I have built a Qt (5.7) application that interfaces with the Windows Media Player COM API to parse track meta data. For some in-explicit reason my application is crashing when calling into IWMPMedia3::getAttributeCountByType.
The line where the crash keeps occurring is:
if (pMedia3Item && pMedia3Item->getAttributeCountByType(L"TrackingID", 0, &l) == S_OK) //Will eventually crash here
It does not crash on the first instance, it takes a couple of hundred loops and seems to be connected to when the call repeatedly returns 0. If I switch to an attribute that I know exists then it runs fine.
What is posted below is the object stripped right back, but it still crashes. This object is designed to run in its own QThread and all the COM symbols are defined and contained within the QThread.
The code forms part of a larger app that makes use of many other Qt modules, GUI, web engine being two of the biggest.
#include "WMPMLImport.h"
#include <QDebug>
#include "Wininet.h"
#define WMP_CLSID L"{6BF52A52-394A-11d3-B153-00C04F79FAA6}"
#define WMP_REFIID L"{D84CCA99-CCE2-11d2-9ECC-0000F8085981}"
#define WMP_PL_ALL_MUSIC L"All Music"
#define SAFE_RELEASE(ptr) if(NULL!=(ptr)){(ptr)->Release();ptr=NULL;}
#define BSTR_RELEASE(bstr) {SysFreeString(bstr);(bstr)=NULL;}
class CCoInitialize
{
public:
CCoInitialize() :
m_hr(CoInitialize(NULL))
{}
~CCoInitialize()
{
if(SUCCEEDED(m_hr)) {
qDebug() << "CCoInitialize: DTOR";
CoUninitialize();
}
}
HRESULT m_hr;
};
/**
Worker class that will step through the WMP COM interface
and extact the audio meta data contained within it,
*/
class WMPMLComHandler : public QObject
{
public:
WMPMLComHandler(WMPMLImport* t) :
m_thread(t)
{
qDebug() << "WMPMLComHandler::CTOR" << QThread::currentThreadId();
}
~WMPMLComHandler()
{
qDebug() << "WMPMLComHandler::DTOR" << QThread::currentThreadId();
}
/**
Method responsible for walking through the COM interface and extracting
all the track and playlist metadata including the artwork.
#returns Return false if the COM API was not parsed correctly.
*/
bool parse()
{
bool b = true;
CCoInitialize cCoInit;
IWMPCore* pIWMPCore = NULL;
IWMPCore3* pIWMPCore3 = NULL;
IWMPPlaylistCollection *pPlaylistCollection;
IWMPPlaylist *pMainLibplaylist;
CLSID clsID;
CLSID refID;
CLSIDFromString(WMP_CLSID, &clsID);
CLSIDFromString(WMP_REFIID, &refID);
if(SUCCEEDED(CoCreateInstance(clsID, NULL, CLSCTX_ALL, refID, (void**)&pIWMPCore)))
{
if(SUCCEEDED(pIWMPCore->get_playlistCollection(&pPlaylistCollection)))
{
if(SUCCEEDED(pIWMPCore->QueryInterface(__uuidof(IWMPCore3), reinterpret_cast<void**>(&pIWMPCore3))))
{
IWMPPlaylistArray* pPlaylistArray = NULL;
if(SUCCEEDED(pPlaylistCollection->getAll(&pPlaylistArray)))
{
long playlistCount = 0;
if(SUCCEEDED(pPlaylistArray->get_count(&playlistCount)))
{
IWMPPlaylist* pPlaylist = NULL;
for(int playlistIndex=0; playlistIndex < playlistCount; playlistIndex++)
{
if (SUCCEEDED(pPlaylistArray->item(playlistIndex, &pPlaylist)))
{
long lMediaCount = 0;
if (SUCCEEDED(pPlaylist->get_count(&lMediaCount)))
{
fetchPlaylist(pPlaylist, NULL, playlistIndex, lMediaCount);
}
SAFE_RELEASE(pPlaylist);
}
}
}
SAFE_RELEASE(pPlaylistArray);
}
SAFE_RELEASE(pIWMPCore3);
