So I have a number N that has maximum 9 digits and I have to get the last digit of 3^n + 2^n. Is there a rule for this kind of problem? The code I have so far:
#include <fstream>
#include <algorithm>
#include <math.h>
using namespace std;
ifstream fin("input.in");
ofstream fout("input.out");
int main(){
int n;
fin>>n;
fout<<fmod(pow(3,n)+pow(2,n),10);
}
However, If I use this and n is greater than 1000 it displays nan.
My question is: Is there a rule to such a problem?
Well, we know that (3^n + 2^n) % 10 = ((3^n % 10) + (2^n % 10)) % 10, so we can use Modular Exponentation to quickly solve this.
The basic premise is that 3^n % 10 = (3 * (3^(n-1) % 10)) % 10
Well, the easiest answer is the following:
3^0 === 1;
3^1 === 3;
3^2 === 9;
3^3 === 7;
3^4 === 1;
3^5 === 3;
So, 3^n has last digit of 3, 9, 7 or 1, based on N. So,
N%4 == 0 => last digit of 3^n is 1, == 1 =>3, == 2 => 9, == 3 => 7.
You can write out the same for 2^n:
1, 2, 4, 8, 6, 2, ...
This cycle can be repeated all the time, ruling out the primary rule: last digit for 2^n is:
N == 0 => 1
N > 0 =>
(N - 1) % 4 == 0 => 2
(N - 1) % 4 == 1 => 4
(N - 1) % 4 == 2 => 8
(N - 1) % 4 == 3 => 6
After you calculated the last digit for both 3^n and 2^n, just add them together.
You can solve it mathematically. Let's look at the sequence un = 3^n % 10: u0 = 1, and then 3, 9, 7, and 1 again. It gives immediately:
u4k = 1, u4k+1 = 3, u4k+2 = 9, u4k+3 = 7
Now look at vn = 2n % 10: v0= 1 and then 2,4,8,6, and 2 again. It gives that for k > 0:
v4k = 6, v4k+1 = 2, v4k+2 = 4, v4k+3 = 8
You immediately have the result: for N > 1 just look at N' = N%4, and the results are respectively 7, 5, 3, 5
In C++, it will give:
#include <fstream>
using namespace std;
ifstream fin("input.in");
ofstream fout("input.out");
int main(){
int n;
fin>>n;
int result[] = { 7,5,3,5};
fout<<(n == 0) ? 2 : result[n%4];
return 0;
}
Related
It is my understanding that rand() % a + b will return numbers between a and b including both a and b. I must be misunderstanding this though, because when I run the code below int r will return 2, 3, or 4. I, of course, am expecting it to return 2 or 3. I'm calling srand(time(NULL)); in main and I'm using
#include <time.h> and #include <stdlib.h>
Am I missing something?
int r = (rand() % 3) + 2;
if (r ==2)
g_fan.draw(r); // skin == 2
else
g_fan.draw(1 + r); //skin == 4
It is my understanding that rand() % a + b will return numbers between a and b including both a and b.
No. It will result in a number between b and (a+b-1), both including.
Range of values of rand() % a is 0 and a-1, both including.
Hence, the range of values of rand() % a + b is b and (a-1+b), both including.
To get random values between a and b, both including, use:
auto interval = (b-a+1);
auto result = a + rand() % interval;
let num be any number you get by calling rand() and if you do % with 3 , there is a possibility of getting one of these number 0, 1, 2.
therefore you are getting 2 ,3, 4 for :
int r = (rand() % 3) + 2;
int r = (rand() % 3) + 2;
The rand() % 3 will return a number between 0 and 2. When you add t2 to each number, that means it will return 2 to 4. The rand() % afunction in general returns a value form 0 to a - 1. When you do rand() % a + b, then the resulting value will range from 0 + b to a - 1 + b.
To get a value between 2 and 3, use:
int r = (rand() % 2) + 2;
The folloing rand() function gives a number from 0 to 2 - 1, which is 1. When you add 2 to each number, you get a range of 0 + 2, which is 2, to 2 - 1 + 2, which is 3.
Let's say I have 15 elements. I want to group them such a way that:
group1 = 1 - 5
group2 = 6 - 9
group3 = 10 - 12
group4 = 13 - 14
group5 = 15
This way I'll get elements in each group as below:
group1 = 5
group2 = 4
group3 = 3
group4 = 2
group5 = 1
As you can see loop interval is decreasing.
