how to use Element.status(); in Raphael.js - raphael

the documentation is too breif.
can anyone knowa about how to use Element.status() in Raphael.js?
very appreciate if you can give a demo.

Element.status shows the current animation applied to an element OR you can set the status on a particular animation.
Think of an animation interpolating between 0 and 1. So half way through an animation, it would have a value of 0.5. This is applied to whatever attribute is being animated. (So if animating x from 0 to 100 half way through, status will be 0.5 and x will be 50, not accounting for any easing applied like bounce).
So lets suppose instead of creating a nice smooth interpolation between attributes, we want to make an element move in 10 discrete steps. We can set the status each time of an animation manually. Example.
var raphAnimation = Raphael.animation( { x: 100, y: 100 }, 1000);
rect.status( raphAnimation, 0.5 )
example jsfiddle
var rect = paper.rect(10, 20, 300, 200);
var raphAnimation = Raphael.animation( { x: 100, y: 100 }, 1000);
for( var c = 1; c <= 10; c++ ) {
(function() {
var step = c
setTimeout( function() {
rect.status( raphAnimation, 0.1 * step )
}, step * 200)
})();
}
Note: If you repeat using the status set command, I think it will take the animation as fresh. So suppose the animation is from 0->100 and you set status to be 0.5 it will go half way. Now suppose you do the same and call it again with 0.5, it will now be 0.5 of the 'remainder' as it now only has half the distance to traverse.

Related

Animation in swiftui how to decrease slowly the duration in each repeat

I have a custom ImageView and i use a scaleEffect to animate / scale the ImageView using the code below
ImageView(named: imagename)
.padding(.trailing, 16)
.padding(.top, 105)
.scaleEffect(scale)
.onAppear {
let baseAnimation = Animation.easeInOut(duration: 0.5)
let repeated = baseAnimation.repeatCount(5, autoreverses: true)
withAnimation(repeated) {
scale = 0.5
}
}
Tha imageview scales to 0.5 five times. Each one repeat completes in 0.5 seconds. I need the following. I have to change the duration of the easeInOut by 0.1 for each repeat. So first time the animation is going to complete in 0.5 seconds. Second time it repeats should complete in 0.4 seconds and so on. Is this possible using withAnimation? Any help or suggestion appreciated.

How can I customise the Animation of an Angle change in SwiftUI

I have an app that shows a bunch of people who each have an origin and angle.
struct Location {
var centre:CGPoint
var facing:Angle
}
SwiftUI magically and automatically does a lot of the animation as they move from location A to location B
withAnimation {
person.location = newLocation
}
However - for the Angle (facing) property, I want the animation to go in the shortest route (bearing in mind that in the real world - angles wrap around).
e.g. Swift UI correctly animates when the angle changes 5 -> 10 (degrees)
5,6,7,8,9,10
but going from 2 to 358, it takes the long way around
SwiftUI does 2,3,4,5,6,7.......,357,358
where I would like it to do
2,1,0,359,358
how can I go about this?
thank you
update: I'm hoping for a solution which allows me to work with the animation system, perhaps using a new MyAngle struct which provides the animation steps directly, perhaps using some kind of animation modifier.
.easeInOut modifies the steps - is there an equivalent approach where I can create a .goTheRightWay animation?
Ok - Posting my own answer.
It works a bit like #Ben's answer - but moves the 'shadow angle' management to the rotation effect.
All you have to do is switch rotationEffect(angle:Angle) for shortRotationEffect(angle:Angle,id:UUID)
this looks like
#State private var rotationStorage = RotationStorage()
//and then in body
Image(systemName: "person.fill").resizable()
.frame(width: 50, height: 50)
.shortRotationEffect(self.person.angle,id:person.id,storage:rotationStorage)
.animation(.easeInOut)
the ShortRotationEffect uses the provided id to maintain a dictionary of previous angles. When you set a new angle, it figures out the equivalent angle which provides a short rotation and applies that with a normal rotationEffect(...)
Here it is:
class RotationStorage {
private var storage: [UUID: Angle] = [:]
fileprivate func setAngle(id:UUID,angle:Angle) {
storage[id] = angle
}
fileprivate func getAngle(_ id:UUID) -> Angle? {
return storage[id]
}
}
extension View {
/// Like RotationEffect - but when animated, the rotation moves in the shortest direction.
