Where should I prefer using macros and where should I prefer constexpr?
Aren't they basically the same?
#define MAX_HEIGHT 720
vs
constexpr unsigned int max_height = 720;
Aren't they basically the same?
No. Absolutely not. Not even close.
Apart from the fact your macro is an int and your constexpr unsigned is an unsigned, there are important differences and macros only have one advantage.
Scope
A macro is defined by the preprocessor and is simply substituted into the code every time it occurs. The preprocessor is dumb and doesn't understand C++ syntax or semantics. Macros ignore scopes such as namespaces, classes or function blocks, so you can't use a name for anything else in a source file. That's not true for a constant defined as a proper C++ variable:
#define MAX_HEIGHT 720
constexpr int max_height = 720;
class Window {
// ...
int max_height;
};
It's fine to have a member variable called max_height because it's a class member and so has a different scope, and is distinct from the one at namespace scope. If you tried to reuse the name MAX_HEIGHT for the member then the preprocessor would change it to this nonsense that wouldn't compile:
class Window {
// ...
int 720;
};
This is why you have to give macros UGLY_SHOUTY_NAMES to ensure they stand out and you can be careful about naming them to avoid clashes. If you don't use macros unnecessarily you don't have to worry about that (and don't have to read SHOUTY_NAMES).
If you just want a constant inside a function you can't do that with a macro, because the preprocessor doesn't know what a function is or what it means to be inside it. To limit a macro to only a certain part of a file you need to #undef it again:
int limit(int height) {
#define MAX_HEIGHT 720
return std::max(height, MAX_HEIGHT);
#undef MAX_HEIGHT
}
Compare to the far more sensible:
int limit(int height) {
constexpr int max_height = 720;
return std::max(height, max_height);
}
Why would you prefer the macro one?
A real memory location
A constexpr variable is a variable so it actually exists in the program and you can do normal C++ things like take its address and bind a reference to it.
This code has undefined behaviour:
#define MAX_HEIGHT 720
int limit(int height) {
const int& h = std::max(height, MAX_HEIGHT);
// ...
return h;
}
The problem is that MAX_HEIGHT isn't a variable, so for the call to std::max a temporary int must be created by the compiler. The reference that is returned by std::max might then refer to that temporary, which doesn't exist after the end of that statement, so return h accesses invalid memory.
That problem simply doesn't exist with a proper variable, because it has a fixed location in memory that doesn't go away:
int limit(int height) {
constexpr int max_height = 720;
const int& h = std::max(height, max_height);
// ...
return h;
}
(In practice you'd probably declare int h not const int& h but the problem can arise in more subtle contexts.)
Preprocessor conditions
The only time to prefer a macro is when you need its value to be understood by the preprocessor, for use in #if conditions, e.g.
#define MAX_HEIGHT 720
#if MAX_HEIGHT < 256
using height_type = unsigned char;
#else
using height_type = unsigned int;
#endif
You couldn't use a variable here, because the preprocessor doesn't understand how to refer to variables by name. It only understands basic very basic things like macro expansion and directives beginning with # (like #include and #define and #if).
If you want a constant that can be understood by the preprocessor then you should use the preprocessor to define it. If you want a constant for normal C++ code, use normal C++ code.
The example above is just to demonstrate a preprocessor condition, but even that code could avoid using the preprocessor:
using height_type = std::conditional_t<max_height < 256, unsigned char, unsigned int>;
Generally speaking, you should use constexpr whenever you may, and macros only if no other solution is possible.
Rationale:
Macros are a simple replacement in the code, and for this reason, they often generate conflicts (e.g. windows.h max macro vs std::max). Additionally, a macro which works may easily be used in a different way which can then trigger strange compilation errors. (e.g. Q_PROPERTY used on structure members)
Due to all those uncertainties, it is good code style to avoid macros, exactly like you'd usually avoid gotos.
constexpr is semantically defined, and thus typically generates far less issues.