}
SAFE_RELEASE(pPlaylistCollection);
}
SAFE_RELEASE(pIWMPCore);
}
SAFE_RELEASE(pMainLibplaylist);
return b;
}
private:
void fetchPlaylist(IWMPPlaylist* pPlaylist, BSTR bstrName, unsigned int playlistIndex, long count)
{
//get the playlist items
for(long mediaIndex=0; mediaIndex<count-1; mediaIndex++)
{
IWMPMedia* pMediaItem = NULL;
if(SUCCEEDED(pPlaylist->get_item(mediaIndex, &pMediaItem)))
{
IWMPMedia3 *pMedia3Item = NULL;
if (pMediaItem->QueryInterface(__uuidof(IWMPMedia3), reinterpret_cast<void **>(&pMedia3Item)) == S_OK)
{
long l = 0;
qDebug() << "About to call method for" << mediaIndex << "time";
if (pMedia3Item && pMedia3Item->getAttributeCountByType(L"TrackingID", 0, &l) == S_OK) //Will eventually crash here
{
qDebug() << "Exited method for" << mediaIndex << "time";
}
}
SAFE_RELEASE(pMedia3Item);
SAFE_RELEASE(pMediaItem);
}
}
qDebug() << "*********COMPLETE*********";
}
WMPMLImport* m_thread;
};
//==
WMPMLImport::WMPMLImport() :
m_comHandler(NULL)
{
qDebug() << "WMPMLImporter CTOR" << QThread::currentThreadId();
}
WMPMLImport::~WMPMLImport()
{
}
/**
Reimplemented function that runs the function contents in a new thread context.
The parsing of the COM is all ran through this thread. Returning out of this
thread will end its execution.
*/
void WMPMLImport::run()
{
QMutexLocker g(&m_lock);
m_comHandler = new WMPMLComHandler(this);
g.unlock();
bool parseOk = m_comHandler->parse();
g.relock();
delete m_comHandler;
m_comHandler = NULL;
}
Related
I am trying to write the simplest possible compute shader in DirectX12 so that I can have a starting point for a real project. However, it seems like no matter what I do I am unable to get my GPU to process "1+1" and see the output. As there is almost no documentation on compute shaders, I figured my only option now is to query StackOverflow.
I wrote the following code using the D3D12nBodyGravity project. First I copied as much of the code over as verbatim as possible, fixed "small" things, and then once it was all working I started trimming the code down to the basics. I am using Visual Studio 2019.
myClass.cpp:
#include "pch.h"
#include "myClass.h"
#include <d3dcompiler.h> // D3DReadFileToBlob
#include "Common\DirectXHelper.h" // NAME_D3D12_OBJECT
#include "Common\Device.h"
#include <iostream>
// InterlockedCompareExchange returns the object's value if the
// comparison fails. If it is already 0, then its value won't
// change and 0 will be returned.
#define InterlockedGetValue(object) InterlockedCompareExchange(object, 0, 0)
myClass::myClass()
: m_frameIndex(0)
, m_UavDescriptorSize(0)
, m_renderContextFenceValue(0)
, m_frameFenceValues{} {
std::cout << "Initializing myClass" << std::endl;
m_FenceValue = 0;
//std::cout << "Calling DXGIDeclareAdapterRemovalSupport()" << std::endl;
//DX::ThrowIfFailed(DXGIDeclareAdapterRemovalSupport());
// Identify the device
std::cout << "Identifying the device" << std::endl;
auto m_device = Device::Get().GetDevice();
std::cout << "Leading the rendering pipeline dependencies" << std::endl;
// Load the rendering pipeline dependencies.
{
std::cout << " Creating the root signatures" << std::endl;
// Create the root signatures.
