Coordinate iterator of point - c++

How can I get a coordinate iterator of a Point p where Point is fulfilling the Point Concept?

It depends what's the Point type exactly. If you're using bg::model::point<> then this may be problematic since the run-time to compile-time translation of dimension index is needed, so e.g. some number of if conditions in a for-loop or recursive function (as you implemented).
However you could also implement your own Point type and define whatever members you need (e.g. operator[]) or use Point type already implemented in another library (assuming that max dimension is known at compile-time). Then, to let know Boost.Geometry how to handle your Point type you'd be forced to adapt it to Point concept by:
using macros provided by Boost.Geometry for typical 2D and 3D cases
specializing traits the same way how it's done e.g. for model::point_xy<> or model::point<>

I need a coordinate iterator to calculate the smallest enclosing ball (minimum bounding sphere/circle) of points of a (boost geometry) linestring using this library. The following solution contains a modified version of this example at the end:
#include <boost/geometry.hpp>
#include "Miniball.hpp"
namespace bg = boost::geometry;
template<std::size_t>
struct int2type {
};
template<class Point, std::size_t I>
typename bg::coordinate_type<Point>::type
get_imp(std::size_t index, const Point &point, int2type<I>) {
return (I == index)
? bg::get<I>(point)
: get_imp(index, point, int2type<I - 1>());
}
template<class Point>
typename bg::coordinate_type<Point>::type
get_imp(std::size_t index, const Point &point, int2type<0>) {
return bg::get<0>(point);
}
template<class Point>
typename bg::coordinate_type<Point>::type
get(std::size_t index, const Point &point) {
static std::size_t const size = bg::dimension<Point>::value;
return get_imp(index, point, int2type<size - 1>());
}
template<class Point, std::size_t I>
void set_imp(std::size_t index,
Point &point,
typename bg::coordinate_type<Point>::type value,
int2type<I>) {
return (I == index)
? bg::set<I>(point, value)
: set_imp(index, point, value, int2type<I - 1>());
}
template<class Point>
void set_imp(std::size_t index,
Point &point,
typename bg::coordinate_type<Point>::type value,
int2type<0>) {
return bg::set<0>(point, value);
}
template<class Point>
void set(std::size_t index, Point &point, typename bg::coordinate_type<Point>::type value) {
static std::size_t const size = bg::dimension<Point>::value;
return set_imp(index, point, value, int2type<size - 1>());
}
template<class Point>
class CoordinateIterator {
using self_t = CoordinateIterator<Point>;
public:
using iterator_category = std::forward_iterator_tag;
using value_type = typename bg::coordinate_type<Point>::type;
using difference_type = std::size_t;
using pointer = value_type *;
using reference = value_type &;
private:
Point _point;
difference_type _pos;
public:
CoordinateIterator()
: CoordinateIterator(Point()) {}
CoordinateIterator(Point point)
: CoordinateIterator(point, 0) {}
CoordinateIterator(Point point, difference_type pos)
: _point(point), _pos(pos) {}
inline value_type operator*() {
return get(_pos, _point);
}
inline const value_type operator*() const {
return get(_pos, _point);
}
inline self_t &operator++() {
++_pos;
return *this;
}
inline self_t operator++(int) {
self_t copy(*this);
++_pos;
return copy;
}
};
template<typename Linestring>
struct CoordinateAccessor {
using Pit = typename Linestring::const_iterator;
using Cit = CoordinateIterator<typename bg::point_type<Linestring>::type>;
inline Cit operator()(Pit it) const { return Cit(*it); }
};
int main(int argc, char *argv[]) {
using point = bg::model::point<double, 2, bg::cs::cartesian>;
using linestring = bg::model::linestring<point>;
using coordinate_type = bg::coordinate_type<linestring>::type;
using PointIterator = CoordinateAccessor<linestring>::Pit;
const int dimension = bg::dimension<linestring>::value;
const int numberOfPoints = 1000000;
// initialize random number generator
const double seed = (argc != 2) ? 0 : std::atoi(argv[1]);
std::srand(seed);
// generate random points and store them in a linestring
// ----------------------------------------------------------
linestring line;
for (int i = 0; i < numberOfPoints; ++i) {
point p;
for (int j = 0; j < dimension; ++j) {
set(j, p, rand());
}
bg::append(line, p);
}
// create an instance of Miniball
// ------------------------------
using MB = Miniball::Miniball<CoordinateAccessor<linestring>>;
MB mb(dimension, line.begin(), line.end());
// output results
// --------------
// center
std::cout << "Center:\n ";
const coordinate_type *center = mb.center();
for (int i = 0; i < dimension; ++i, ++center)
std::cout << *center << " ";
std::cout << std::endl;
// squared radius
std::cout << "Squared radius:\n ";
std::cout << mb.squared_radius() << std::endl;
// number of support points
std::cout << "Number of support points:\n ";
std::cout << mb.nr_support_points() << std::endl;
// support points on the boundary determine the smallest enclosing ball
std::cout << "Support point indices (numbers refer to the input order):\n ";
MB::SupportPointIterator it = mb.support_points_begin();
PointIterator first = line.begin();
for (; it != mb.support_points_end(); ++it) {
std::cout << std::distance(first, *it) << " "; // 0 = first point
}
std::cout << std::endl;
// relative error: by how much does the ball fail to contain all points?
// tiny positive numbers come from roundoff and are ok
std::cout << "Relative error:\n ";
coordinate_type suboptimality;
std::cout << mb.relative_error(suboptimality) << std::endl;
// suboptimality: by how much does the ball fail to be the smallest
// enclosing ball of its support points? should be 0
// in most cases, but tiny positive numbers are again ok
std::cout << "Suboptimality:\n ";
std::cout << suboptimality << std::endl;
// validity: the ball is considered valid if the relative error is tiny
// (<= 10 times the machine epsilon) and the suboptimality is zero
std::cout << "Validity:\n ";
std::cout << (mb.is_valid() ? "ok" : "possibly invalid") << std::endl;
// computation time
std::cout << "Computation time was " << mb.get_time() << " seconds\n";
return 0;
}

Related

C++ - Iterate over vector of doubles as tuples

I have a C++ vector of doubles, which is guaranteed to have an even number of elements. This vector stores the coordinates of a set of points as x, y coordinates:
A[2 * i ] is the x coordinate of the i'th point.
A[2 * i + 1] is the y coordinate of the i'th point.
How to implement an iterator that allows me to use STL style algorithms (one that takes an iterator range, where dereferencing an iterator gives back the pair of doubles corresponding to the x, y coordinates of the corresponding point) ?
I'm using C++17 if that helps.