/// - Parameters:
/// - angle: new angle
/// - anchor: anchor point
/// - id: unique id for the item being displayed. This is used as a key to maintain the rotation history and figure out the right direction to move
func shortRotationEffect(_ angle: Angle,
anchor: UnitPoint = .center,
id: UUID,
storage:RotationStorage) -> some View {
modifier(ShortRotation(angle: angle,
anchor: anchor,
id: id,
storage:storage))
}
}
struct ShortRotation: ViewModifier {
var angle: Angle
var anchor: UnitPoint
var id: UUID
let storage:RotationStorage
func getAngle() -> Angle {
var newAngle = angle
if let lastAngle = storage.getAngle(id) {
let change: Double = (newAngle.degrees - lastAngle.degrees) %% 360.double
if change < 180 {
newAngle = lastAngle + Angle.init(degrees: change)
} else {
newAngle = lastAngle + Angle.init(degrees: change - 360)
}
}
storage.setAngle(id: id, angle: newAngle)
return newAngle
}
func body(content: Content) -> some View {
content
.rotationEffect(getAngle(), anchor: anchor)
}
}
this relies on my positive modulus function:
public extension Double {
/// Returns modulus, but forces it to be positive
/// - Parameters:
/// - left: number
/// - right: modulus
/// - Returns: positive modulus
static func %% (_ left: Double, _ right: Double) -> Double {
let truncatingRemainder = left.truncatingRemainder(dividingBy: right)
return truncatingRemainder >= 0 ? truncatingRemainder : truncatingRemainder+abs(right)
}
}
How about adjusting the newLocation value to keep within 180˚ of the start? Here's a function to check if the distance animated is greater than half way around and provide a new endpoint that satisfies it.
func adjustedEnd(from start: CGFloat, to target: CGFloat) -> CGFloat {
// Shift end to be greater than start
var end = target
while end < start { end += 360 }
// Mod the distance with 360, shifting by 180 to keep on the same side of a circle
return (end - start + 180).truncatingRemainder(dividingBy: 360) - 180 + start
}
Some sample test cases:
let startValues: [CGFloat] = [2, -10, 345, 365, 700]
let endValues: [CGFloat] = [2, 10, 180, 185, 350, -10, 715, -700]
for start in startValues {
print("From \(start):")
for end in endValues {
let adjusted = adjustedEnd(from: start, to: end)
print("\t\(end) \tbecomes \(adjusted);\tdistance \(abs(adjusted - start))")
}
}
prints the following:
From 2.0:
2.0 becomes 2.0; distance 0.0
10.0 becomes 10.0; distance 8.0
180.0 becomes 180.0; distance 178.0
185.0 becomes -175.0; distance 177.0
350.0 becomes -10.0; distance 12.0
-10.0 becomes -10.0; distance 12.0
715.0 becomes -5.0; distance 7.0
-700.0 becomes 20.0; distance 18.0
From -10.0:
2.0 becomes 2.0; distance 12.0
10.0 becomes 10.0; distance 20.0
180.0 becomes -180.0; distance 170.0
185.0 becomes -175.0; distance 165.0
350.0 becomes -10.0; distance 0.0
-10.0 becomes -10.0; distance 0.0
715.0 becomes -5.0; distance 5.0
-700.0 becomes 20.0; distance 30.0
From 345.0:
2.0 becomes 362.0; distance 17.0
10.0 becomes 370.0; distance 25.0
180.0 becomes 180.0; distance 165.0
185.0 becomes 185.0; distance 160.0
350.0 becomes 350.0; distance 5.0
-10.0 becomes 350.0; distance 5.0
715.0 becomes 355.0; distance 10.0
-700.0 becomes 380.0; distance 35.0
From 365.0:
2.0 becomes 362.0; distance 3.0
10.0 becomes 370.0; distance 5.0
180.0 becomes 540.0; distance 175.0
185.0 becomes 185.0; distance 180.0
350.0 becomes 350.0; distance 15.0
-10.0 becomes 350.0; distance 15.0
715.0 becomes 355.0; distance 10.0
-700.0 becomes 380.0; distance 15.0
From 700.0:
2.0 becomes 722.0; distance 22.0
10.0 becomes 730.0; distance 30.0
180.0 becomes 540.0; distance 160.0
185.0 becomes 545.0; distance 155.0
350.0 becomes 710.0; distance 10.0
-10.0 becomes 710.0; distance 10.0
715.0 becomes 715.0; distance 15.0
-700.0 becomes 740.0; distance 40.0
(Edited to account for negative ending values)
Edit: From your comment about keeping a second value around, what about setting Location.facing to the adjusted angle, and then adding to Location something like
var prettyFacing: Angle {
var facing = self.facing
while facing.degrees < 0 { facing += Angle(degrees: 360) }
while facing.degrees > 360 { facing -= Angle(degrees: 360) }
return facing
}
After trying both of the other options, we were still getting visual glitches (less common, but still there!).