Great answer by Jonathon Wakely. I'd also advise you to take a look at jogojapan's answer as to what the difference is between const and constexpr before you even go about considering the usage of macros.
Macros are dumb, but in a good way. Ostensibly nowadays they're a build-aid for when you want very specific parts of your code to only be compiled in the presence of certain build parameters getting "defined". Usually, all that means is taking your macro name, or better yet, let's call it a Trigger, and adding things like, /D:Trigger, -DTrigger, etc. to the build tools being used.
While there's many different uses for macros, these are the two I see most often that aren't bad/out-dated practices:
Hardware and Platform-specific code sections
Increased verbosity builds
So while you can in the OP's case accomplish the same goal of defining an int with constexpr or a MACRO, it's unlikely the two will have overlap when using modern conventions. Here's some common macro-usage that hasn't been phased out, yet.
#if defined VERBOSE || defined DEBUG || defined MSG_ALL
// Verbose message-handling code here
#endif
As another example for macro-usage, let's say you have some upcoming hardware to release, or maybe a specific generation of it that has some tricky workarounds that the others don't require. We'll define this macro as GEN_3_HW.
#if defined GEN_3_HW && defined _WIN64
// Windows-only special handling for 64-bit upcoming hardware
#elif defined GEN_3_HW && defined __APPLE__
// Special handling for macs on the new hardware
#elif !defined _WIN32 && !defined __linux__ && !defined __APPLE__ && !defined __ANDROID__ && !defined __unix__ && !defined __arm__
// Greetings, Outlander! ;)
#else
// Generic handling
#endif
Related
How does one prevent simple macro substitution?
e.g.
#define number 0x10
int number = 0x5;
I know this can be done for function-style macros, like min and max, by surrounding the macro with parentheses (thus, separating it from the adjacent parentheses that would've been used for the args):
#define max(...)
void (max)();
My current method is to push the macro value, undefine it, use it, then pop the original value.
You can't prevent macro substitution.
That's one of the reasons why macros are usually all caps:
#define NUMBER 0x10
int number = 0x5; // no problem here.
Even this can be done of course:
int number = NUMBER; // even this can be done of course
I would advise using const variables when you want to define constants instead of using macros. And to avoid name collisions maybe just add some prefix or suffix to the name or capitalize the name.
In c++ you can even use constexpr.
There is no standard way for this but you can do the following:
#define number 0x10
#pragma push_macro("number")
#undef number
int number = 0x5;
#pragma pop_macro("number")
The #undef directive undefines a constant or preprocessor macro defined previously using #define.
Refer: https://www.cprogramming.com/reference/preprocessor/undef.html
I have a program and it needs to define 50. Is this the only way of doing it
#define SIZE 50
Using #defines for constants is decidedly "old skool" and has a number of disadvantages. Better to use const, e.g.
const size_t SIZE = 50;
Note that this applies equally to C++, C and Objective-C.
With a const int?
const int size = 50;
This has a different meaning the #define though, and is much safer. #define just does a pre-processing cut and paste, while defining a constant you maintain type checking. You can't use this for everything that #define will do, but it will work for general constants and lengths of static arrays.
C++11 introduces constexpr
constexpr int size = 50;
constexpr expands the capabilities of constants to also include more compile-time computation.
At: http://www.learncpp.com/cpp-tutorial/110-a-first-look-at-the-preprocessor/
It mentions a directive called "Macro defines". What do we mean when we say "Macro"?
Thanks.
A macro is a preprocessor directive that defines a name that is to be replaced (or removed) by the preprocessor right before compilation.
Example:
#define MY_MACRO1 somevalue
#define MY_MACRO2
#define SUM(a, b) (a + b)
then if anywhere in the code (except in the string literals) there is a mention of MY_MACRO1 or MY_MACRO2 the preprocessor replaces this with whatever comes after the name in the #define line.