We can use range-v3, with two adapters:
chunk(n) takes a range and adapts it into a range of non-overlapping ranges of size n
transform(f) takes a range of x and adapts it into a range of f(x)
Putting those together we can create an adaptor which takes a range and yields a range of non-overlapping pairs:
auto into_pairs = rv::chunk(2)
| rv::transform([](auto&& r){ return std::pair(r[0], r[1]); });
Using the r[0] syntax assumes that the input range is random-access, which in this case is fine since we know we want to use it on a vector, but it can also be generalized to work for forward-only ranges at the cost of a bit more syntax:
| rv::transform([](auto&& r){
auto it = ranges::begin(r);
auto next = ranges::next(it);
return std::pair(*it, *next);
})
Demo, using fmt for convenient printing:
int main() {
std::vector<int> v = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5};
auto into_pairs = rv::chunk(2)
| rv::transform([](auto&& r){ return std::pair(r[0], r[1]); });
// prints {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}
fmt::print("{}\n", v | into_pairs);
}
It's unclear from the question if you wanted pair<T, T>s or pair<T&, T&>s. The latter is doable by providing explicit types to std::pair rather than relying on class template argument deduction.
C++ is a bit of a moving target - also when it comes to iterators (c++20 has concepts for that...). But would it not be nice to have a lazy solution to the problem. I.e. The tuples get generated on the fly, without casting (see other answers) and without having to write a loop to transform a vector<double> to a vector<tuple<double,double>>?
Now I feel I need a disclaimer because I am not sure this is entirely correct (language lawyers will hopefully point out, if I missed something). But it compiles and produces the expected output. That is something, yes?! Yes.
The idea is to build a pseudo container (which actually is just a facade to an underlying container) with an iterator of its own, producing the desired output type on the fly.
#include <vector>
#include <tuple>
#include <iostream>
#include <iterator>
template <class SourceIter>
struct PairWise {
PairWise() = delete;
PairWise(SourceIter first, SourceIter last)
: first{first}
, last{last}
{
}
using value_type =
typename std::tuple<
typename SourceIter::value_type,
typename SourceIter::value_type
>;
using source_iter = SourceIter;
struct IterState {
PairWise::source_iter first;
PairWise::source_iter last;
PairWise::source_iter current;
IterState(PairWise::source_iter first, PairWise::source_iter last)
: first{first}
, last{last}
, current{first}
{
}
friend bool operator==(const IterState& a, const IterState& b) {
// std::cout << "operator==(a,b)" << std::endl;
return (a.first == b.first)
&& (a.last == b.last)
&& (a.current == b.current);
}
IterState& operator++() {
// std::cout << "operator++()" << std::endl;
if (std::distance(current,last) >= 2) {
current++;
current++;
}
return *this;
}
const PairWise::value_type operator*() const {
// std::cout << "operator*()" << std::endl;
return std::make_tuple(*current, *(current+1));
}
};
using iterator = IterState;
using const_iterator = const IterState;
const_iterator cbegin() const {
return IterState{first,last};
}
const_iterator cend() const {
auto i = IterState{first,last};
i.current = last;
return i;
}
const_iterator begin() const {
// std::cout << "begin()" << std::endl;
return IterState{first,last};
}
const_iterator end() const {
// std::cout << "end()" << std::endl;
auto i = IterState{first,last};
i.current = last;
return i;
}
source_iter first;
source_iter last;
};
std::ostream& operator<<(std::ostream& os, const std::tuple<double,double>& value) {
auto [a,b] = value;
os << "<" << a << "," << b << ">";
return os;
}
template <class Container>
auto pairwise( const Container& container)
-> PairWise<typename Container::const_iterator>
{
return PairWise(container.cbegin(), container.cend());
}
int main( int argc, const char* argv[]) {
using VecF64_t = std::vector<double>;
VecF64_t data{ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
for (const auto x : pairwise(data)) {
std::cout << x << std::endl;
}
return 0;
}
Elements in vector are stored in contiguous memory area, so you can use simple pointer arithmetics to access pair of doubles.
operator++ for iterator should skip 2 doubles at every use.
operator* can return tuple of references to double values, so you can read (pair = *it) or edit values (*it = pair).
struct Cont {
std::vector<double>& v;
Cont(std::vector<double>& v) : v(v) {}
struct Iterator : public std::iterator<std::input_iterator_tag , std::pair<double,double>> {
double* ptrData = nullptr;
Iterator(double* data) : ptrData(data) {}
Iterator& operator++() { ptrData += 2; return *this; }
Iterator operator++(int) { Iterator copy(*this); ptrData += 2; return copy; }
auto operator*() { return std::tie(*ptrData,*(ptrData+1)); }
bool operator!=(const Iterator& other) const { return ptrData != other.ptrData; }
};
auto begin() { return Iterator(v.data()); }
auto end() { return Iterator(v.data()+v.size());}
};
int main() {
std::vector<double> v;
v.resize(4);
Cont c(v);
for (auto it = c.begin(); it != c.end(); it++) {
*it = std::tuple<double,double>(20,30);
}
std::cout << v[0] << std::endl; // 20
std::cout << v[1] << std::endl; // 30
}
Demo
There's not an easy "C++" way to do this that's clean and avoids a copy of the original array. There's always this (make a copy):
vector<double> A; // your original list of points
vector<pair<double,double>> points;
for (size_t i = 0; i < A.size()/2; i+= 2)
{
points[i*2] = pair<double,double>(A[i], A[i+1]);
}
The following would likely work, violates a few standards, and the language lawyers will sue me in court for suggesting it. But if we can assume that the sizeof(XY) is the size of two doubles, has no padding, and expected alignment then cheating with a cast will likely work. This assumes you don't need a std::pair
Non standard stuff ahead
vector<double> A; // your original list of points
struct XY {
double x;
double y;
};
static_assert(sizeof(double)*2 == sizeof(XY));
static_assert(alignof(double) == alignof(XY));
XY* points = reinterpret_cast<XY*>(A.data());
size_t numPoints = A.size()/2;
// iterate
for (size_t i = 0; i < numPoints; i++) {
XY& point = points[i];
cout << point.x << "," << point.y << endl;
}
If you can guarantee that std::vector will always have an even number of entries, you could exploit the fact that an vector of doubles will have the same memory layout as a vector of pairs of doubles. This is kind of a dirty trick though so I wouldn't recommend it if you can avoid it. The good news is that the standard guarantees that vector elements will be contiguous.
inline const std::vector<std::pair<double, double>>& make_dbl_pair(std::vector<double>& v)
{
return reinterpret_cast<std::vector<std::pair<double, double>>&>(v);
}
This will only work for iteration with iterators. The size is likely to be double the number of pairs in the vector because it is still a vector of doubles underneath.
Example:
int main(int argc, char* argv[])
{
std::vector<double> dbl_vec = { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5 };
const std::vector<std::pair<double, double>>& pair_vec = make_dbl_pair(dbl_vec);
for (auto it = pair_vec.begin(); it != pair_vec.end(); ++it) {
std::cout << it->first << ", " << it->second << "\n";
}
std::cout << "Size: " << dbl_vec.size() << "\n";
return 0;
}

Generating floating point limits at compile time via template arguments and constexpr semantics:

I'm working on a set of classes. My Function class will take a Functor class which stores a function pointer to some defined function which has an operator that will invoke the function call from the function pointer. It uses a Limit class that currently takes <int,int> for its upper and lower bounds. It has nothing but static constexpr functions to return the bounds and to calculate the number of elements between those bounds. If the lower bounds = 1 and upper bounds = 5 it will generate 5 for the number of elements to be evaluated for that function...