Our Solution: Use UIKit for Animation
We've created a SPM package that adds a simple modifier, .uiRotationEffect(). This modifier wraps your View in a UIView, and uses UIView's .animate(...) function to get the correct behavior.
You can install the package here or you can just copy and paste the code here, it's not very long.
GIF of the working solution:

How do you calculate a "highlight color"? [duplicate]

Given a system (a website for instance) that lets a user customize the background color for some section but not the font color (to keep number of options to a minimum), is there a way to programmatically determine if a "light" or "dark" font color is necessary?
I'm sure there is some algorithm, but I don't know enough about colors, luminosity, etc to figure it out on my own.
I encountered similar problem. I had to find a good method of selecting contrastive font color to display text labels on colorscales/heatmaps. It had to be universal method and generated color had to be "good looking", which means that simple generating complementary color was not good solution - sometimes it generated strange, very intensive colors that were hard to watch and read.
After long hours of testing and trying to solve this problem, I found out that the best solution is to select white font for "dark" colors, and black font for "bright" colors.
Here's an example of function I am using in C#:
Color ContrastColor(Color color)
{
int d = 0;
// Counting the perceptive luminance - human eye favors green color...
double luminance = (0.299 * color.R + 0.587 * color.G + 0.114 * color.B)/255;
if (luminance > 0.5)
d = 0; // bright colors - black font
else
d = 255; // dark colors - white font
return Color.FromArgb(d, d, d);
}
This was tested for many various colorscales (rainbow, grayscale, heat, ice, and many others) and is the only "universal" method I found out.
Edit
Changed the formula of counting a to "perceptive luminance" - it really looks better! Already implemented it in my software, looks great.
Edit 2
#WebSeed provided a great working example of this algorithm: http://codepen.io/WebSeed/full/pvgqEq/
Based on Gacek's answer but directly returning color constants (additional modifications see below):
public Color ContrastColor(Color iColor)
{
// Calculate the perceptive luminance (aka luma) - human eye favors green color...
double luma = ((0.299 * iColor.R) + (0.587 * iColor.G) + (0.114 * iColor.B)) / 255;
// Return black for bright colors, white for dark colors
return luma > 0.5 ? Color.Black : Color.White;
}
Note: I removed the inversion of the luma value to make bright colors have a higher value, what seems more natural to me and is also the 'default' calculation method.
(Edit: This has since been adopted in the original answer, too)
I used the same constants as Gacek from here since they worked great for me.
You can also implement this as an Extension Method using the following signature:
public static Color ContrastColor(this Color iColor)
You can then easily call it via
foregroundColor = backgroundColor.ContrastColor().
Thank you #Gacek. Here's a version for Android:
#ColorInt
public static int getContrastColor(#ColorInt int color) {
// Counting the perceptive luminance - human eye favors green color...
double a = 1 - (0.299 * Color.red(color) + 0.587 * Color.green(color) + 0.114 * Color.blue(color)) / 255;
int d;
if (a < 0.5) {
d = 0; // bright colors - black font
} else {
d = 255; // dark colors - white font
}
return Color.rgb(d, d, d);
}
And an improved (shorter) version:
#ColorInt
public static int getContrastColor(#ColorInt int color) {
// Counting the perceptive luminance - human eye favors green color...
double a = 1 - (0.299 * Color.red(color) + 0.587 * Color.green(color) + 0.114 * Color.blue(color)) / 255;
return a < 0.5 ? Color.BLACK : Color.WHITE;
}
My Swift implementation of Gacek's answer:
func contrastColor(color: UIColor) -> UIColor {
var d = CGFloat(0)
var r = CGFloat(0)
var g = CGFloat(0)
var b = CGFloat(0)
var a = CGFloat(0)
color.getRed(&r, green: &g, blue: &b, alpha: &a)
// Counting the perceptive luminance - human eye favors green color...