There can also be macros with parameters (like the SUM). In that case the preprocessor recognizes the arguments, example:
int x = 1, y = 2;
int z = SUM(x, y);
preprocessor replaces like this:
int x = 1, y = 2;
int z = (x + y);
only after this replacement the compiler gets to compile the resulting code.
A macro is a code fragment that gets substituted into your program by the preprocessor (before compilation proper begins). This may be a function-like block, or it may be a constant value.
A warning when using a function-like macro. Consider the following code:
#define foo(x) x*x
If you call foo(3), it will become (and be compiled as) 3*3 (=9). If, instead, you call foo(2+3), it will become 2+3*2+3, (=2+6+3=11), which is not what you want. Also, since the code is substituted in place, foo(bar++) becomes bar++ * bar++, incrementing bar twice.
Macros are powerful tools, but it can be easy to shoot yourself in the foot while trying to do something fancy with them.
"Macro defines" merely indicate how they are specified (with #define directives), while "Macro" is the function or expression that is defined.
There is little difference between them aside from semantics, however.
I have this which does not compile with the error "fatal error C1017: invalid integer constant expression" from visual studio. How would I do this?
template <class B>
A *Create()
{
#if sizeof(B) > sizeof(A)
#error sizeof(B) > sizeof(A)!
#endif
...
}
The preprocessor does not understand sizeof() (or data types, or identifiers, or templates, or class definitions, and it would need to understand all of those things to implement sizeof).
What you're looking for is a static assertion (enforced by the compiler, which does understand all of these things). I use Boost.StaticAssert for this:
template <class B>
A *Create()
{
BOOST_STATIC_ASSERT(sizeof(B) <= sizeof(A));
...
}
Preprocessor expressions are evaluated before the compiler starts compilation. sizeof() is only evaluated by the compiler.
You can't do this with preprocessor. Preprocessor directives cannot operate with such language-level elements as sizeof. Moreover, even if they could, it still wouldn't work, since preprocessor directives are eliminated from the code very early, they can't be expected to work as part of template code instantiated later (which is what you seem to be trying to achieve).
The proper way to go about it is to use some form of static assertion
template <class B>
A *Create()
{
STATIC_ASSERT(sizeof(B) <= sizeof(A));
...
}
There are quite a few implementations of static assertions out there. Do a search and choose one that looks best to you.
sizeof() cannot be used in a preprocessor directive.
The preprocessor runs before the compiler (at least logically it does) and has no knowledge of user defined types (and not necessarily much knowledge about intrinsic types - the preprocessor's int size could be different than the compiler targets.
Anyway, to do what you want, you should use a STATIC_ASSERT(). See the following answer:
Ways to ASSERT expressions at build time in C
With a STATIC_ASSERT() you'll be able to do this:
template <class B>
A *Create()
{
STATIC_ASSERT( sizeof(A) >= sizeof( B));
return 0;
}
This cannot be accomplished with pre-processor . The pre-processor executes in a pass prior to the compiler -- therefore the sizes of NodeB and Node have not yet been computed at the time #if is evaluated.
You could accomplish something similar using template-programming techniques. An excellent book on the subject is Modern C++ Design: Generic Programming and Design Patterns Applied, by Andrei Alexandrescu.
Here is an example from a web page which creates a template IF statement.
From that example, you could use:
IF< sizeof(NodeB)<sizeof(Node), non_existing_type, int>::RET i;
which either declares a variable of type int or of type non_existing_type. Assuming the non-existing type lives up to its name should the template IF condition evaluate as true, a compiler error will result. You can rename i something descriptive.
Using this would be "rolling your own" static assert, of which many are already available. I suggest you use one of those after playing around with building one yourself.