Here is what I'm doing with these classes:
First I declare a function such as f(x) = x, f(x) = x^2, or f(x) = cos(x), etc.
Then I instantiate a Functor object based on the above function(s) parameter types both for the return and for its parameter-argument types...
Next, I assign the function to my Functor class's member variable.
Then I instantiate a Function object giving it the data-type and the Lower & Upper limits for the range of the function.
The Function class upon construction automatically generates the data points of that function from [lower,upper] and stores the generated values in its internal array.
The Function class also contains an operator that will allow the user to get any value from any given input.
Pseudo Example:
f(x) = x^2;
Functor<T,T> functor;
functor.member = &f(x);
Function<T,Lower,Upper,T> function(functor);
// If T=int, Lower = -4, and Upper = 4 then the internal data set will be
// (-4,16) (-3,9), (-2,4), (-1,1), (0,0), (1,1), (2,4), (3,9), (4,16)
// The user can also use it's operator to call function(9) and it will return 81
Here is my working program that is generating datasets of values from my classes using various functions:
main.cpp
#include <cmath>
#include <exception>
#include <iostream>
#include "Function.h"
int main() {
try {
pipes::Functor<int, int> functor1;
functor1.FuncPtr = &square;
pipes::Function<int, -10, 10, int> func1( functor1 );
auto data1{ func1.data() };
for (auto& p : data1)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func1(25) << "\n\n";
pipes::Functor<int, int> functor2;
functor2.FuncPtr = &linear;
pipes::Function<int, -10, 10, int> func2(functor2);
auto data2{ func2.data() };
for (auto& p : data2)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func2(25) << "\n\n";
pipes::Functor<double, double> functor3;
functor3.FuncPtr = &cosine;
pipes::Function<double, -7, 7, double> func3(functor3);
auto data3{ func3.data() };
for (auto& p : data3)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func3(25) << "\n\n";
}
catch (const std::exception& e) {
std::cerr << e.what() << "\n\n";
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
Function.h
#pragma once
#include <array>
namespace pipes {
template<typename Ret, typename... Args>
struct Functor {
Ret(*FuncPtr)(Args...);
Ret operator()(Args... args) { return FuncPtr(args...); }
};
template<int Lower, int Upper>
class Limits {
public:
static constexpr unsigned lower_bound() { return Lower; }
static constexpr unsigned upper_bound() { return Upper; }
static constexpr unsigned element_count() { return (Upper - Lower + 1); }
};
template<typename T, int Lower, int Upper, typename... Args>
class Function {
std::array<std::pair<T, T>, Limits<Lower,Upper>::element_count()> data_points_;
Functor<T,Args...> functor_;
public:
Function(Functor<T,Args...> func) {
functor_ = func;
for (unsigned i = 0; i < Limits<Lower,Upper>::element_count(); i++) {
data_points_[i].first = ((T)i + (T)Lower);
data_points_[i].second = functor_(data_points_[i].first);
}
}
T operator()(Args... args) const {
return functor_.FuncPtr(args...);
}
constexpr auto lower() const { return Lower; }
constexpr auto upper() const { return Upper; }
constexpr auto count() const { return Limits<Lower,Upper>::element_count(); }
constexpr auto data() const { return data_points_; }
};
} // namespace pipes
When I run the program it is generating this output which appears to be correct:
Output
(-10,100)
(-9,81)
(-8,64)
(-7,49)
(-6,36)
(-5,25)
(-4,16)
(-3,9)
(-2,4)
(-1,1)
(0,0)
(1,1)
(2,4)
(3,9)
(4,16)
(5,25)
(6,36)
(7,49)
(8,64)
(9,81)
(10,100)
f(25) = 625
(-10,-10)
(-9,-9)
(-8,-8)
(-7,-7)
(-6,-6)
(-5,-5)
(-4,-4)
(-3,-3)
(-2,-2)
(-1,-1)
(0,0)
(1,1)
(2,2)
(3,3)
(4,4)
(5,5)
(6,6)
(7,7)
(8,8)
(9,9)
(10,10)
f(25) = 25
(-7,0.753902)
(-6,0.96017)
(-5,0.283662)
(-4,-0.653644)
(-3,-0.989992)
(-2,-0.416147)
(-1,0.540302)
(0,1)
(1,0.540302)
(2,-0.416147)
(3,-0.989992)
(4,-0.653644)
(5,0.283662)
(6,0.96017)
(7,0.753902)
f(25) = 0.991203
And now for my question where this becomes the tricky part...
With my code currently the way it is, everything is fine as long as my bounds [-a,b] are of an integral type...
Let's suppose on my last example such as with cos, what if I want to have my bounds from [-2pi,2pi] where the lower and upper limits are of floating-point types...
The Issue:
Currently in C++ this is non-standard and in most cases won't compile:
template<float val> // or template<double>
struct foo() {
constexpr float operator()() {
return val;
}
};
And the above prevents me from doing something like this:
constexpr double PI{ 6.28318531 };
pipes::Functor<double, double> functor3;
functor3.FuncPtr = &cosine;
pipes::Function<double, -PI, PI, double> func3(functor3);
auto data3{ func3.data() };
for (auto& p : data3)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func3(25) << "\n\n";
So if I want to be able to support floating-point types for my intervals of my Limits or Range class... What kind of alternative would there be if such a thing is currently possible in c++? Or would I just have to simply restructure the way my class templates are designed?
If the above is possible in some way during compile time via templates and constexpr semantics, then there is another issue that arises that will have to be taken into consideration and that would be the stepping interval for use with floating-point types to know how many data points there will be within the dataset... (basically calculating dx based on some stepping value which would be defined by the user, for example: (0.1, 0.001, etc...) and the number of data points would be calculated by the number of these divisions between [lower, upper]... However, if the stepping value is known at compile-time, then calculating the divisions should be simple enough... that's not a major concern. The bigger concern is being able to express floating-point constants at compile time for template evaluation...
Currently, with the way my code is with its design, I have hit a limit on its functionality... I'm not sure how to provide a similar interface to support a floating-point range that can be calculated and generated at compile time! Any bit of help or suggestions is welcomed!