let luminance = 1 - ((0.299 * r) + (0.587 * g) + (0.114 * b))
if luminance < 0.5 {
d = CGFloat(0) // bright colors - black font
} else {
d = CGFloat(1) // dark colors - white font
}
return UIColor( red: d, green: d, blue: d, alpha: a)
}
Javascript [ES2015]
const hexToLuma = (colour) => {
const hex = colour.replace(/#/, '');
const r = parseInt(hex.substr(0, 2), 16);
const g = parseInt(hex.substr(2, 2), 16);
const b = parseInt(hex.substr(4, 2), 16);
return [
0.299 * r,
0.587 * g,
0.114 * b
].reduce((a, b) => a + b) / 255;
};
Ugly Python if you don't feel like writing it :)
'''
Input a string without hash sign of RGB hex digits to compute
complementary contrasting color such as for fonts
'''
def contrasting_text_color(hex_str):
(r, g, b) = (hex_str[:2], hex_str[2:4], hex_str[4:])
return '000' if 1 - (int(r, 16) * 0.299 + int(g, 16) * 0.587 + int(b, 16) * 0.114) / 255 < 0.5 else 'fff'
Thanks for this post.
For whoever might be interested, here's an example of that function in Delphi:
function GetContrastColor(ABGColor: TColor): TColor;
var
ADouble: Double;
R, G, B: Byte;
begin
if ABGColor <= 0 then
begin
Result := clWhite;
Exit; // *** EXIT RIGHT HERE ***
end;
if ABGColor = clWhite then
begin
Result := clBlack;
Exit; // *** EXIT RIGHT HERE ***
end;
// Get RGB from Color
R := GetRValue(ABGColor);
G := GetGValue(ABGColor);
B := GetBValue(ABGColor);
// Counting the perceptive luminance - human eye favors green color...
ADouble := 1 - (0.299 * R + 0.587 * G + 0.114 * B) / 255;
if (ADouble < 0.5) then
Result := clBlack // bright colors - black font
else
Result := clWhite; // dark colors - white font
end;
This is such a helpful answer. Thanks for it!
I'd like to share an SCSS version:
#function is-color-light( $color ) {
// Get the components of the specified color
$red: red( $color );
$green: green( $color );
$blue: blue( $color );
// Compute the perceptive luminance, keeping
// in mind that the human eye favors green.
$l: 1 - ( 0.299 * $red + 0.587 * $green + 0.114 * $blue ) / 255;
#return ( $l < 0.5 );
}
Now figuring out how to use the algorithm to auto-create hover colors for menu links. Light headers get a darker hover, and vice-versa.
Short Answer:
Calculate the luminance (Y) of the given color, and flip the text either black or white based on a pre-determined middle contrast figure. For a typical sRGB display, flip to white when Y < 0.4 (i.e. 40%)
Longer Answer
Not surprisingly, nearly every answer here presents some misunderstanding, and/or is quoting incorrect coefficients. The only answer that is actually close is that of Seirios, though it relies on WCAG 2 contrast which is known to be incorrect itself.
If I say "not surprisingly", it is due in part to the massive amount of misinformation on the internet on this particular subject. The fact this field is still a subject of active research and unsettled science adds to the fun. I come to this conclusion as the result of the last few years of research into a new contrast prediction method for readability.
The field of visual perception is dense and abstract, as well as developing, so it is common for misunderstandings to exist. For instance, HSV and HSL are not even close to perceptually accurate. For that you need a perceptually uniform model such as CIELAB or CIELUV or CIECAM02 etc.
Some misunderstandings have even made their way into standards, such as the contrast part of WCAG 2 (1.4.3), which has been demonstrated as incorrect over much of its range.
First Fix:
The coefficients shown in many answers here are (.299, .587, .114) and are wrong, as they pertain to a long obsolete system known as NTSC YIQ, the analog broadcast system in North America some decades ago. While they may still be used in some YCC encoding specs for backwards compatibility, they should not be used in an sRGB context.
The coefficients for sRGB and Rec.709 (HDTV) are:
Red: 0.2126
Green: 0.7152
Blue: 0.0722
Other color spaces like Rec2020 or AdobeRGB use different coefficients, and it is important to use the correct coefficients for a given color space.
The coefficients can not be applied directly to 8 bit sRGB encoded image or color data. The encoded data must first be linearized, then the coefficients applied to find the luminance (light value) of the given pixel or color.
For sRGB there is a piecewise transform, but as we are only interested in the perceived lightness contrast to find the point to "flip" the text from black to white, we can take a shortcut via the simple gamma method.
