Haskell about recursion in list function - list

i'm tryin to create a function(i'm new in haskell) which Needs two lists and Returns one List. The List should have all of the Elements of the first list,who aren't in the second and all of the second List, who aren't in the first.
So: func [3,2,1,4] [2,5,1] should return [3,4,5]
I think my Code goes to the right direction, but somewhere in it is a big mistake.
func :: [Int] -> [Int] -> [Int]
func [] a = a
func a [] = a
func (x:xs) (y:ys) | elem x (y:ys) = filter (/=x) (y:ys)
| otherwise = func ys xs

Pretending not to have any experience with this domain of problems or be very familiar with the functions in base, I'll rephrase your problem statement to describe the operation we want and show you how I'd approach it:
The result of fun on two lists is: all of the Elements of the first
list,who aren't in the second and all of the second List, who aren't
in the first.
To begin expressing this in code, replace "is" with =:
func l1 l2 = (elementsOfFirstNotInSecond l1 l2) ++(elementsOfFirstNotInSecond l2 l1)
Now we need to implement elementsOfFirstNotInSecond, so let's start with words:
elementsOfFirstNotInSecond on two lists is: if l1 is the empty
list then the empty list, otherwise if the head of l1 (we'll call it
"x") is a member of l2 then x consed onto
elementsOfFirstNotInSecond of the tail of l1 and l2. Otherwise
(if x was not in l2) it's just elementsOfFirstNotInSecond of
the tail of l1 and l2
See if you can translate that to haskell, using not-yet-implemented functions (e.g. you might want to use (isAMemberOf :: Int -> [Int] -> Bool), and repeat the excercie.

Does output order matter?
If not, you could just use list difference (\\) from Data.List
Prelude > import Data.List
Prelude Data.List> as = [3,2,1,4]
Prelude Data.List> bs = [2,5,1]
Prelude Data.List> notinSec = as \\ bs
Prelude Data.List> notinFst = bs \\ as
Prelude Data.List> ans = notinSec ++ notinFst
Prelude Data.List> ans
[3,4,5]

Since you want recursion and are new with haskell,so solution(movin' in your direction) would be something like
func (x:xs) (y:ys) | elem x (y:ys) && (not (elem y (x:xs))) = func xs (filter (/=x) (y:ys))
| (not (elem x (y:ys))) && (elem y (x:xs)) = func (filter (/=y) (x:xs)) ys
| (elem x (y:ys)) && (elem y (x:xs)) = func (filter (/=y) (xs)) (filter (/=x) (ys))
| otherwise = x : y : (func xs ys)
But you can see how ugly and imbecile this is at later stages in your learning path.
I suggest you go with simpler and concise alternative.

Related

How to get the Index of an element in a list, by not using "list comprehensions"?