I think the closest you can get to a construct like yours is:
#include <iostream>
#include <array>
constexpr const double PI_2{ 6.28318531 };
template<double const &lower, double const &upper>
void foo() {
static_assert(lower<upper, "invalid lower and upper value");
constexpr size_t size = (upper-lower);
std::array<int, size> test;
std::cout << lower << " " << upper << " " << test.size() << std::endl;
}
template<double const &V>
struct neg {
static constexpr double value = -V;
};
int main()
{
foo<neg<PI_2>::value, PI_2>();
return 0;
}
If you can always specify the type as first template argument you could have something like this:
template<typename T, T const &lower, T const &upper>
void foo() {
std::cout << lower << " " << upper << std::endl;
}
I didn't fully think it through, how to get the floating-point part and the other together, but I think it should be possible.
In modern C++ and how templates are currently designed, I had to slightly restructure my code. It's forcing me to have to use std::vector instead of std::array, because we can't use floating-point types as constant template arguments... So I ended up having to change two of my classes... I had to change my Limits class, and my Function class.
My Limits class now accepts a Type instead of constant-integral-type and it stores 3 member variables. It also has a default constructor and a user constructor. The functions are now just constexpr instead of being static.
My Function class now stores a Limits class object and data_points_ is no longer an std::array as it is now std::vector. It's constructor now also takes in a Limits object.
I had also taken into account for the step size for floating-point ranges.
Here is what my modified code looks like with its given output:
main.cpp
#include <cmath>
#include <iostream>
#include <exception>
#include "Function.h"
constexpr int square(int x) {
return x * x;
}
constexpr int linear(int x) {
return x;
}
double cosine(double x) {
return cos(x);
}
//template<float val>
struct foo {
float operator()(float val) { return val; }
};
int main() {
try {
pipes::Functor<int, int> functor1;
pipes::Limits<int> limit1(-10, 10, 1);
functor1.FuncPtr = &square;
pipes::Function<int, int, int> func1( limit1, functor1 );
auto data1{ func1.data() };
for (auto& p : data1)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func1(25) << "\n\n";
pipes::Functor<int,int> functor2;
pipes::Limits<int> limit2(-10, 10, 1);
functor2.FuncPtr = &linear;
pipes::Function<int, int, int> func2(limit2, functor2);
auto data2{ func2.data() };
for (auto& p : data2)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func2(25) << "\n\n";
constexpr double PI{ 6.28318531 };
pipes::Functor<double, double> functor3;
pipes::Limits<double> limits3( (-PI), PI, 0.1);
functor3.FuncPtr = &cosine;
pipes::Function<double, double, double> func3(limits3, functor3);
auto data3{ func3.data() };
for (auto& p : data3)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func3(25) << "\n\n";
}
catch (const std::exception& e) {
std::cerr << e.what() << "\n\n";
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
Function.h
#pragma once
#include <vector>
namespace pipes {
template<typename Ret, typename... Args>
struct Functor {
Ret(*FuncPtr)(Args...);
Ret operator()(Args... args) { return FuncPtr(args...); }
};
template<typename Ty>
class Limits {
private:
Ty Lower;
Ty Upper;
Ty Step;
public:
Limits() {}
Limits(Ty lower, Ty upper, Ty step) : Lower{ lower }, Upper{ upper }, Step{ step } {}
constexpr Ty lower_bound() { return Lower; }
constexpr Ty upper_bound() { return Upper; }
constexpr Ty step_size() { return Step; }
constexpr unsigned element_count() { return (unsigned)((Upper - Lower + 1)/Step); }
};
template<typename LimT, typename FuncT, typename... Args>
class Function {
Limits<LimT> limits_;
Functor<FuncT, Args...> functor_;
std::vector<std::pair<FuncT, FuncT>> data_points_;
public:
Function(Limits<LimT> limits, Functor<FuncT,Args...> func) {
limits_ = limits;
functor_ = func;
data_points_.resize( limits_.element_count() );
for (unsigned i = 0; i < limits_.element_count(); i++) {
auto x = limits_.lower_bound() + (i * limits_.step_size());
data_points_[i].first = (x);
data_points_[i].second = functor_(x);
}
}
FuncT operator()(Args... args) const {
return functor_.FuncPtr(args...);
}
constexpr auto lower() const { return limits_.lower_bound(); }
constexpr auto upper() const { return limits_.upper_bound(); }
constexpr auto count() const { return limits_.element_count(); }
constexpr auto step() const { return limits_.step_size(); }
constexpr auto data() const { return data_points_; }
};
} // namespace pipes
Output
(-10,100)
(-9,81)
(-8,64)
(-7,49)
(-6,36)
(-5,25)
(-4,16)
(-3,9)
(-2,4)
(-1,1)
(0,0)
(1,1)
(2,4)
(3,9)
(4,16)
(5,25)
(6,36)
(7,49)
(8,64)
(9,81)
(10,100)
f(25) = 625
(-10,-10)
(-9,-9)
(-8,-8)
(-7,-7)
(-6,-6)
(-5,-5)
(-4,-4)
(-3,-3)
(-2,-2)
(-1,-1)
(0,0)
(1,1)
(2,2)
(3,3)
(4,4)
(5,5)
(6,6)
(7,7)
(8,8)
(9,9)
(10,10)
f(25) = 25
(-6.28319,1)
(-6.18319,0.995004)
(-6.08319,0.980067)
(-5.98319,0.955336)
(-5.88319,0.921061)
(-5.78319,0.877583)
(-5.68319,0.825336)
(-5.58319,0.764842)
(-5.48319,0.696707)
(-5.38319,0.62161)
(-5.28319,0.540302)
(-5.18319,0.453596)
(-5.08319,0.362358)
(-4.98319,0.267499)
(-4.88319,0.169967)
(-4.78319,0.0707372)
(-4.68319,-0.0291995)
(-4.58319,-0.128844)
(-4.48319,-0.227202)
(-4.38319,-0.32329)
(-4.28319,-0.416147)
(-4.18319,-0.504846)
(-4.08319,-0.588501)
(-3.98319,-0.666276)
(-3.88319,-0.737394)
(-3.78319,-0.801144)
(-3.68319,-0.856889)
(-3.58319,-0.904072)
(-3.48319,-0.942222)
(-3.38319,-0.970958)
(-3.28319,-0.989992)
(-3.18319,-0.999135)
(-3.08319,-0.998295)
(-2.98319,-0.98748)
(-2.88319,-0.966798)
(-2.78319,-0.936457)
(-2.68319,-0.896758)
(-2.58319,-0.8481)
(-2.48319,-0.790968)
(-2.38319,-0.725932)
(-2.28319,-0.653644)
(-2.18319,-0.574824)
(-2.08319,-0.490261)
(-1.98319,-0.400799)
(-1.88319,-0.307333)
(-1.78319,-0.210796)
(-1.68319,-0.112153)
(-1.58319,-0.0123887)
(-1.48319,0.087499)
(-1.38319,0.186512)
(-1.28319,0.283662)
(-1.18319,0.377978)
(-1.08319,0.468517)
(-0.983185,0.554374)
(-0.883185,0.634693)
(-0.783185,0.70867)
(-0.683185,0.775566)
(-0.583185,0.834713)
(-0.483185,0.88552)
(-0.383185,0.927478)
(-0.283185,0.96017)
(-0.183185,0.983268)
(-0.0831853,0.996542)
(0.0168147,0.999859)
(0.116815,0.993185)
(0.216815,0.976588)
(0.316815,0.950233)