{
CD3DX12_ROOT_PARAMETER rootParameter;
rootParameter.InitAsUnorderedAccessView(0);
Microsoft::WRL::ComPtr<ID3DBlob> signature;
Microsoft::WRL::ComPtr<ID3DBlob> error;
CD3DX12_ROOT_SIGNATURE_DESC computeRootSignatureDesc(1, &rootParameter, 0, nullptr);
DX::ThrowIfFailed(D3D12SerializeRootSignature(&computeRootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
DX::ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_computeRootSignature)));
}
// Describe and create the command queue.
std::cout << " Describing and creating the command queue" << std::endl;
D3D12_COMMAND_QUEUE_DESC queueDesc = {};
queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE;
queueDesc.Type = D3D12_COMMAND_LIST_TYPE_DIRECT;
DX::ThrowIfFailed(m_device->CreateCommandQueue(&queueDesc, IID_PPV_ARGS(&m_commandQueue)));
NAME_D3D12_OBJECT(m_commandQueue);
std::cout << " Creating descriptor heaps" << std::endl;
// Create descriptor heaps.
{
// Describe and create a shader resource view (SRV) and unordered
// access view (UAV) descriptor heap.
D3D12_DESCRIPTOR_HEAP_DESC UavHeapDesc = {};
UavHeapDesc.NumDescriptors = DescriptorCount;
UavHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV;
UavHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE;
DX::ThrowIfFailed(m_device->CreateDescriptorHeap(&UavHeapDesc, IID_PPV_ARGS(&m_UavHeap)));
NAME_D3D12_OBJECT(m_UavHeap);
m_UavDescriptorSize = m_device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);
}
std::cout << " Creating a command allocator for each frame" << std::endl;
// Create a command allocator for each frame.
for (UINT n = 0; n < FrameCount; n++) {
DX::ThrowIfFailed(m_device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(&m_commandAllocators[n])));
}
} // Load the rendering pipeline dependencies.
std::cout << "Loading the sample assets" << std::endl;
// Load the sample assets.
{
std::cout << " Creating the pipeline states, including compiling and loading shaders" << std::endl;
// Create the pipeline states, which includes compiling and loading shaders.
{
Microsoft::WRL::ComPtr<ID3DBlob> computeShader;
#if defined(_DEBUG)
// Enable better shader debugging with the graphics debugging tools.
UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
UINT compileFlags = 0;
#endif
// Load and compile the compute shader.
DX::ThrowIfFailed(D3DReadFileToBlob(L"ComputeShader.cso", &computeShader));
auto convert_blob_to_byte = [](Microsoft::WRL::ComPtr<ID3DBlob> blob) {
auto* p = reinterpret_cast<unsigned char*>(blob->GetBufferPointer());
auto n = blob->GetBufferSize();
std::vector<unsigned char> buff;
buff.reserve(n);
std::copy(p, p + n, std::back_inserter(buff));
return buff;
};
std::vector<BYTE> m_computeShader = convert_blob_to_byte(computeShader);
// Describe and create the compute pipeline state object (PSO).
D3D12_COMPUTE_PIPELINE_STATE_DESC computePsoDesc = {};
computePsoDesc.pRootSignature = m_computeRootSignature.Get();
computePsoDesc.CS = CD3DX12_SHADER_BYTECODE(computeShader.Get());
DX::ThrowIfFailed(m_device->CreateComputePipelineState(&computePsoDesc, IID_PPV_ARGS(&m_computeState)));
NAME_D3D12_OBJECT(m_computeState);
}
std::cout << " Creating the command list" << std::endl;
// Create the command list.
DX::ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_computeState.Get(), IID_PPV_ARGS(&m_commandList)));
NAME_D3D12_OBJECT(m_commandList);
std::cout << " Initializing the data in the buffers" << std::endl;
// Initialize the data in the buffers.