I'm new in haskell programming and I try to solve a problem by/not using list comprehensions.
The Problem is to find the index of an element in a list and return a list of the indexes (where the elements in the list was found.)
I already solved the problem by using list comprehensions but now i have some problems to solve the problem without using list comprehensions.
On my recursive way:
I tried to zip a list of [0..(length list)] and the list as it self.
then if the element a equals an element in the list -> make a new list with the first element of the Tupel of the zipped list(my index) and after that search the function on a recursive way until the list is [].
That's my list comprehension (works):
positions :: Eq a => a -> [a] -> [Int]
positions a list = [x | (x,y) <- zip [0..(length list)] list, a == y]
That's my recursive way (not working):
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
let ((n,m):ns) = zip [0..(length (x:xs))] (x:xs)
in if (a == m) then n:(positions' a xs)
else (positions' a xs)
*sorry I don't know how to highlight words
but ghci says:
*Main> positions' 2 [1,2,3,4,5,6,7,8,8,9,2]
[0,0]
and it should be like that (my list comprehension):
*Main> positions 2 [1,2,3,4,5,6,7,8,8,9,2]
[1,10]
Where is my mistake ?
The problem with your attempt is simply that when you say:
let ((n,m):ns) = zip [0..(length (x:xs))] (x:xs)
then n will always be 0. That's because you are matching (n,m) against the first element of zip [0..(length (x:xs))] (x:xs), which will necessarily always be (0,x).
That's not a problem in itself - but it does mean you have to handle the recursive step properly. The way you have it now, positions _ _, if non-empty, will always have 0 as its first element, because the only way you allow it to find a match is if it's at the head of the list, resulting in an index of 0. That means that your result will always be a list of the correct length, but with all elements 0 - as you're seeing.
The problem isn't with your recursion scheme though, it's to do with the fact that you're not modifying the result to account for the fact that you don't always want 0 added to the front of the result list. Since each recursive call just adds 1 to the index you want to find, all you need to do is map the increment function (+1) over the recursive result:
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
let ((0,m):ns) = zip [0..(length (x:xs))] (x:xs)
in if (a == m) then 0:(map (+1) (positions' a xs))
else (map (+1) (positions' a xs))
(Note that I've changed your let to be explicit that n will always be 0 - I prefer to be explicit this way but this in itself doesn't change the output.) Since m is always bound to x and ns isn't used at all, we can elide the let, inlining the definition of m:
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
if a == x
then 0 : map (+1) (positions' a xs)
else map (+1) (positions' a xs)
You could go on to factor out the repeated map (+1) (positions' a xs) if you wanted to.
Incidentally, you didn't need explicit recursion to avoid a list comprehension here. For one, list comprehensions are basically a replacement for uses of map and filter. I was going to write this out explicitly, but I see #WillemVanOnsem has given this as an answer so I will simply refer you to his answer.
Another way, although perhaps not acceptable if you were asked to implement this yourself, would be to just use the built-in elemIndices function, which does exactly what you are trying to implement here.
We can make use of a filter :: (a -> Bool) -> [a] -> [a] and map :: (a -> b) -> [a] -> [b] approach, like:
positions :: Eq a => a -> [a] -> [Int]
positions x = map fst . filter ((x ==) . snd) . zip [0..]
We thus first construct tuples of the form (i, yi), next we filter such that we only retain these tuples for which x == yi, and finally we fetch the first item of these tuples.
For example:
Prelude> positions 'o' "foobaraboof"
[1,2,8,9]
Your
let ((n,m):ns) = zip [0..(length (x:xs))] (x:xs)
is equivalent to
== {- by laziness -}
let ((n,m):ns) = zip [0..] (x:xs)
== {- by definition of zip -}
let ((n,m):ns) = (0,x) : zip [1..] xs
== {- by pattern matching -}
let {(n,m) = (0,x)
; ns = zip [1..] xs }
== {- by pattern matching -}
let { n = 0
; m = x
; ns = zip [1..] xs }
but you never reference ns! So we don't need its binding at all:
positions' a (x:xs) =
let { n = 0 ; m = x } in
if (a == m) then n : (positions' a xs)
else (positions' a xs)
and so, by substitution, you actually have
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
if (a == x) then 0 : (positions' a xs) -- NB: 0
else (positions' a xs)
And this is why all you ever produce are 0s. But you want to produce the correct index: 0, 1, 2, 3, ....
First, let's tweak your code a little bit further into
positions' :: Eq a => a -> [a] -> [Int]
positions' a = go xs
where
go [] = []
go (x:xs) | a == x = 0 : go xs -- NB: 0
| otherwise = go xs
This is known as a worker/wrapper transform. go is a worker, positions' is a wrapper. There's no need to pass a around from call to call, it doesn't change, and we have access to it anyway. It is in the enclosing scope with respect to the inner function, go. We've also used guards instead of the more verbose and less visually apparent if ... then ... else.
Now we just need to use something -- the correct index value -- instead of 0.
To use it, we must have it first. What is it? It starts as 0, then it is incremented on each step along the input list.
When do we make a step along the input list? At the recursive call:
positions' :: Eq a => a -> [a] -> [Int]
positions' a = go xs 0
where
go [] _ = []
go (x:xs) i | a == x = 0 : go xs (i+1) -- NB: 0
| otherwise = go xs (i+1)
_ as a pattern means we don't care about the argument's value -- it's there but we're not going to use it.
Now all that's left for us to do is to use that i in place of that 0.