(0.416815,0.914383)
(0.516815,0.869397)
(0.616815,0.815725)
(0.716815,0.753902)
(0.816815,0.684547)
(0.916815,0.608351)
(1.01681,0.526078)
(1.11681,0.438547)
(1.21681,0.346635)
(1.31681,0.25126)
(1.41681,0.153374)
(1.51681,0.0539554)
(1.61681,-0.0460021)
(1.71681,-0.1455)
(1.81681,-0.243544)
(1.91681,-0.339155)
(2.01681,-0.431377)
(2.11681,-0.519289)
(2.21681,-0.602012)
(2.31681,-0.67872)
(2.41681,-0.748647)
(2.51681,-0.811093)
(2.61681,-0.865435)
(2.71681,-0.91113)
(2.81681,-0.947722)
(2.91681,-0.974844)
(3.01681,-0.992225)
(3.11681,-0.999693)
(3.21681,-0.997172)
(3.31681,-0.984688)
(3.41681,-0.962365)
(3.51681,-0.930426)
(3.61681,-0.889191)
(3.71681,-0.839072)
(3.81681,-0.780568)
(3.91681,-0.714266)
(4.01681,-0.640826)
(4.11681,-0.560984)
(4.21681,-0.475537)
(4.31681,-0.385338)
(4.41681,-0.291289)
(4.51681,-0.19433)
(4.61681,-0.0954289)
(4.71681,0.0044257)
(4.81681,0.104236)
(4.91681,0.203005)
(5.01681,0.299745)
(5.11681,0.393491)
(5.21681,0.483305)
(5.31681,0.56829)
(5.41681,0.647596)
(5.51681,0.720432)
(5.61681,0.78607)
(5.71681,0.843854)
(5.81681,0.893206)
(5.91681,0.933634)
(6.01681,0.964733)
(6.11681,0.986192)
(6.21681,0.997798)
(6.31681,0.999435)
(6.41681,0.991085)
(6.51681,0.972833)
(6.61681,0.94486)
(6.71681,0.907447)
(6.81681,0.860967)
(6.91681,0.805884)
(7.01681,0.742749)
(7.11681,0.672193)
f(25) = 0.991203
This is giving me the behavior that I want, however, I was trying to do the same thing using array... I'm guessing until C++ supports floating-point-constants as template arguments I'm going to have to settle with std::vector using heap allocations, instead of std::array and stack-cache friendly containers...

C++ how can I implement a hash set from a hash table using a template class child of a template class?

I have a school assignment to implement a hash_set and a hash_map, I am given a main.cpp that has code to test these classes (inserts, deletes, searches, prints, etc). I am also given a base hash_table class that is a templated class, and just told to "make the hash_set and hash_map work based on the testing code with new classes of their own".
Without more specific details, I assume I am supposed to implement the set and map based on the hash_table, which the teacher said the project could be completed in 40 lines of code (wat??) between the two new classes...but I can't even get the hash_set class to inherit the hash_table since it's a template. I can get it compiling ok without making the hash_set class a template, until I instantiate it, since the testing code is passing it a template type in the declaration. But if I try to make the class a template type itself to compensate for this, everything breaks and I can't track down the source of the error. I'm about 8 hours into this project which should supposedly be a 1 hour project, so I'm at wits end here.
Here is the original main.cpp with the testing code (hash_map is commented out because I haven't even started that yet :/ )
//
// main.cpp
// CS3100Project05_HashCollections
#include "WSUHashTable.h"
//#include "WSUHashMap.h" // Uncomment to test WSUHashMap
#include "WSUHashSet.h" // Uncomment to test WSUHashSet
#include <iostream>
int main(int argc, const char * argv[])
{
///////////////////////////////////////////////////////////////////
/// Part 1 :TEST HASH TABLE ///
///////////////////////////////////////////////////////////////////
{
WSUHashTable<int> example = {1, 2, 3, 4, 1};
std::cout << "Part 1a: Expected output is in any order " <<
"\"1 2 3 4\"\n";
for(int n : example)
{
std::cout << n << ' ';
}
std::cout << std::endl;
std::cout << std::endl;
std::cout << "Part 1b: Expected output is \"Found 2\"\n";
{
auto search = example.find(2);
if(search != example.end())
{
std::cout << "Found " << (*search) << '\n';
}
else
{
std::cout << "Not found\n";
}
}
std::cout << std::endl;
std::cout << "Part 1c: Expected output is \"Not found\"\n";
example.erase(2);
{
auto search = example.find(2);
if(search != example.end()) {
std::cout << "Found " << (*search) << '\n';
}
else {
std::cout << "Not found\n";
}
}
std::cout << std::endl;
}
///////////////////////////////////////////////////////////////////
/// Part 2: TEST HASH SET ///
///////////////////////////////////////////////////////////////////
/***** Uncomment to test WSUHashSet */
{
WSUHashSet<std::string> stringSet = {"1", "2", "3", "4"};
std::cout << "Part 2a: Expected output is \"Found \"2\"\"\n";
{ // Test find() that succeeds
auto search = stringSet.find("2");
if(search != stringSet.end()) {
std::cout << "Found \"" << (*search) << "\"\n";
}
else {
std::cout << "Not found\n";
}
}
std::cout << std::endl;
std::cout << "Part 2b: Expected output is \"Not found\"\n";
stringSet.erase("2");
{ // Test find() that fails
auto search = stringSet.find("2");
if(search != stringSet.end())
{
std::cout << "Found \"" << (*search) << "\"\n";
}
else
{
std::cout << "Not found\n";
}
}
std::cout << std::endl;
WSUHashSet<double> doubleSet = {
1.1, 2.2, 3.2, 4.4, 5.5, 6.1, 7.2, 8.4, 9.9
};
std::cout << "Part 2c: Expected output is in any order " <<
"\"5.5 7.2 8.4 9.9 1.1 2.2 3.2 4.4 6.1\"\n";
for(auto n : doubleSet )
{ // Test using implicit iterators
std::cout << n << ' ';
}
std::cout << std::endl;
std::cout << std::endl;
std::cout << "Part 2d: Expected output is in any order " <<
"\"5.5 7.2 8.4 9.9 4.4 6.1\"\n";
// Part 7: Using explicit iterators while mutating set
for(auto it = doubleSet.begin(); it != doubleSet.end(); )
{ // erase every number less than 4.0
if(*it < 4.0)
{
it = doubleSet.erase(it);
}
else
{
++it;
}
}
for(auto n : doubleSet)
{
std::cout << n << ' ';
}
std::cout << std::endl;
std::cout << std::endl;
}
///////////////////////////////////////////////////////////////////
/// Part 3: TEST HASH MAP ///
///////////////////////////////////////////////////////////////////
/***** Uncomment to test WSUHashMap *
{
WSUHashMap<int, std::string> dict = {{1, "one"}, {2, "two"}};
dict.insert({3, "three"});
dict.insert(std::make_pair(4, "four"));
dict.insert({{4, "another four"}, {5, "five"}});
std::cout << "Part 3a: Expected output is " <<
"\"inserting 1 -> \"another one\" failed\"\n";
bool ok = dict.insert({1, "another one"}).second;
std::cout << "inserting 1 -> \"another one\" "
<< (ok ? "succeeded" : "failed") << '\n';
std::cout << std::endl;
std::cout << "Part 3b: Expected output is " <<
"\"contents: " <<
"1 => one " <<