I took 15 just for an example. In actual programme it's user driven parameter which can be anything (hopefully few thousand).
Now what I'm looking for is:
Whatever is in group1 should have variable "loop" value 0, group2 should have 1, group3 should have 2 and so on... "loop" is an int variable which is being used to calculate some other stuff.
Let's put in other words too
I have an int variable called "loop". I want to assign value to it such a way that:
First n frames loop value 0 next (n -1) frames loop value 1 then next (n - 2) frames loop value 2 all the way to loop value (n - 1)
Let's say I have 15 frames on my timeline.
So n will be 5 ====>>>>> (5 + 4 + 3 + 2 + 1 = 15; as interval is decreasing by 1)
then
first 5 frames(1 - 5) loop is 0 then next 4 frames(6 - 9) loop is 1 then next 3 frames(10 - 12) loop is 2 then next 2 frames(13 - 14) loop is 3 and for last frame(15) loop is 4.
frames "loop" value
1 - 5 => 0
6 - 9 => 1
10 - 12 => 2
13 - 14 => 3
15 => 4
I've tried with modulo(%). But the issue is on frame 12 loop is 2 so (12 % (5 - 2)) remainder is 0 so it increments loop value.
The following lines are sample code which is running inside a solver. #loop is by default 0 and #Frame is current processing frame number.
int loopint = 5 - #loop;
if (#Frame % loopint == 0)
#loop += 1;
If I understand this correctly, then
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int main(int argc, char *argv[]) {
int n = atoi(argv[1]);
for(int i = 1; i <= n; ++i) {
printf("%d: %f\n", i, ceil((sqrt(8 * (n - i + 1) + 1) - 1) / 2));
}
}
is an implementation in C.
The math behind this is as follows: The 1 + 2 + 3 + 4 + 5 you have there is a Gauß sum, which has a closed form S = n * (n + 1) / 2 for n terms. Solving this for n, we get
n = (sqrt(8 * S + 1) - 1) / 2
Rounding this upward would give us the solution if you wanted the short stretches at the beginning, that is to say 1, 2, 2, 3, 3, 3, ...
Since you want the stretches to become progressively shorter, we have to invert the order, so S becomes (n - S + 1). Therefore the formula up there.
EDIT: Note that unless the number of elements in your data set fits the n * (n+1) / 2 pattern precisely, you will have shorter stretches either at the beginning or in the end. This implementation places the irregular stretch at the beginning. If you want them at the end,
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int main(int argc, char *argv[]) {
int n = atoi(argv[1]);
int n2 = (int) ceil((sqrt(8 * n + 1) - 1) / 2);
int upper = n2 * (n2 + 1) / 2;
for(int i = 1; i <= n; ++i) {
printf("%d: %f\n", i, n2 - ceil((sqrt(8 * (upper - i + 1) + 1) - 1) / 2));
}
}
does it. This calculates the next such number beyond your element count, then calculates the numbers you would have if you had that many elements.
My challenge is to output the total number of five-digit numbers that have a digit 5, but no digits 8. My only two answers so far have been 0, or 90000. Can anyone help me?
#include <iostream>
using namespace std;
int main() {
int number;
int counter=10000;
int ncounter=0;
while (counter >= 10000 && counter <= 99999) {
int n1,n2,n3,n4,n5;
counter = counter + 1;
n1 = number%10;
number /= 10;
n2 = number%10;
number /= 10;
n3 = number%10;
number /= 10;
n4 = number%10;
number /=10;
n5 = number%10;
number /= 10;
if (n1 == 5||n2 == 5||n3 == 5||n4 == 5||n5 == 5)
if (n1!=8)
if (n2!=8)
if (n3!=8)
if(n4!=8)
if (n5!=8)
ncounter=ncounter+1;
}
cout<<ncounter<<endl;
return 0;
}
(num with 5 but not 8) = (num without 8) - (num with neither 8 nor 5) = 8*9*9*9*9 - 7*8*8*8*8= 23816
Each number is a selection of 5 digits (with repetitions).
Since you cannot select the digit 8, you have 9 possible digits, so this problem is equivalent to the same problem, base 9 (instead of base 10).