Take From a List While Increasing

I have a list of values that I would like to take from while the value is increasing. I assume it would always take the head of the list and then compare it to the next value. The function will continue to take as long as this continues to increase. Upon reaching an list element that is less than or equal the pervious value the list is returned.
takeIncreasing :: (Ord a) => [a] -> [a]
takeIncreasing [1,2,3,4,3,5,6,7,8] -- Should return [1,2,3,4]
A fold could compare the last element of the accumulation with the next value and append if the condition is met, but would continue to the end of the list. I would like the function to stop taking at the first instance the constraint is not met.
This seems like an application of a monad but cannot determine if an existing monad accomplishes this.
A fold [...] would continue to the end of the list. I would like the function to stop taking at the first instance the constraint is not met.
A right fold can short circuit:
fun :: Ord a => [a] -> [a]
fun [] = []
fun (x:xs) = x: foldr go (const []) xs x
where go x f i = if i < x then x: f x else []
then,
\> fun [1,2,3,4,3,undefined]
[1,2,3,4]
or infinite size list:
\> fun $ [1,2,3,4,3] ++ [1..]
[1,2,3,4]
Right folds are magical, so you never even have to pattern match on the list.
twi xs = foldr go (const []) xs Nothing where
go x _ (Just prev)
| x < prev = []
go x r _ = x : r (Just x)
Or one that IMO has a bit less code complexity:
takeIncreasing :: Ord x => [x] -> [x]
takeIncreasing (x:x':xs) | x < x' = x : takeIncreasing (x':xs)
| otherwise = [x]
takeIncreasing xs = xs
This one is just a bit less clever than previous suggestions. I like un-clever code.
A solution without folds:
takeIncreasing :: Ord a => [a] -> [a]
takeIncreasing [] = []
takeIncreasing (x:xs) = (x :) . map snd . takeWhile (uncurry (<)) $ zip (x:xs) xs

Haskell - Checking if all list elements are unique

I need to compare if all elements of a given list are unique.
(For the record I am doing so for academic purposes.)
Here is what I have thus far:
allDifferent :: (Eq a) => [a] -> Bool
allDifferent list = case list of
[] -> True
(x:xs) -> if x `elem` xs then False else allDifferent xs
Which works wonderfully!
Now, when I try to do it like this...
allDifferent2 :: (Eq a) => [a] -> Bool
allDifferent2 list
| null list = True
| (head list) `elem` (tail list) || allDifferent2 (tail list) = False
| otherwise
It just doesn't work as intended.
I get the following output from GHCi:
*Main> allDifferent2 [1..4]
False
*Main> allDifferent2 [1..5]
True
*Main> allDifferent2 [1..6]
False
*Main> allDifferent2 [1..7]
True
i.e. For every list with an even amount of elements it outputs False and for an odd amount of elements, True.
What am I missing?
Would anyone care to shine some light?
An alternative exploiting notElem:
allDifferent :: (Eq a) => [a] -> Bool
allDifferent list = case list of
[] -> True
(x:xs) -> x `notElem` xs && allDifferent xs
Minor variant, using pattern matching directly in the equations:
allDifferent :: (Eq a) => [a] -> Bool
allDifferent [] = True
allDifferent (x:xs) = x `notElem` xs && allDifferent xs
I tend to stay away from partial functions like head,tail, so the variants based on guards look worse to me.
I would do this differently. Recursion + elem is O(n²). Alternatively you can first sort the list, and then compare elements pairwise. This way the sorting is O(n⋅log n), and the traversal O(n). So overall O(n⋅log n):
import Data.List
allDifferent :: (Ord a, Eq a) => [a] -> Bool
allDifferent = comparePairwise.sort
comparePairwise :: Eq a => [a] -> Bool
comparePairwise [] = True
comparePairwise [_] = True
comparePairwise (x:y:xs)
| x == y = False
| otherwise = comparePairwise (y : xs)
You can rely on library functions: allDifferent xs = nub xs == xs.
Or, written in point-free notation: allDifferent = uncurry (==) . (nub &&& id).
Using Data.Discrimination.nub, this happens in O(n) time.
The simplest reasonable idiomatic approach I can think of is
allDifferent :: Ord a => [a] -> Bool
allDifferent = pairwiseDifferent . sort
pairwiseDifferent :: Eq a => [a] -> Bool
pairwiseDifferent xs = and $ zipWith (/=) xs (drop 1 xs)
For fun with folds,
import Data.Maybe
pairwiseDifferent xs = foldr go (const True) xs Nothing
where
go x k Nothing = k (Just x)
go x k (Just prev) = x /= prev && k (Just x)
Another option is to use a Set (some of the strictness annotations may not actually be necessary):
import qualified Data.Set as S
allDifferent xs = foldr go (\s -> s `seq` True) xs S.empty
where
go x k s
| S.member x s = False
| otherwise = k $! S.insert x s
Try this:
allDifferent2::(Eq a) => [a] -> Bool
allDifferent2 list
| list == [] = True
| (head list) `elem` (tail list) = False
| otherwise = allDifferent2(tail list)
If the list is [] you should return True (As #bheklilr said :) )
If the list isn't null, you can verify if the first element is in the tail of the list. If it is, return False. Okay.
But when you say "if it is in the tail of the list OR allDifferent2 (tail list)" you are killing your function. "If all the elements are different in this list, return FALSE", and that isn't what you want.
EDIT: Yeah, it will #Luis. I fixed that by putting that "otherwise" there. When I put the guard before the allDifferent2(tail list) it checked if this function returned True. Thus it would work for [1, 1, 2] (my test-case) but not for [1, 2, 2] (similar to your case).
Sort the list, group runs of equal elements together, and check if all groups have exactly one element.
import Data.List (group, sort)
pairwiseDistinct :: Ord a => [a] -> Bool
pairwiseDistinct xs = all (\ys -> null (tail ys)) (group (sort xs))
Point-free version:
pairwiseDistinct = all (null . tail) . group . sort
This assumes that for any two elements x and y, x == y if and only if compare x y == EQ.
tail is fine here because none of the groups will ever be empty, but you can substitute drop 1 if you're averse to partial functions.
allDifferent [] = True
allDifferent (h:t) =
let (e,(l,r)) = segment h t
in e && allDifferent l && allDifferent r
segment p [] = (True,([],[])))
segment p (h:s)
| p > h = let (e,(l,r)) = segment p s in (e,(l,h:r))
| p < h = let (e,(l,r)) = segment p s in (e,(h:l,r))
| otherwise = (False,([],[])))
As you can see the structure of this solution is very similar to quickSort.
It shares as an intermediate data structure a binary tree and for that reason, the time complexity is extremely similar.

