the correct index: 0, 1, 2, 3, ....
First, let's tweak your code a little bit further into
positions' :: Eq a => a -> [a] -> [Int]
positions' a = go xs
where
go [] = []
go (x:xs) | a == x = 0 : go xs -- NB: 0
| otherwise = go xs
This is known as a worker/wrapper transform. go is a worker, positions' is a wrapper. There's no need to pass a around from call to call, it doesn't change, and we have access to it anyway. It is in the enclosing scope with respect to the inner function, go. We've also used guards instead of the more verbose and less visually apparent if ... then ... else.
Now we just need to use something -- the correct index value -- instead of 0.
To use it, we must have it first. What is it? It starts as 0, then it is incremented on each step along the input list.
When do we make a step along the input list? At the recursive call:
positions' :: Eq a => a -> [a] -> [Int]
positions' a = go xs 0
where
go [] _ = []
go (x:xs) i | a == x = 0 : go xs (i+1) -- NB: 0
| otherwise = go xs (i+1)
_ as a pattern means we don't care about the argument's value -- it's there but we're not going to use it.
Now all that's left for us to do is to use that i in place of that 0.

Haskell Filter Multiples of 3 from a List to a Sublist

I am still trying to grasp the way Haskell and Functional Programming works, and I need help understanding why my function is not working. I am trying to create a function that takes a list of integers as a parameter and filters out/returns a sublist which contains any multiples of 3 from the first list. Here is my code:
module Main where
sublist = []
myFunc :: [Int] -> [Int]
myFunc [] = []
myFunc [t] = do
if t `mod` 3 == 0
then t : sublist
else myFunc []
myFunc (h:t) = do
if h `mod` 3 /= 0
then myFunc t
else do
h : sublist
myFunc t
This only returns a list containing the last value passed to the function, and still sublist = []. Thanks for any advice you can give me in advance.
I think you need to first switch over mentally to functional style.
for example, this is to get even numbers from a list
> filter even [1..10]
[2,4,6,8,10]
without using the existing functions you can implement the same functionality
filter' :: (a -> Bool) -> [a] -> [a]
filter' _ [] = []
filter' condition (x:xs) = if condition x
then x : filter' condition xs
else filter' condition xs
divisibleBy3 n = mod n 3 == 0
now, your program can be written as
filter' divisibleBy3 inputList

Inverting List Elements in Haskell

I am trying to invert two-elements lists in xs. For example, invert [[1,2], [5,6,7], [10,20]] will return [[2,1], [5,6,7], [20,10]]. It doesn't invert [5,6,7] because it is a 3 element list.
So I have written this so far:
invert :: [[a]] -> [[a]]
invert [[]] = [[]]
which is just the type declaration and an empty list case. I am new to Haskell so any suggestions on how to implement this problem would be helpful.
Here's one way to do this:
First we define a function to invert one list (if it has two elements; otherwise we return the list unchanged):
invertOne :: [a] -> [a]
invertOne [x, y] = [y, x]
invertOne xs = xs
Next we apply this function to all elements of an input list:
invert :: [[a]] -> [[a]]
invert xs = map invertOne xs
(Because that's exactly what map does: it applies a function to all elements of a list and collects the results in another list.)
Your inert function just operations on each element individually, so you can express it as a map:
invert xs = map go xs
where go = ...
Here go just inverts a single list according to your rules, i.e.:
go [1,2] = [2,1]
go [4,5,6] = [4,5,6]
go [] = []
The definition of go is pretty straight-forward:
go [a,b] = [b,a]
go xs = xs -- go of anything else is just itself
I would do this:
solution ([a,b]:xs) = [b,a] : solution xs
solution (x:xs) = x : solution xs
solution [] = []
This explicitly handles 2-element lists, leaving everything else alone.
Yes, you could do this with map and an auxiliary function, but for a beginner, understanding the recursion behind it all may be valuable.
Note that your 'empty list case' is not empty. length [[]] is 1.
Examine the following solution:
invert :: [[a]] -> [[a]]
invert = fmap conditionallyInvert
where
conditionallyInvert xs
| lengthOfTwo xs = reverse xs
| otherwise = xs
lengthOfTwo (_:_:_) = True
lengthOfTwo _ = False

How to recursively call a function over the length of the list?