If you make 1 digit a 5, there are 4 non-5 and non-8 digits remaining. The number of these can be calculated as 8^4 (because there are 8 available digits to choose from, and you need to choose 4 of these). With a single 5, there are 5 ways to position the 5, so multiply by 5.
Similarly with 2 5's, there are 10 ways to position the 5s relative to other digits.
Therefore, we have the following table:
number of digits==5 remaining digits ways to position 5s
1 8^4 5
2 8^3 10 = 5*4/2
3 8^2 10
4 8^1 5
5 8^0 1
There are 5*8^4 + 10*8^3 + 10*8^2 + 5*8^1 + 8^0 = 26281 numbers <10^5 with a 5 but not an 8.
There are 4*8^3 + 6*8^2 + 4*8^1 + 8^0 = 2465 numbers <10^4 with a 5 but not an 8. Therefore, there are 23816 numbers satisfying your criteria.
This is actually a mathematical problem. Here we have three conditions:
First digit is not zero, as it should be a five-digit number.
No digits are 8
One or more digits are 5
There can be numbers with one to five 5s, where first digit is or is not 5 (except for 55555). That's nine cases to count.
If first digit is not 5, it has 7 options: [1234679]; if any other digit is not 5, it has 8 options: [12346790].
Here C(5) is number of combinations to place 5s, and C(o) - to place other digits.
N(5). 1st? C(5) C(o)
1 Y 1 * 8^4
1 N 4 * 7*8^3
2 Y 4 * 8^3
2 N 6 * 7*8^2
3 Y 6 * 8^2
3 N 4 * 7*8
4 Y 4 * 8
4 N 1 * 7
5 Y 1
Sum: 23816
I am fairly new to C++, and am struggling through a problem that seems to have a solid solution but I just can't seem to find it. I have a contiguous array of ints starting at zero:
int i[6] = { 0, 1, 2, 3, 4, 5 }; // this is actually from an iterator
I would like to partition the array into groups of three. The design is to have two methods, j and k, such that given an i they will return the other two elements from the same group of three. For example:
i j(i) k(i)
0 1 2
1 0 2
2 0 1
3 4 5
4 3 5
5 3 4
The solution seems to involve summing the i with its value mod three and either plus or minus one, but I can't quite seem to work out the logic.
This should work:
int d = i % 3;
int j = i - d + ( d == 0 );
int k = i - d + 2 - ( d == 2 );
or following statement for k could be more readable:
int k = i - d + ( d == 2 ? 1 : 2 );
This should do it:
int j(int i)
{
int div = i / 3;
if (i%3 != 0)
return 3*div;
else
return 3*div+1;
}
int k(int i)
{
int div = i / 3;
if (i%3 != 2)
return 3*div+2;
else
return 3*div+1;
}
Test.
If you want shorter functions:
int j(int i)
{
return i/3*3 + (i%3 ? 0 : 1);
}
int k(int i)
{
return i/3*3 + (i%3-2 ? 2 : 1);
}
Well, first, notice that
j(i) == j(3+i) == j(6+i) == j(9+i) == ...
k(i) == k(3+i) == k(6+i) == k(9+i) == ...
In other words, you only need to find a formula for
j(i), i = 0, 1, 2
k(i), i = 0, 1, 2
and then for the rest of the cases simply plug in i mod 3.
From there, you'll have trouble finding a simple formula because your "rotation" isn't standard. Instead of
i j(i) k(i)
0 1 2
1 2 0
2 0 1
for which the formula would have been
j(i) = (i + 1) % 3
k(i) = (i + 2) % 3
you have
i j(i) k(i)
0 1 2
1 0 1
2 0 2
for which the only formula I can think of at the moment is
j(i) = (i == 0 ? 1 : 0)
k(i) = (i == 1 ? 1 : 2)
If the values of your array (let's call it arr, not i in order to avoid confusion with the index i) do not coincide with their respective index, you have to perform a reverse lookup to figure out their index first. I propose using an std::map<int,size_t> or an std::unordered_map<int,size_t>.
That structure reflects the inverse of arr and you can extra the index for a particular value with its subscript operator or the at member function. From then, you can operate purely on the indices, and use modulo (%) to access the previous and the next element as suggested in the other answers.