Appending two lists

So this is one way to append two lists:
let rec append l1 l2 =
match l1 with
| h :: t -> h :: append t l2
| [] -> l2
But I am trying to write a tail-recursive version of append. (solve the problem before calling the recursive function).
This is my code so far, but when I try to add append in the first if statement the code becomes faulty for weird reasons.
let list1 = [1;2;3;4]
let list2 = [5;6;7;8]
let rec append lista listb =
match listb with
| h :: taillist -> if taillist != [] then
begin
lista # [h];
(* I cant put an append recursive call here because it causes error*)
end else
append lista taillist;
| [] -> lista;;
append list1 list2;;
The easiest way to transform a non tail-recursive list algorithm into a tail-recursive one, is to use an accumulator. Consider rewriting your code using a third list, that will accumulate the result. Use cons (i.e., ::) to prepend new elements to the third list, finally you will have a result of concatenation. Next, you need just to reverse it with List.rev et voila.
For the sake of completeness, there is a tail-recursive append:
let append l1 l2 =
let rec loop acc l1 l2 =
match l1, l2 with
| [], [] -> List.rev acc
| [], h :: t -> loop (h :: acc) [] t
| h :: t, l -> loop (h :: acc) t l
in
loop [] l1 l2
I would recommend to solve 99 problems to learn this idiom.
A couple of comments on your code:
It seems like cheating to define a list append function using #, since this is already a function that appends two lists :-)
Your code is written as if OCaml were an imperative language; i.e., you seem to expect the expression lista # [h] to modify the value of lista. But OCaml doesn't work that way. Lists in OCaml are immutable, and lista # [h] just calculates a new value without changing any previous values. You would need to pass this new value in your recursive call.
As #ivg says, the most straightforward way to solve your problem is using an accumulator, with a list reversal at the end. This is a common idiom in a language with immutable lists.
A version using constant stack space, implemented with a couple of standard functions (you'll get a tail-recursive solution after unfolding the definitions):
let append xs ys = List.rev_append (List.rev xs) ys
Incidentally, some OCaml libraries implement the append function in a pretty sophisticated way:
(1) see core_list0.ml in the Core_kernel library: search for "slow_append" and "count_append"
(2) or batList.mlv in the Batteries library.
An alternative tail-recursive solution (F#) leveraging continuations :
let concat x =
let rec concat f = function
| ([], x) -> f x
| (x1::x2, x3) -> concat (fun x4 -> f (x1::x4)) (x2, x3)
concat id x
I think the best way to go about it, like some have said would be to reverse the first list, then recursively add the head to the front of list2, but the top comment with code uses an accumulator, when you can get the same result without it by :: to the second list instead of an accumulator
let reverse list =
let rec reverse_helper acc list =
match list with
| [] -> acc
| h::t -> reverse_helper (h::acc) t in
reverse_helper [] lst;;
let append list1 list2 =
let rec append_helper list1_rev list2 =
match list1_rev with
| [] -> list2
| h :: t -> append_helper t (h::lst2) in
append_helper (reverse lst1) lst2;;
A possible answer to your question could be the following code :
let append list1 list2 =
let rec aux acc list1 list2 = match list1, list2 with
| [], [] -> List.rev(acc)
| head :: tail, [] -> aux (head :: acc) tail []
| [], head :: tail -> aux (head :: acc) [] tail
| head :: tail, head' :: tail' -> aux (head :: acc) tail (head' :: tail')
in aux [] list1 list2;
It's pretty similar to the code given by another one of the commenters on your post, but this one is more exhaustive, as I added a case for if list2 is empty from the beginning and list1 isn't
Here is a simpler solution:
let rec apptr l k =
let ln = List.rev l in
let rec app ln k acc = match ln with
| [] -> acc
| h::t -> app t k (h::acc) in
app ln k k
;;
let rec append (mylist: 'a list) (myotherlist : 'a list ): 'a list =
match mylist with
| [] -> myotherlist
| a :: rest -> a :: append rest myotherlist