I had an interview question, and it has been bugging me since then.
I have a function, fill, that does the computation like taking two lists and then replacing 2s in the second list, where ever there are 2s in the first list and also once 2s are filled in the second list from the first list, then it can flow till a 1 is encountered. For eg:
Two lists [2,1,2,1,2] [0,0,1,0,0] is passed, so the output I get is [2,2,1,2,2]. Now, I want to write a function that takes an argument something like this: [[2,1,2,1,2],[0,0,1,0,0],[0,0,0,0,0]], I want to apply my above function recursively till the end of this list of lists. So like first [2,1,2,1,2] [0,0,1,0,0] are passed to fill, then it should get the result [2,2,1,2,2], then [2,2,1,2,2] and [0,0,0,0,0] should be passed, getting the result [2,2,2,2,2]. How can I do that?
EDIT:
I did this:
fillAll::[[Int]]->[Int]
fillAll [] = []
fillAll (x:xs) =
(foldl' seep x xs) $
helper2 x
helper2:: [Int] -> Bool
helper2 lst =
if 2 `elem` lst then True else False
So, you have your function fill:
fill :: [Int] -> [Int] -> [Int]
And you want to turn this into a function which takes a list of lists:
fillRec :: [[Int]] -> [Int]
This is a natural case for a fold. This repeatedly 'folds' each element of a list together using a combining function. We need to make sure the list isn't empty:
fillRec [] = []
fillRec (x : xs) = foldl fill x xs
This version of foldl (e.g. folds from the left, rather than from the right) is non-strict, which can cause large memory accumulation. It's better to use the strict variant foldl' from Data.List:
fillRec (x : xs) = foldl' fill x xs
I'm going to assume that you already have fill :: [Int] -> [Int] -> [Int] defined. If so, this problem is pretty easy to solve using a fold. Explicitly, you could do something like
fillAll :: [[Int]] -> [Int]
fillAll [] = []
fillAll (x:xs) = go x xs
where
go first [] = first
go first (second:rest) = go (fill first second) rest
Or you can use one of the built-in folds:
fillAll [] = []
fillAll (x:xs) = foldl fill x xs
but as Impredicative points out, you'll have better performance with foldl' from Data.List