"2 => two " <<
"3 => three " <<
"4 => four " <<
"5 => five\"\n";
std::cout << "contents: ";
for(auto& p : dict)
{
std::cout << " " << p.first << " => " << p.second << ' ';
}
std::cout << std::endl;
}
*****/
return 0;
}
And this is the original hash_table class file:
//
// WSUHashTable.h
// CS3100Project05_HashCollections
#ifndef __CS3100Project05_HashCollections__WSUHashTable_H
#define __CS3100Project05_HashCollections__WSUHashTable_H
#include <vector>
#include <utility>
#include <algorithm>
#include <iterator>
#include <cassert>
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
template <
typename elementT,
typename Hash = std::hash<elementT>
>
class WSUHashTable
{
private:
///////////////////////////////////////////////////////////////////
typedef elementT bucket_t;
///////////////////////////////////////////////////////////////////
static const std::size_t initialCapacity = (1 << 2);
constexpr static float maxLoadFactor = 0.73f;
///////////////////////////////////////////////////////////////////
std::size_t mSize; // Number of elements in table
std::vector<bucket_t> mStorage; // Storage for elements
std::vector<bool> mIsValidFlags;
public:
///////////////////////////////////////////////////////////////////
class iterator : public std::iterator<
std::input_iterator_tag, elementT>
{
friend class WSUHashTable<elementT, Hash>;
const WSUHashTable<elementT, Hash> *mHashTablePtr;
std::size_t mIndex;
////////////////////////////////////////////////////////////////
iterator(
const WSUHashTable<elementT, Hash> &hashTable,
std::size_t index = 0
) :
mHashTablePtr(&hashTable),
mIndex(index)
{
}
////////////////////////////////////////////////////////////////
std::size_t getIndex() const
{
return mIndex;
}
public:
////////////////////////////////////////////////////////////////
iterator(const iterator &other) :
mHashTablePtr(other.mHashTablePtr),
mIndex(other.mIndex)
{
}
////////////////////////////////////////////////////////////////
iterator& operator++()
{
++mIndex;
while(mIndex < mHashTablePtr->mIsValidFlags.size() &&
!mHashTablePtr->mIsValidFlags[mIndex])
{ // Skip over empty buckets
++mIndex;
}
return *this;
}
////////////////////////////////////////////////////////////////
iterator operator++(int)
{
const_iterator tmp(*this);
operator++();
return tmp;
}
////////////////////////////////////////////////////////////////
bool operator==(const iterator& rhs)
{
return mIndex == rhs.mIndex;
}
////////////////////////////////////////////////////////////////
bool operator!=(const iterator& rhs)
{
return mIndex != rhs.mIndex;
}
////////////////////////////////////////////////////////////////
const elementT &operator*()
{
return mHashTablePtr->mStorage[mIndex];
}
};
///////////////////////////////////////////////////////////////////
typedef const iterator const_iterator;
private:
typedef std::pair<const_iterator, bool> _findResult;
///////////////////////////////////////////////////////////////////
std::size_t _calculatedIndex(const elementT &element) const
{
return (Hash()(element) % mStorage.size());
}
///////////////////////////////////////////////////////////////////
// Returns a pair containing iterator to bucket where element
// should be and flag indicating whether it is there.
_findResult _find( const elementT &element ) const
{
std::size_t index = _calculatedIndex(element);
while(mIsValidFlags[index] &&
((mStorage[index] < element) || (element < mStorage[index])))
{ // Loop until element is found or an empty bucket is found
++index;
index %= mStorage.size();
}
return _findResult(
const_iterator(*this, index), mIsValidFlags[index]);
}
///////////////////////////////////////////////////////////////////
void _doubleCapacityAndRehash()
{
const std::size_t oldSize = mIsValidFlags.size();
// Save off mStorage by moving contents instead of copying
std::vector<bucket_t> oldStorage = std::move(mStorage);
std::vector<bool> oldIsValidFlags = std::move(mIsValidFlags);
// Replace mStorage and mIsValidFlags with empty storage with
// twice the size/capacity.
mStorage = std::move(std::vector<bucket_t>(oldSize * 2));
mIsValidFlags = std::move(std::vector<bool>(oldSize * 2));
// We are going to re-insert everything, so strat with size 0
mSize = 0;
for(std::size_t i = 0; i < oldSize; ++i)
{ // Insert values from all valid buckets in old storage
if(oldIsValidFlags[i])
{
insert(oldStorage[i]);
}
}
}
public:
///////////////////////////////////////////////////////////////////
WSUHashTable() :
mSize(0),
mStorage(initialCapacity),
mIsValidFlags(initialCapacity)
{
}
///////////////////////////////////////////////////////////////////
WSUHashTable(const WSUHashTable &other) :
mSize(other.mSize),
mStorage(other.mStorage),
mIsValidFlags(other.mIsValidFlags)
{
}
///////////////////////////////////////////////////////////////////
template< class InputIt >
WSUHashTable(InputIt first, InputIt last) :
mSize(0),
mStorage(initialCapacity),
mIsValidFlags(initialCapacity)
{
while(first != last)
{
insert(*first);
++first;
}
}
///////////////////////////////////////////////////////////////////
WSUHashTable(std::initializer_list<elementT> init) :
mSize(0),
mStorage(initialCapacity),
mIsValidFlags(initialCapacity)
{
insert(init);
}
///////////////////////////////////////////////////////////////////
std::size_t size() const
{
return mSize;
}
///////////////////////////////////////////////////////////////////
/// Inserts element(s) into the container, if the container doesn't
/// already contain an an equivalent element.
/// Returns a pair consisting of an iterator to the inserted
/// element (or to the element that prevented the insertion) and a
/// bool denoting whether the insertion took place.
std::pair<const_iterator, bool> insert( const elementT &element )
{
if(mSize > (maxLoadFactor * mStorage.size()))
{ // resize to make room for insertion
_doubleCapacityAndRehash();
}
_findResult result = _find(element);
if(result.second)
{ // element is present
return std::pair<const_iterator, bool>(result.first, false);
}
const std::size_t index = result.first.getIndex();
mStorage[index] = element;
mIsValidFlags[index] = true;
++mSize;
return std::pair<const_iterator, bool>(result.first, true);
}
///////////////////////////////////////////////////////////////////
/// Inserts element(s) into the container, if the container doesn't
/// already contain an an equivalent element.