Andy's Shortcut to Luminance & Lightness
Divide each sRGB color by 255.0, then raise to the power of 2.2, then multiply by the coefficients and sum them to find estimated luminance.
let Ys = Math.pow(sR/255.0,2.2) * 0.2126 +
Math.pow(sG/255.0,2.2) * 0.7152 +
Math.pow(sB/255.0,2.2) * 0.0722; // Andy's Easy Luminance for sRGB. For Rec709 HDTV change the 2.2 to 2.4
Here, Y is the relative luminance from an sRGB monitor, on a 0.0 to 1.0 scale. This is not relative to perception though, and we need further transforms to fit our human visual perception of the relative lightness, and also of the perceived contrast.
The 40% Flip
But before we get there, if you are only looking for a basic point to flip the text from black to white or vice versa, the cheat is to use the Y we just derived, and make the flip point about Y = 0.40;. so for colors higher than 0.4 Y, make the text black #000 and for colors darker than 0.4 Y, make the text white #fff.
let textColor = (Ys < 0.4) ? "#fff" : "#000"; // Low budget down and dirty text flipper.
Why 40% and not 50%? Our human perception of lightness/darkness and of contrast is not linear. For a self illuminated display, it so happens that 0.4 Y is about middle contrast under most typical conditions.
Yes it varies, and yes this is an over simplification. But if you are flipping text black or white, the simple answer is a useful one.
Perceptual Bonus Round
Predicting the perception of a given color and lightness is still a subject of active research, and not entirely settled science. The L* (Lstar) of CIELAB or LUV has been used to predict perceptual lightness, and even to predict perceived contrast. However, L* works well for surface colors in a very defined/controlled environment, and does not work as well for self illuminated displays.
While this varies depending on not only the display type and calibration, but also your environment and the overall page content, if you take the Y from above, and raise it by around ^0.685 to ^0.75, you'll find that 0.5 is typically the middle point to flip the text from white to black.
let textColor = (Math.pow(Ys,0.75) < 0.5) ? "#fff" : "#000"; // perceptually based text flipper.
Using the exponent 0.685 will make the text color swap on a darker color, and using 0.8 will make the text swap on a lighter color.
Spatial Frequency Double Bonus Round
It is useful to note that contrast is NOT just the distance between two colors. Spatial frequency, in other words font weight and size, are also CRITICAL factors that cannot be ignored.
That said, you may find that when colors are in the midrange, that you'd want to increase the size and or weight of the font.
let textSize = "16px";
let textWeight = "normal";
let Ls = Math.pow(Ys,0.7);
if (Ls > 0.33 && Ls < 0.66) {
textSize = "18px";
textWeight = "bold";
} // scale up fonts for the lower contrast mid luminances.
Hue R U
It's outside the scope of this post to delve deeply, but above we are ignoring hue and chroma. Hue and chroma do have an effect, such as Helmholtz Kohlrausch, and the simpler luminance calculations above do not always predict intensity due to saturated hues.
To predict these more subtle aspects of perception, a complete appearance model is needed. R. Hunt, M. Fairshild, E. Burns are a few authors worth looking into if you want to plummet down the rabbit hole of human visual perception...
For this narrow purpose, we could re-weight the coefficients slightly, knowing that green makes up the majority of of luminance, and pure blue and pure red should always be the darkest of two colors. What tends to happen using the standard coefficients, is middle colors with a lot of blue or red may flip to black at a lower than ideal luminance, and colors with a high green component may do the opposite.
That said, I find this is best addressed by increasing font size and weight in the middle colors.
Putting it all together
So we'll assume you'll send this function a hex string, and it will return a style string that can be sent to a particular HTML element.
Check out the CODEPEN, inspired by the one Seirios did:
CodePen: Fancy Font Flipping
One of the things the Codepen code does is increase the text size for the lower contrast midrange. Here's a sample:
And if you want to play around with some of these concepts, see the SAPC development site at https://www.myndex.com/SAPC/ clicking on "research mode" provides interactive experiments to demonstrate these concepts.
Terms of enlightenment
Luminance: Y (relative) or L (absolute cd/m2) a spectrally weighted but otherwise linear measure of light. Not to be confused with "Luminosity".
Luminosity: light over time, useful in astronomy.
Lightness: L* (Lstar) perceptual lightness as defined by the CIE. Some models have a related lightness J*.