unique elements in a haskell list

okay, this is probably going to be in the prelude, but: is there a standard library function for finding the unique elements in a list? my (re)implementation, for clarification, is:
has :: (Eq a) => [a] -> a -> Bool
has [] _ = False
has (x:xs) a
| x == a = True
| otherwise = has xs a
unique :: (Eq a) => [a] -> [a]
unique [] = []
unique (x:xs)
| has xs x = unique xs
| otherwise = x : unique xs
I searched for (Eq a) => [a] -> [a] on Hoogle.
First result was nub (remove duplicate elements from a list).
Hoogle is awesome.
The nub function from Data.List (no, it's actually not in the Prelude) definitely does something like what you want, but it is not quite the same as your unique function. They both preserve the original order of the elements, but unique retains the last
occurrence of each element, while nub retains the first occurrence.
You can do this to make nub act exactly like unique, if that's important (though I have a feeling it's not):
unique = reverse . nub . reverse
Also, nub is only good for small lists.
Its complexity is quadratic, so it starts to get slow if your list can contain hundreds of elements.
If you limit your types to types having an Ord instance, you can make it scale better.
This variation on nub still preserves the order of the list elements, but its complexity is O(n * log n):
import qualified Data.Set as Set
nubOrd :: Ord a => [a] -> [a]
nubOrd xs = go Set.empty xs where
go s (x:xs)
| x `Set.member` s = go s xs
| otherwise = x : go (Set.insert x s) xs
go _ _ = []
In fact, it has been proposed to add nubOrd to Data.Set.
import Data.Set (toList, fromList)
uniquify lst = toList $ fromList lst
I think that unique should return a list of elements that only appear once in the original list; that is, any elements of the orginal list that appear more than once should not be included in the result.
May I suggest an alternative definition, unique_alt:
unique_alt :: [Int] -> [Int]
unique_alt [] = []
unique_alt (x:xs)
| elem x ( unique_alt xs ) = [ y | y <- ( unique_alt xs ), y /= x ]
| otherwise = x : ( unique_alt xs )
Here are some examples that highlight the differences between unique_alt and unqiue:
unique [1,2,1] = [2,1]
unique_alt [1,2,1] = [2]
unique [1,2,1,2] = [1,2]
unique_alt [1,2,1,2] = []
unique [4,2,1,3,2,3] = [4,1,2,3]
unique_alt [4,2,1,3,2,3] = [4,1]
I think this would do it.
unique [] = []
unique (x:xs) = x:unique (filter ((/=) x) xs)
Another way to remove duplicates:
unique :: [Int] -> [Int]
unique xs = [x | (x,y) <- zip xs [0..], x `notElem` (take y xs)]
Algorithm in Haskell to create a unique list:
data Foo = Foo { id_ :: Int
, name_ :: String
} deriving (Show)
alldata = [ Foo 1 "Name"
, Foo 2 "Name"
, Foo 3 "Karl"
, Foo 4 "Karl"
, Foo 5 "Karl"
, Foo 7 "Tim"
, Foo 8 "Tim"
, Foo 9 "Gaby"
, Foo 9 "Name"
]
isolate :: [Foo] -> [Foo]
isolate [] = []
isolate (x:xs) = (fst f) : isolate (snd f)
where
f = foldl helper (x,[]) xs
helper (a,b) y = if name_ x == name_ y
then if id_ x >= id_ y
then (x,b)
else (y,b)
else (a,y:b)
main :: IO ()
main = mapM_ (putStrLn . show) (isolate alldata)
Output:
Foo {id_ = 9, name_ = "Name"}
Foo {id_ = 9, name_ = "Gaby"}
Foo {id_ = 5, name_ = "Karl"}
Foo {id_ = 8, name_ = "Tim"}
A library-based solution:
We can use that style of Haskell programming where all looping and recursion activities are pushed out of user code and into suitable library functions. Said library functions are often optimized in ways that are way beyond the skills of a Haskell beginner.
A way to decompose the problem into two passes goes like this:
produce a second list that is parallel to the input list, but with duplicate elements suitably marked
eliminate elements marked as duplicates from that second list
For the first step, duplicate elements don't need a value at all, so we can use [Maybe a] as the type of the second list. So we need a function of type:
pass1 :: Eq a => [a] -> [Maybe a]
Function pass1 is an example of stateful list traversal where the state is the list (or set) of distinct elements seen so far. For this sort of problem, the library provides the mapAccumL :: (s -> a -> (s, b)) -> s -> [a] -> (s, [b]) function.
Here the mapAccumL function requires, besides the initial state and the input list, a step function argument, of type s -> a -> (s, Maybe a).
If the current element x is not a duplicate, the output of the step function is Just x and x gets added to the current state. If x is a duplicate, the output of the step function is Nothing, and the state is passed unchanged.
Testing under the ghci interpreter:
$ ghci
GHCi, version 8.8.4: https://www.haskell.org/ghc/ :? for help
λ>
λ> stepFn s x = if (elem x s) then (s, Nothing) else (x:s, Just x)
λ>
λ> import Data.List(mapAccumL)
λ>
λ> pass1 xs = mapAccumL stepFn [] xs
λ>
λ> xs2 = snd $ pass1 "abacrba"
λ> xs2
[Just 'a', Just 'b', Nothing, Just 'c', Just 'r', Nothing, Nothing]
λ>
Writing a pass2 function is even easier. To filter out Nothing non-values, we could use:
import Data.Maybe( fromJust, isJust)
pass2 = (map fromJust) . (filter isJust)
but why bother at all ? - as this is precisely what the catMaybes library function does.
λ>
λ> import Data.Maybe(catMaybes)
λ>
λ> catMaybes xs2
"abcr"
λ>
Putting it all together:
Overall, the source code can be written as:
import Data.Maybe(catMaybes)
import Data.List(mapAccumL)
uniques :: (Eq a) => [a] -> [a]
uniques = let stepFn s x = if (elem x s) then (s, Nothing) else (x:s, Just x)
in catMaybes . snd . mapAccumL stepFn []
This code is reasonably compatible with infinite lists, something occasionally referred to as being “laziness-friendly”:
λ>
λ> take 5 $ uniques $ "abacrba" ++ (cycle "abcrf")
"abcrf"
λ>
Efficiency note:
If we anticipate that it is possible to find many distinct elements in the input list and we can have an Ord a instance, the state can be implemented as a Set object rather than a plain list, this without having to alter the overall structure of the solution.
Here's a solution that uses only Prelude functions:
uniqueList theList =
if not (null theList)
then head theList : filter (/= head theList) (uniqueList (tail theList))
else []
I'm assuming this is equivalent to running two or three nested "for" loops (running through each element, then running through each element again to check for other elements with the same value, then removing those other elements) so I'd estimate this is O(n^2) or O(n^3)
Might even be better than reversing a list, nubbing it, then reversing it again, depending on your circumstances.