/// Returns a pair consisting of an iterator to the inserted
/// element (or to the element that prevented the insertion) and a
/// bool denoting whether the insertion took place.
///
/// An && argumnet signals an "emplace" operation in C++11. The
/// value will be moved via std::move() instead of copied.
std::pair<const_iterator, bool> insert( elementT &&element )
{
if(mSize > (maxLoadFactor * mStorage.size()))
{ // resize to make room for insertion
_doubleCapacityAndRehash();
}
_findResult result = _find(element);
if(result.second)
{ // element is present
return std::pair<const_iterator, bool>(
result.first, false);
}
const std::size_t index = result.first.getIndex();
mStorage[index] = std::move(element);
mIsValidFlags[index] = true;
++mSize;
return std::pair<const_iterator, bool>(result.first, true);
}
///////////////////////////////////////////////////////////////////
void insert( std::initializer_list<elementT> ilist )
{
for(const elementT &element : ilist)
{
insert(element);
}
}
///////////////////////////////////////////////////////////////////
/// Returns iterator following the last removed element.
const_iterator erase( const_iterator pos )
{
const std::size_t index = pos.getIndex();
if(mIsValidFlags[index])
{ // element is present
mIsValidFlags[index] = false;
--mSize;
}
return ++iterator(pos);
}
///////////////////////////////////////////////////////////////////
// Returns the number of elements erased (it will be zero or one).
std::size_t erase(const elementT &element)
{
_findResult result = _find(element);
if(result.second)
{ // element is present
mIsValidFlags[result.first.getIndex()] = false;
--mSize;
return 1;
}
return 0;
}
///////////////////////////////////////////////////////////////////
const_iterator find( const elementT &element ) const
{
_findResult result = _find(element);
if(result.second)
{ // element was found
return result.first;
}
return end();
}
///////////////////////////////////////////////////////////////////
const_iterator begin() const
{
std::size_t index = 0;
while(index < mIsValidFlags.size() && !mIsValidFlags[index])
{ // Skip over empty buckets
++index;
}
return const_iterator(*this, index);
}
///////////////////////////////////////////////////////////////////
const_iterator end() const
{
return const_iterator(*this, mStorage.size());
}
};
#endif /* defined(__CS3100Project05_HashCollections__WSUHashTable_H) */
I know the hash_table file is long, and I have a decent idea on how to proceed, since a hash_set really only needs to implement a search function within the insert to make sure the list is unique, but doesn't really mess with hash order or anything (I'm not really sure how to implement the hash itself, but I assume the inheritance will sort that out nicely), and the hash_map will allow a null key and any null values....but first something has to compile.
This is what I have currently as my hash_set class, just trying to get a simple constructor that uses the parent class's constructor with the correct type (std::string):
#ifndef __WSUHashSet__
#define __WSUHashSet__
#include <vector>
#include <utility>
#include <algorithm>
#include <iterator>
#include "WSUHashTable.h"
/*template<
typename elementT,
typename Hash = std::hash<elementT>
>*/
class WSUHashSet : public WSUHashTable<std::string> {
private:
public:
WSUHashSet(std::initializer_list<std::string> init) : WSUHashTable(init)
{
insert(init);
}
};
#endif //__WSUHashSet__
Currently I get the same error: with this exact code it tells me that "WSUHashSet is not a template", which is good because my class is fine, but bad because I can't just edit the main.cpp to not treat it as a template.
When I try to make it a template, like this:
#ifndef __WSUHashSet__
#define __WSUHashSet__
#include <vector>
#include <utility>
#include <algorithm>
#include <iterator>
#include "WSUHashTable.h"
template<
typename elementT,
typename Hash = std::hash<elementT>
>
class WSUHashSet<elementT> : public WSUHashTable<std::string> {
private:
public:
WSUHashSet<elementT>::WSUHashSet(std::initializer_list<std::string> init) : WSUHashTable(init)
{
insert(init);
}
};
#endif //__WSUHashSet__
I really need some direction here. I can't afford to spend a lot more time on this as it's not my only class, and I feel like this should be fairly simple. The theory makes sense, but the implementation makes me feel like I'm blindly wandering in circles.
Thanks
EDIT: the actual compliler error is
WSUHashSet.h line 19: error: WSUHashSet is not a template
Apparently the pasting into the code block here caused confusion. Here's the actual line (19 in codeblocks) that is breaking the compilation:
WSUHashSet(std::initializer_list<std::string> init) : WSUHashTable(init)
{
insert(init);
}
If you look at the test code, you can see the the types you create must be templates, as they're instantiated for specific element types:
WSUHashTable<int> example = {1, 2, 3, 4, 1};
WSUHashSet<double> doubleSet = { ...
You show your attempt to make a template:
template<
typename elementT,
typename Hash = std::hash<elementT>
>
class WSUHashSet<elementT> : public WSUHashTable<std::string> {
public:
WSUHashSet<elementT>::WSUHashSet(std::initializer_list<std::string> init) : WSUHashTable(init)
{
insert(init);
}
...
That's not so far off... try:
template <typename elementT>
class WSUHashSet<elementT> : public WSUHashTable<elementT>
{
public:
WSUHashSet(std::initializer_list<std::string> init)
: WSUHashTable<elementT>(init)
{ }

Different return and coordinate types in nanoflann radius search

I'm trying to use nanoflann in a project and am looking at the vector-of-vector and radius search examples.
I can't find a way to perform a radius search with a different data type than the coordinate type. For example, my coordinates are vectors of uint8_t; I am trying to input a radius of type uint32_t with little success.
I see in the source that the metric_L2 struct (which I am using for distance) uses the L2_Adaptor with two template parameters. L2_Adaptor itself takes three parameters, with the third defaulted to the first, which seems to be the problem if I am understanding the code correctly. However, trying to force use of the third always results in 0 matches in the radius search.
Is there a way to do this?
Edit: In the same code below, everything works. However, if I change the search_radius (and ret_matches) to uint32_t, the radiusSearch method doesn't work.