I had the same problem but i had to develop it in PHP. I used #Garek's solution and i also used this answer:
Convert hex color to RGB values in PHP to convert HEX color code to RGB.
So i'm sharing it.
I wanted to use this function with given Background HEX color, but not always starting from '#'.
//So it can be used like this way:
$color = calculateColor('#804040');
echo $color;
//or even this way:
$color = calculateColor('D79C44');
echo '<br/>'.$color;
function calculateColor($bgColor){
//ensure that the color code will not have # in the beginning
$bgColor = str_replace('#','',$bgColor);
//now just add it
$hex = '#'.$bgColor;
list($r, $g, $b) = sscanf($hex, "#%02x%02x%02x");
$color = 1 - ( 0.299 * $r + 0.587 * $g + 0.114 * $b)/255;
if ($color < 0.5)
$color = '#000000'; // bright colors - black font
else
$color = '#ffffff'; // dark colors - white font
return $color;
}
Flutter implementation
Color contrastColor(Color color) {
if (color == Colors.transparent || color.alpha < 50) {
return Colors.black;
}
double luminance = (0.299 * color.red + 0.587 * color.green + 0.114 * color.blue) / 255;
return luminance > 0.5 ? Colors.black : Colors.white;
}
Based on Gacek's answer, and after analyzing #WebSeed's example with the WAVE browser extension, I've come up with the following version that chooses black or white text based on contrast ratio (as defined in W3C's Web Content Accessibility Guidelines (WCAG) 2.1), instead of luminance.
This is the code (in javascript):
// As defined in WCAG 2.1
var relativeLuminance = function (R8bit, G8bit, B8bit) {
var RsRGB = R8bit / 255.0;
var GsRGB = G8bit / 255.0;
var BsRGB = B8bit / 255.0;
var R = (RsRGB <= 0.03928) ? RsRGB / 12.92 : Math.pow((RsRGB + 0.055) / 1.055, 2.4);
var G = (GsRGB <= 0.03928) ? GsRGB / 12.92 : Math.pow((GsRGB + 0.055) / 1.055, 2.4);
var B = (BsRGB <= 0.03928) ? BsRGB / 12.92 : Math.pow((BsRGB + 0.055) / 1.055, 2.4);
return 0.2126 * R + 0.7152 * G + 0.0722 * B;
};
var blackContrast = function(r, g, b) {
var L = relativeLuminance(r, g, b);
return (L + 0.05) / 0.05;
};
var whiteContrast = function(r, g, b) {
var L = relativeLuminance(r, g, b);
return 1.05 / (L + 0.05);
};
// If both options satisfy AAA criterion (at least 7:1 contrast), use preference
// else, use higher contrast (white breaks tie)
var chooseFGcolor = function(r, g, b, prefer = 'white') {
var Cb = blackContrast(r, g, b);
var Cw = whiteContrast(r, g, b);
if(Cb >= 7.0 && Cw >= 7.0) return prefer;
else return (Cb > Cw) ? 'black' : 'white';
};
A working example may be found in my fork of #WebSeed's codepen, which produces zero low contrast errors in WAVE.
As Kotlin / Android extension:
fun Int.getContrastColor(): Int {
// Counting the perceptive luminance - human eye favors green color...
val a = 1 - (0.299 * Color.red(this) + 0.587 * Color.green(this) + 0.114 * Color.blue(this)) / 255
return if (a < 0.5) Color.BLACK else Color.WHITE
}
An implementation for objective-c
+ (UIColor*) getContrastColor:(UIColor*) color {
CGFloat red, green, blue, alpha;
[color getRed:&red green:&green blue:&blue alpha:&alpha];
double a = ( 0.299 * red + 0.587 * green + 0.114 * blue);
return (a > 0.5) ? [[UIColor alloc]initWithRed:0 green:0 blue:0 alpha:1] : [[UIColor alloc]initWithRed:255 green:255 blue:255 alpha:1];
}
iOS Swift 3.0 (UIColor extension):
func isLight() -> Bool
{
if let components = self.cgColor.components, let firstComponentValue = components[0], let secondComponentValue = components[1], let thirdComponentValue = components[2] {
let firstComponent = (firstComponentValue * 299)
let secondComponent = (secondComponentValue * 587)
let thirdComponent = (thirdComponentValue * 114)
let brightness = (firstComponent + secondComponent + thirdComponent) / 1000
if brightness < 0.5
{
return false
}else{
return true
}
}
print("Unable to grab components and determine brightness")
return nil
}
Swift 4 Example:
extension UIColor {
var isLight: Bool {
let components = cgColor.components
let firstComponent = ((components?[0]) ?? 0) * 299
let secondComponent = ((components?[1]) ?? 0) * 587
let thirdComponent = ((components?[2]) ?? 0) * 114
let brightness = (firstComponent + secondComponent + thirdComponent) / 1000
return !(brightness < 0.6)
}
}
UPDATE - Found that 0.6 was a better test bed for the query
Note there is an algorithm for this in the google closure library that references a w3c recommendation: http://www.w3.org/TR/AERT#color-contrast. However, in this API you provide a list of suggested colors as a starting point.