I have to XOR numbers from 1 to N, does there exist a direct formula for it ?
For example if N = 6 then 1^2^3^4^5^6 = 7 I want to do it without using any loop so I need an O(1) formula (if any)
Your formula is N & (N % 2 ? 0 : ~0) | ( ((N & 2)>>1) ^ (N & 1) ):
int main()
{
int S = 0;
for (int N = 0; N < 50; ++N) {
S = (S^N);
int check = N & (N % 2 ? 0 : ~0) | ( ((N & 2)>>1) ^ (N & 1) );
std::cout << "N = " << N << ": " << S << ", " << check << std::endl;
if (check != S) throw;
}
return 0;
}
Output:
N = 0: 0, 0 N = 1: 1, 1 N = 2: 3, 3
N = 3: 0, 0 N = 4: 4, 4 N = 5: 1, 1
N = 6: 7, 7 N = 7: 0, 0 N = 8: 8, 8
N = 9: 1, 1 N = 10: 11, 11 N = 11: 0, 0
N = 12: 12, 12 N = 13: 1, 1 N = 14: 15, 15
N = 15: 0, 0 N = 16: 16, 16 N = 17: 1, 1
N = 18: 19, 19 N = 19: 0, 0 N = 20: 20, 20
N = 21: 1, 1 N = 22: 23, 23 N = 23: 0, 0
N = 24: 24, 24 N = 25: 1, 1 N = 26: 27, 27
N = 27: 0, 0 N = 28: 28, 28 N = 29: 1, 1
N = 30: 31, 31 N = 31: 0, 0 N = 32: 32, 32
N = 33: 1, 1 N = 34: 35, 35 N = 35: 0, 0
N = 36: 36, 36 N = 37: 1, 1 N = 38: 39, 39
N = 39: 0, 0 N = 40: 40, 40 N = 41: 1, 1
N = 42: 43, 43 N = 43: 0, 0 N = 44: 44, 44
N = 45: 1, 1 N = 46: 47, 47 N = 47: 0, 0
N = 48: 48, 48 N = 49: 1, 1 N = 50: 51, 51
Explanation:
Low bit is XOR between low bit and next bit.
For each bit except low bit the following holds:
if N is odd then that bit is 0.
if N is even then that bit is equal to corresponded bit of N.
Thus for the case of odd N the result is always 0 or 1.
edit
GSerg Has posted a formula without loops, but deleted it for some reason (undeleted now). The formula is perfectly valid (apart from a little mistake). Here's the C++-like version.
if n % 2 == 1 {
result = (n % 4 == 1) ? 1 : 0;
} else {
result = (n % 4 == 0) ? n : n + 1;
}
One can prove it by induction, checking all reminders of division by 4. Although, no idea how you can come up with it without generating output and seeing regularity.
Please explain your approach a bit more.
Since each bit is independent in xor operation, you can calculate them separately.
Also, if you look at k-th bit of number 0..n, it'll form a pattern. E.g., numbers from 0 to 7 in binary form.
000
001
010
011
100
101
110
111
You see that for k-th bit (k starts from 0), there're 2^k zeroes, 2^k ones, then 2^k zeroes again, etc.
Therefore, you can for each bit calculate how many ones there are without actually going through all numbers from 1 to n.
E.g., for k = 2, there're repeated blocks of 2^2 == 4 zeroes and ones. Then,
int ones = (n / 8) * 4; // full blocks
if (n % 8 >= 4) { // consider incomplete blocks in the end
ones += n % 8 - 3;
}
For odd N, the result is either 1 or 0 (cyclic, 0 for N=3, 1 for N=5, 0 for N=7 etc.)
For even N, the result is either N or N+1 (cyclic, N+1 for N=2, N for N=4, N+1 for N=6, N for N=8 etc).
Pseudocode:
if (N mod 2) = 0
if (N mod 4) = 0 then r = N else r = N+1
else
if (N mod 4) = 1 then r = 1 else r = 0
Lets say the function that XORs all the values from 1 to N be XOR(N), then
XOR(1) = 000 1 = 0 1 ( The 0 is the dec of bin 000)
XOR(2) = 001 1 = 1 1
XOR(3) = 000 0 = 0 0
XOR(4) = 010 0 = 2 0
XOR(5) = 000 1 = 0 1
XOR(6) = 011 1 = 3 1
XOR(7) = 000 0 = 0 0
XOR(8) = 100 0 = 4 0
XOR(9) = 000 1 = 0 1
XOR(10)= 101 1 = 5 1
XOR(11)= 000 0 = 0 0
XOR(12)= 110 0 = 6 0
I hope you can see the pattern. It should be similar for other numbers too.