If you are interested in a compile time assert that will work for both C and C++, here is one I developed:
#define CONCAT2(x, y) x ## y
#define CONCAT(x, y) CONCAT2(x, y)
#define COMPILE_ASSERT(expr, name) \
struct CONCAT(name, __LINE__) { char CONCAT(name, __LINE__) [ (expr) ? 1 : -1 ]; }
#define CT_ASSERT(expr) COMPILE_ASSERT(expr, ct_assert_)
The to how this works is that the size of the array is negative (which is illegal) when the expression is false. By further wrapping that in a structure definition, this does not create anything at runtime.
This has already been explained, but allow me to elaborate on why the preprocessor can not compute the size of a structure. Aside from the fact that this is too much to ask of a simple preprocessor, there are also compiler flags that affect the way the structure is laid out.
struct X {
short a;
long b;
};
this structure might be 6 bytes or 8 bytes long, depending on whether the compiler was told to 32-bit align the "b" field, for performance reasons. There's no way the preprocessor could have that information.
Using MSVC, this code compiles for me:
const int cPointerSize = sizeof(void*);
const int cFourBytes = 4;`
#if (cPointerSize == cFourBytes)
...
however this (which should work identically) does not:
#if ( sizeof(void*) == 4 )
...
i see many people say that sizeof cannot be used in a pre-processor directive,
however that can't be the whole story because i regularly use the following macro:
#define STATICARRAYSIZE(a) (sizeof(a)/sizeof(*a))
for example:
#include <stdio.h>
#define STATICARRAYSIZE(a) (sizeof(a)/sizeof(*a))
int main(int argc, char*argv[])
{
unsigned char chars[] = "hello world!";
double dubls[] = {1, 2, 3, 4, 5};
printf("chars num bytes: %ld, num elements: %ld.\n" , sizeof(chars), STATICARRAYSIZE(chars));
printf("dubls num bytes: %ld, num elements: %ld.\n" , sizeof(dubls), STATICARRAYSIZE(dubls));
}
yields:
orion$ ./a.out
chars num bytes: 13, num elements: 13.
dubls num bytes: 40, num elements: 5.
however
i, too, cannot get sizeof() to compile in a #if statement under gcc 4.2.1.
eg, this doesn't compile:
#if (sizeof(int) == 2)
#error uh oh
#endif
any insight would be appreciated.
In a coding style question about infinite loops, some people mentioned they prefer the for(;;) style because the while(true) style gives warning messages on MSVC about a conditional expression being constant.
This surprised me greatly, since the use of constant values in conditional expressions is a useful way of avoiding #ifdef hell. For instance, you can have in your header:
#ifdef CONFIG_FOO
extern int foo_enabled;
#else
#define foo_enabled 0
#endif
And the code can simply use a conditional and trust the compiler to elide the dead code when CONFIG_FOO isn't defined:
if (foo_enabled) {
...
}
Instead of having to test for CONFIG_FOO every time foo_enabled is used:
#ifdef CONFIG_FOO
if (foo_enabled) {
...
}
#endif
This design pattern is used all the time in the Linux kernel (for instance, include/linux/cpumask.h defines several macros to 1 or 0 when SMP is disabled and to a function call when SMP is enabled).
What is the reason for that MSVC warning? Additionally, is there a better way to avoid #ifdef hell without having to disable that warning? Or is it an overly broad warning which should not be enabled in general?
A warning doesn't automatically mean that code is bad, just suspicious-looking.
Personally I start from a position of enabling all the warnings I can, then turn off any that prove more annoying than useful. That one that fires anytime you cast anything to a bool is usually the first to go.
I think the reason for the warning is that you might inadvertently have a more complex expression that evaluates to a constant without realizing it. Suppose you have a declaration like this in a header:
const int x = 0;
then later on, far from the declaration of x, you have a condition like:
if (x != 0) ...
You might not notice that it's a constant expression.
I believe it's to catch things like
if( x=0 )
when you meant
if( x==0 )
A simple way to avoid the warning would be:
#ifdef CONFIG_FOO
extern int foo_enabled;
#else
extern int foo_enabled = 0;
#endif