/**
* Find the "best" (highest-contrast) of the suggested colors for the prime
* color. Uses W3C formula for judging readability and visual accessibility:
* http://www.w3.org/TR/AERT#color-contrast
* #param {goog.color.Rgb} prime Color represented as a rgb array.
* #param {Array<goog.color.Rgb>} suggestions Array of colors,
* each representing a rgb array.
* #return {!goog.color.Rgb} Highest-contrast color represented by an array.
*/
goog.color.highContrast = function(prime, suggestions) {
var suggestionsWithDiff = [];
for (var i = 0; i < suggestions.length; i++) {
suggestionsWithDiff.push({
color: suggestions[i],
diff: goog.color.yiqBrightnessDiff_(suggestions[i], prime) +
goog.color.colorDiff_(suggestions[i], prime)
});
}
suggestionsWithDiff.sort(function(a, b) { return b.diff - a.diff; });
return suggestionsWithDiff[0].color;
};
/**
* Calculate brightness of a color according to YIQ formula (brightness is Y).
* More info on YIQ here: http://en.wikipedia.org/wiki/YIQ. Helper method for
* goog.color.highContrast()
* #param {goog.color.Rgb} rgb Color represented by a rgb array.
* #return {number} brightness (Y).
* #private
*/
goog.color.yiqBrightness_ = function(rgb) {
return Math.round((rgb[0] * 299 + rgb[1] * 587 + rgb[2] * 114) / 1000);
};
/**
* Calculate difference in brightness of two colors. Helper method for
* goog.color.highContrast()
* #param {goog.color.Rgb} rgb1 Color represented by a rgb array.
* #param {goog.color.Rgb} rgb2 Color represented by a rgb array.
* #return {number} Brightness difference.
* #private
*/
goog.color.yiqBrightnessDiff_ = function(rgb1, rgb2) {
return Math.abs(
goog.color.yiqBrightness_(rgb1) - goog.color.yiqBrightness_(rgb2));
};
/**
* Calculate color difference between two colors. Helper method for
* goog.color.highContrast()
* #param {goog.color.Rgb} rgb1 Color represented by a rgb array.
* #param {goog.color.Rgb} rgb2 Color represented by a rgb array.
* #return {number} Color difference.
* #private
*/
goog.color.colorDiff_ = function(rgb1, rgb2) {
return Math.abs(rgb1[0] - rgb2[0]) + Math.abs(rgb1[1] - rgb2[1]) +
Math.abs(rgb1[2] - rgb2[2]);
};
base R version of #Gacek's answer to get luminance (you can apply your own threshold easily)
# vectorized
luminance = function(col) c(c(.299, .587, .114) %*% col2rgb(col)/255)
Usage:
luminance(c('black', 'white', '#236FAB', 'darkred', '#01F11F'))
# [1] 0.0000000 1.0000000 0.3730039 0.1629843 0.5698039
If you're manipulating color spaces for visual effect it's generally easier to work in HSL (Hue, Saturation and Lightness) than RGB. Moving colours in RGB to give naturally pleasing effects tends to be quite conceptually difficult, whereas converting into HSL, manipulating there, then converting back out again is more intuitive in concept and invariably gives better looking results.
Wikipedia has a good introduction to HSL and the closely related HSV. And there's free code around the net to do the conversion (for example here is a javascript implementation)
What precise transformation you use is a matter of taste, but personally I'd have thought reversing the Hue and Lightness components would be certain to generate a good high contrast colour as a first approximation, but you can easily go for more subtle effects.
You can have any hue text on any hue background and ensure that it is legible. I do it all the time. There's a formula for this in Javascript on Readable Text in Colour – STW*
As it says on that link, the formula is a variation on the inverse-gamma adjustment calculation, though a bit more manageable IMHO.