Try this:
the LSB gets toggled each time the N is odd, so we can say that
rez & 1 == (N & 1) ^ ((N >> 1) & 1)
The same pattern can be observed for the rest of the bits.
Each time the bits B and B+1 (starting from LSB) in N will be different, bit B in the result should be set.
So, the final result will be (including N): rez = N ^ (N >> 1)
EDIT: sorry, it was wrong. the correct answer:
for odd N: rez = (N ^ (N >> 1)) & 1
for even N: rez = (N & ~1) | ((N ^ (N >> 1)) & 1)
Great answer by Alexey Malistov! A variation of his formula: n & 1 ? (n & 2) >> 1 ^ 1 : n | (n & 2) >> 1 or equivalently n & 1 ? !(n & 2) : n | (n & 2) >> 1.
this method avoids using conditionals F(N)=(N&((N&1)-1))|((N&1)^((N&3)>>1)
F(N)= (N&(b0-1)) | (b0^b1)
If you look at the XOR of the first few numbers you get:
N | F(N)
------+------
0001 | 0001
0010 | 0011
0011 | 0000
0100 | 0100
0101 | 0001
0110 | 0111
0111 | 0000
1000 | 1000
1001 | 0001
Hopefully you notice the pattern:
if N mod 4 = 1 than F(N)=1
if N mod 4 = 3 than F(N)=0
if N mod 4 = 0 than F(N)=N
if N mod 4 = 2 than F(N)=N but with the first bit as 1 so N|1
the tricky part is getting this in one statement without conditionals ill explain the logic I used to do this.
take the first 2 significant bits of N call them:
b0 and b1 and these are obtained with:
b0 = N&1
b1 = N&3>>1
Notice that if b0 == 1 we have to 0 all of the bits, but if it isn't all of the bits except for the first bit stay the same. We can do this behavior by:
N & (b0-1) : this works because of 2's complement, -1 is equal to a number with all bits set to 1 and 1-1=0 so when b0=1 this results in F(N)=0.. so that is the first part of the function:
F(N)= (N&(b0-1))...
now this will work for for N mod 4 == 3 and 0, for the other 2 cases lets look solely at b1, b0 and F(N)0:
b0|b1|F(N)0
--+--+-----
1| 1| 0
0| 0| 0
1| 0| 1
0| 1| 1
Ok hopefully this truth table looks familiar! it is b0 XOR b1 (b1^b0). so now that we know how to get the last bit let put that on our function:
F(N)=(N&(b0-1))|b0^b1
and there you go, a function without using conditionals. also this is useful if you want to compute the XOR from positive numbers a to b. you can do:
F(a) XOR F(b).
With minimum change to the original logic:
int xor = 0;
for (int i = 1; i <= N; i++) {
xor ^= i;
}
We can have:
int xor = 0;
for (int i = N - (N % 4); i <= N; i++) {
xor ^= i;
}
It does have a loop but it would take a constant time to execute. The number of times we iterate through the for-loop would vary between 1 and 4.
How about this?
!(n&1)*n+(n%4&n%4<3)
This works fine without any issues for any n;
unsigned int xorn(unsigned int n)
{
if (n % 4 == 0)
return n;
else if(n % 4 == 1)
return 1;
else if(n % 4 == 2)
return n+1;
else
return 0;
}
Take a look at this. This will solve your problem.
https://stackoverflow.com/a/10670524/4973570
To calculate the XOR sum from 1 to N:
int ans,mod=N%4;
if(mod==0) ans=N;
else if(mod==1) ans=1;
else if(mod==2) ans=N+1;
else if(mod==3) ans=0;
If still someone needs it here simple python solution:
def XorSum(L):
res = 0
if (L-1)%4 == 0:
res = L-1
elif (L-1)%4 == 1:
res = 1
elif (L-1)%4 == 2:
res = (L-1)^1
else: #3
res= 0
return res