Replace an element in a list only once - Haskell

I want to replace an element in a list with a new value only at first time occurrence.
I wrote the code below but using it, all the matched elements will change.
replaceX :: [Int] -> Int -> Int -> [Int]
replaceX items old new = map check items where
check item | item == old = new
| otherwise = item
How can I modify the code so that the changing only happen at first matched item?
Thanks for helping!
The point is that map and f (check in your example) only communicate regarding how to transform individual elements. They don't communicate about how far down the list to transform elements: map always carries on all the way to the end.
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
Let's write a new version of map --- I'll call it mapOnce because I can't think of a better name.
mapOnce :: (a -> Maybe a) -> [a] -> [a]
There are two things to note about this type signature:
Because we may stop applying f part-way down the list, the input list and the output list must have the same type. (With map, because the entire list will always be mapped, the type can change.)
The type of f hasn't changed to a -> a, but to a -> Maybe a.
Nothing will mean "leave this element unchanged, continue down the list"
Just y will mean "change this element, and leave the remaining elements unaltered"
So:
mapOnce _ [] = []
mapOnce f (x:xs) = case f x of
Nothing -> x : mapOnce f xs
Just y -> y : xs
Your example is now:
replaceX :: [Int] -> Int -> Int -> [Int]
replaceX items old new = mapOnce check items where
check item | item == old = Just new
| otherwise = Nothing
You can easily write this as a recursive iteration like so:
rep :: Eq a => [a] -> a -> a -> [a]
rep items old new = rep' items
where rep' (x:xs) | x == old = new : xs
| otherwise = x : rep' xs
rep' [] = []
A direct implementation would be
rep :: Eq a => a -> a -> [a] -> [a]
rep _ _ [] = []
rep a b (x:xs) = if x == a then b:xs else x:rep a b xs
I like list as last argument to do something like
myRep = rep 3 5 . rep 7 8 . rep 9 1
An alternative using the Lens library.
>import Control.Lens
>import Control.Applicative
>_find :: (a -> Bool) -> Simple Traversal [a] a
>_find _ _ [] = pure []
>_find pred f (a:as) = if pred a
> then (: as) <$> f a
> else (a:) <$> (_find pred f as)
This function takes a (a -> Bool) which is a function that should return True on an type 'a' that you wan to modify.
If the first number greater then 5 needs to be doubled then we could write:
>over (_find (>5)) (*2) [4, 5, 3, 2, 20, 0, 8]
[4,5,3,2,40,0,8]
The great thing about lens is that you can combine them together by composing them (.). So if we want to zero the first number <100 in the 2th sub list we could:
>over ((element 1).(_find (<100))) (const 0) [[1,2,99],[101,456,50,80,4],[1,2,3,4]]
[[1,2,99],[101,456,0,80,4],[1,2,3,4]]
To be blunt, I don't like most of the answers so far. dave4420 presents some nice insights on map that I second, but I also don't like his solution.
Why don't I like those answers? Because you should be learning to solve problems like these by breaking them down into smaller problems that can be solved by simpler functions, preferably library functions. In this case, the library is Data.List, and the function is break:
break, applied to a predicate p and a list xs, returns a tuple where first element is longest prefix (possibly empty) of xs of elements that do not satisfy p and second element is the remainder of the list.
Armed with that, we can attack the problem like this:
Split the list into two pieces: all the elements before the first occurence of old, and the rest.
The "rest" list will either be empty, or its first element will be the first occurrence of old. Both of these cases are easy to handle.
So we have this solution:
import Data.List (break)
replaceX :: Eq a => a -> a -> [a] -> [a]
replaceX old new xs = beforeOld ++ replaceFirst oldAndRest
where (beforeOld, oldAndRest) = break (==old) xs
replaceFirst [] = []
replaceFirst (_:rest) = new:rest
Example:
*Main> replaceX 5 7 ([1..7] ++ [1..7])
[1,2,3,4,7,6,7,1,2,3,4,5,6,7]
So my advice to you:
Learn how to import libraries.
Study library documentation and learn standard functions. Data.List is a great place to start.
Try to use those library functions as much as you can.
As a self study exercise, you can pick some of the standard functions from Data.List and write your own versions of them.
When you run into a problem that can't be solved with a combination of library functions, try to invent your own generic function that would be useful.
EDIT: I just realized that break is actually a Prelude function, and doesn't need to be imported. Still, Data.List is one of the best libraries to study.
Maybe not the fastest solution, but easy to understand:
rep xs x y =
let (left, (_ : right)) = break (== x) xs
in left ++ [y] ++ right
[Edit]
As Dave commented, this will fail if x is not in the list. A safe version would be:
rep xs x y =
let (left, right) = break (== x) xs
in left ++ [y] ++ drop 1 right
[Edit]
Arrgh!!!
rep xs x y = left ++ r right where
(left, right) = break (== x) xs
r (_:rs) = y:rs
r [] = []
replaceValue :: Int -> Int -> [Int] -> [Int]
replaceValue a b (x:xs)
|(a == x) = [b] ++ xs
|otherwise = [x] ++ replaceValue a b xs
Here's an imperative way to do it, using State Monad:
import Control.Monad.State
replaceOnce :: Eq a => a -> a -> [a] -> [a]
replaceOnce old new items = flip evalState False $ do
forM items $ \item -> do
replacedBefore <- get
if item == old && not replacedBefore
then do
put True
return new
else
return old