The menus on the right-hand side of that link and its associated pages use randomly-generated colours for text and background, always legible. So yes, clearly it can be done, no problem.
An Android variation that captures the alpha as well.
(thanks #thomas-vos)
/**
* Returns a colour best suited to contrast with the input colour.
*
* #param colour
* #return
*/
#ColorInt
public static int contrastingColour(#ColorInt int colour) {
// XXX https://stackoverflow.com/questions/1855884/determine-font-color-based-on-background-color
// Counting the perceptive luminance - human eye favors green color...
double a = 1 - (0.299 * Color.red(colour) + 0.587 * Color.green(colour) + 0.114 * Color.blue(colour)) / 255;
int alpha = Color.alpha(colour);
int d = 0; // bright colours - black font;
if (a >= 0.5) {
d = 255; // dark colours - white font
}
return Color.argb(alpha, d, d, d);
}
I would have commented on the answer by #MichaelChirico but I don't have enough reputation. So, here's an example in R with returning the colours:
get_text_colour <- function(
background_colour,
light_text_colour = 'white',
dark_text_colour = 'black',
threshold = 0.5
) {
background_luminance <- c(
c( .299, .587, .114 ) %*% col2rgb( background_colour ) / 255
)
return(
ifelse(
background_luminance < threshold,
light_text_colour,
dark_text_colour
)
)
}
> get_text_colour( background_colour = 'blue' )
[1] "white"
> get_text_colour( background_colour = c( 'blue', 'yellow', 'pink' ) )
[1] "white" "black" "black"
> get_text_colour( background_colour = c('black', 'white', '#236FAB', 'darkred', '#01F11F') )
[1] "white" "black" "white" "white" "black"

raphael js drawing multiple lines requested by user

I am using raphael js in the following way to create multiple circles or rectangles according to an user input:
var xx =parseFloat(document.getElementById("Fem").value);
for(var i = 0; i < xx; i+=1) {
paper.circle(10 + (20*i) , 20 , 5).attr("fill","#FF2");
}
var xy =parseFloat(document.getElementById("Male").value);
for(var i = 0; i < xy; i+=1) {
paper.rect(35 + (20*i), 15 ,10 , 10 ).attr("fill","#FF2");
//paper.path("M 15 +(20*i) , 420 ,l 0 , -40 z");
}
This does the job more or less as I want to, but I would like to have a vertical line from the top of each shape when the iteration is run. paper.path does not work. Would someone please help. I am using this for the first time
I'm not sure entirely what you're trying to achieve, but you must make your arithmetic operations outside of the quotes...
paper.path("M " + (15 + (20*i)) + ", 15 L 0 , -40 z");
This shows the lines, you can then play around to get them where you want.

Horizontal line in Google scatter chart

I'm using a scatter chart to display data with the following range: x = [-1..1] y = [-1..1]. Is it possible to draw a horizontal line on e.g. y = 0.5?
I'm using the JavaScript charts (i.e. not the image charts).
We had the same problem at work. Unfortunately, for the moment Google Charts does not provide an easy way to display a line in the scatter chart, like in the bar chart.
Finally we found a "small trick" that works perfectly for us, as you can see here:
http://csgid.org/csgid/statistics/structures
The trick consist in creating a "Line chart" but setting the linewidth property to 0 and pointsize to 5 in the series of the points, and linewidth 1 and pointsize 0 in the serie of the line.
It looks like:
interpolateNulls: true,
series: {
0: { lineWidth: 0, pointSize: 5 },
1: { lineWidth: 0, pointSize: 5 },
2: { lineWidth: 0, pointSize: 5 },
3: { lineWidth: 0, pointSize: 5 },
4: { lineWidth: 1, pointSize: 0 }
}
Why did I set interpolateNulls to true? Because then, I had to change the way I was setting the data in the array before convert it to JSON and pass it to Google Charts. In every row I had to set the values of every serie in the X axis for each value of the Y axis. So I had to set to null the X value when a serie didn't have a Y value for that X value (I mean, when a serie didn't have any point for that X value). So, the same for the serie of the line.
This would be one point of the first serie (in JSON):
[2.6,0.184,null,null,null,null]
And this one "point" of the line serie (the last serie):
[4,null,null,null,null,0.254]
Maybe it is not the most efficient way, but it works :)
I hope I have explained it clear, let me know if you have more questions.