#include <iostream>
#include <Eigen/Dense>
#include <nanoflann.hpp>
typedef Eigen::Matrix<uint8_t, Eigen::Dynamic, 1> coord_t;
using namespace nanoflann;
struct Point
{
coord_t address;
Point() {}
Point(uint8_t coordinates) : address(coord_t::Random(coordinates)) {}
};
struct Container
{
std::vector<Point> points;
Container(uint8_t coordinates, uint32_t l)
: points(l)
{
for(auto& each_location: points)
{
each_location = Point(coordinates);
}
}
};
struct ContainerAdaptor
{
typedef ContainerAdaptor self_t;
typedef nanoflann::metric_L2::traits<uint8_t, self_t>::distance_t metric_t;
typedef KDTreeSingleIndexAdaptor<metric_t, self_t, -1, size_t> index_t;
index_t *index;
const Container &container;
ContainerAdaptor(const int dimensions, const Container &container, const int leaf_max_size = 10)
: container(container)
{
assert(container.points.size() != 0 && container.points[0].address.rows() != 0);
const size_t dims = container.points[0].address.rows();
index = new index_t(dims, *this, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size));
index->buildIndex();
}
~ContainerAdaptor()
{
delete index;
}
inline void query(const uint8_t *query_point, const size_t num_closest, size_t *out_indices, uint32_t *out_distances_sq, const int ignoreThis = 10) const
{
nanoflann::KNNResultSet<uint32_t, size_t, size_t> resultSet(num_closest);
resultSet.init(out_indices, out_distances_sq);
index->findNeighbors(resultSet, query_point, nanoflann::SearchParams());
}
const self_t& derived() const
{
return *this;
}
self_t& derived()
{
return *this;
}
inline size_t kdtree_get_point_count() const
{
return container.points.size();
}
inline size_t kdtree_distance(const uint8_t *p1, const size_t idx_p2, size_t size) const
{
size_t s = 0;
for (size_t i = 0; i < size; i++)
{
const uint8_t d = p1[i] - container.points[idx_p2].address[i];
s += d * d;
}
return s;
}
inline coord_t::Scalar kdtree_get_pt(const size_t idx, int dim) const
{
return container.points[idx].address[dim];
}
template <class BBOX>
bool kdtree_get_bbox(BBOX & bb) const
{
for(size_t i = 0; i < bb.size(); i++)
{
bb[i].low = 0;
bb[i].high = UINT8_MAX;
}
return true;
}
};
void container_demo(const size_t points, const size_t coordinates)
{
Container s(coordinates, points);
coord_t query_pt(coord_t::Random(coordinates));
typedef ContainerAdaptor my_kd_tree_t;
my_kd_tree_t mat_index(coordinates, s, 25);
mat_index.index->buildIndex();
const uint8_t search_radius = static_cast<uint8_t>(100);
std::vector<std::pair<size_t, uint8_t>> ret_matches;
nanoflann::SearchParams params;
const size_t nMatches = mat_index.index->radiusSearch(query_pt.data(), search_radius, ret_matches, params);
for (size_t i = 0; i < nMatches; i++)
{
std::cout << "idx[" << i << "]=" << +ret_matches[i].first << " dist[" << i << "]=" << +ret_matches[i].second << std::endl;
}
std::cout << std::endl;
std::cout << "radiusSearch(): radius=" << +search_radius << " -> " << +nMatches << " matches" << std::endl;
}
int main()
{
container_demo(1e6, 32);
return 0;
}
More info: so it seems that the distance type, which the third parameter of the L2_Adaptor, must be a signed type. Changing the metric_t typedef to the following solves the problem if search_radius and ret_matches are also changed to int64_t.
typedef L2_Adaptor<uint8_t, self_t, int64_t> metric_t;

crash when using upper_bound in C++

I have following program which crashed at upper bound call. I am not getting why there is a crash. Any reason why I am having a crash. Thanks for your help and time.
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
enum quality { good = 0, bad, uncertain };
struct sValue {
int time;
int value;
int qual;
};
struct CompareLowerBoundValueAndTime {
bool operator()( const sValue& v, int time ) const {
return v.time < time;
}
bool operator()( const sValue& v1, const sValue& v2 ) const {
return v1.time < v2.time;
}
bool operator()( int time1, int time2 ) const {
return time1 < time2;
}
bool operator()( int time, const sValue& v ) const {
return time < v.time;
}
};
struct CompareUpperBoundValueAndTime {
bool operator()( const sValue& v, int time ) const {
return v.time > time;
}
bool operator()( const sValue& v1, const sValue& v2 ) const {
return v1.time > v2.time;
}
bool operator()( int time1, int time2 ) const {
return time1 > time2;
}
bool operator()( int time, const sValue& v ) const {
return time > v.time;
}
};
class MyClass {
public:
MyClass() {
InsertValues();
}
void InsertValues();
int GetLocationForTime(int time);
void PrintValueContainer();
private:
vector<sValue> valueContainer;
};
void MyClass::InsertValues() {
for(int num = 0; num < 5; num++) {
sValue temp;
temp.time = num;
temp.value = num+1;
temp.qual = num % 2;
valueContainer.push_back(temp);
}
}
void MyClass::PrintValueContainer()
{
for(int i = 0; i < valueContainer.size(); i++) {
std::cout << i << ". " << valueContainer[i].time << std::endl;
}
}
int MyClass::GetLocationForTime(int time)
{
std::vector< sValue >::iterator lower, upper;
lower = std::lower_bound(valueContainer.begin(), valueContainer.end(), time, CompareLowerBoundValueAndTime() );
upper = std::upper_bound(valueContainer.begin(), valueContainer.end(), time, CompareUpperBoundValueAndTime() ); // Crashing here.
std::cout << "Lower bound: " << lower - valueContainer.begin() << std::endl;
std::cout << "Upper bound: " << upper - valueContainer.begin() << std::endl;
return lower - valueContainer.begin();
}
int main()
{
MyClass a;
a.PrintValueContainer();
std::cout << "Location received for 2: " << a.GetLocationForTime(2) << std::endl;
return 0;
}
lower_bound and upper_bound work on a sorted sequence. The sequence has to be sorted using the same comparing function that you pass to both functions.
When you insert the elements in InsertValues you insert them in ascending order, so your CompareLowerBoundValueAndTime is a correct way to compare them.
But for upper_bound you're passing a different compare function. Pass CompareLowerBoundValueAndTime() and it should work.
Note that CompareLowerBoundValueAndTime is a misleading name. It should be something along the lines of CompareValueAndTimeAscending.
You should use the same comparer for both upper_bound and lower_bound. The difference is in the algorithm, not in the comparison.
Your compiler is giving you the answer. Check your code here: http://ideone.com/x6RE9
This gives you an error saying:
prog.cpp: In member function ‘int MyClass::GetLocationForTime(int)’:
prog.cpp:94: error: no match for ‘operator*’ in ‘*upper.__gnu_cxx::__normal_iterator<_Iterator, _Container>::operator* [with _Iterator = sValue*, _Container = std::vector<sValue, std::allocator<sValue> >]()’
You don't have to dereference upper twice, it doesn't make any sense.
I think you are getting an assertion error in upper_bound because it is finding that your sequence is not correctly sorted.
You seem to misunderstand what upper_bound does. It is the same as lower_bound except that the item pointed to by the iterator will be strictly greater than the search value, not greater-or-equal. IF there are no such values, it will point to the end of the sequence.
When using a predicate (Pred), it needs to be sorted such that
Pred( iter2, iter1 )
will return false whenever iter2 appears later than iter1 in the sequence.
That is not the case with your sequence and predicate combination, therefore you are getting an assertion error.