{
data.resize(2);
for (unsigned int i = 0; i < data.size(); i++) {
data[i] = 0.0f;
}
const UINT dataSize = data.size() * sizeof(data[0]);
D3D12_HEAP_PROPERTIES defaultHeapProperties = CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT);
D3D12_HEAP_PROPERTIES uploadHeapProperties = CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD);
D3D12_HEAP_PROPERTIES readbackHeapProperties = CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_READBACK);
D3D12_RESOURCE_DESC bufferDesc = CD3DX12_RESOURCE_DESC::Buffer(dataSize, D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS);
D3D12_RESOURCE_DESC uploadBufferDesc = CD3DX12_RESOURCE_DESC::Buffer(dataSize);
readbackBufferDesc = CD3DX12_RESOURCE_DESC::Buffer(dataSize);
DX::ThrowIfFailed(m_device->CreateCommittedResource(
&defaultHeapProperties,
D3D12_HEAP_FLAG_NONE,
&bufferDesc,
D3D12_RESOURCE_STATE_COPY_DEST,
nullptr,
IID_PPV_ARGS(&m_dataBuffer)));
m_dataBuffer.Get()->SetName(L"m_dataBuffer");
DX::ThrowIfFailed(m_device->CreateCommittedResource(
&uploadHeapProperties,
D3D12_HEAP_FLAG_NONE,
&uploadBufferDesc,
D3D12_RESOURCE_STATE_GENERIC_READ,
nullptr,
IID_PPV_ARGS(&m_dataBufferUpload)));
m_dataBufferUpload.Get()->SetName(L"m_dataBufferUpload");
DX::ThrowIfFailed(m_device->CreateCommittedResource(
&readbackHeapProperties,
D3D12_HEAP_FLAG_NONE,
&readbackBufferDesc,
D3D12_RESOURCE_STATE_COPY_DEST,
nullptr,
IID_PPV_ARGS(&m_dataBufferReadback)));
m_dataBufferReadback.Get()->SetName(L"m_dataBufferReadback");
NAME_D3D12_OBJECT(m_dataBuffer);
dataSubResource = {};
dataSubResource.pData = &data[0];
dataSubResource.RowPitch = dataSize;
dataSubResource.SlicePitch = dataSubResource.RowPitch;
UpdateSubresources<1>(m_commandList.Get(), m_dataBuffer.Get(), m_dataBufferUpload.Get(), 0, 0, 1, &dataSubResource);
m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_dataBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_COMMON));
m_commandList->CopyResource(m_dataBufferReadback.Get(), m_dataBufferUpload.Get());
D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {};
uavDesc.Format = DXGI_FORMAT_UNKNOWN;
uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER;
uavDesc.Buffer.FirstElement = 0;
uavDesc.Buffer.NumElements = 1;
uavDesc.Buffer.StructureByteStride = sizeof(data[0]);
uavDesc.Buffer.CounterOffsetInBytes = 0;
uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_NONE;
CD3DX12_CPU_DESCRIPTOR_HANDLE uavHandle0(m_UavHeap->GetCPUDescriptorHandleForHeapStart(), Uav, m_UavDescriptorSize);
m_device->CreateUnorderedAccessView(m_dataBuffer.Get(), nullptr, &uavDesc, uavHandle0);
} // Initialize the data in the buffers.
std::cout << " Closing the command list and executing it to begind the initial GPU setup" << std::endl;
// Close the command list and execute it to begin the initial GPU setup.
DX::ThrowIfFailed(m_commandList->Close());
ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);
std::cout << " Creating synchronization objects and wait until assets have been uploaded to the GPU" << std::endl;
// Create synchronization objects and wait until assets have been uploaded to the GPU.
{
DX::ThrowIfFailed(m_device->CreateFence(m_renderContextFenceValue, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_renderContextFence)));
m_renderContextFenceValue++;
m_renderContextFenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
if (m_renderContextFenceEvent == nullptr) {
DX::ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
}
// Add a signal command to the queue.
DX::ThrowIfFailed(m_commandQueue->Signal(m_renderContextFence.Get(), m_renderContextFenceValue));
// Instruct the fence to set the event object when the signal command completes.
DX::ThrowIfFailed(m_renderContextFence->SetEventOnCompletion(m_renderContextFenceValue, m_renderContextFenceEvent));
m_renderContextFenceValue++;
// Wait until the signal command has been processed.
WaitForSingleObject(m_renderContextFenceEvent, INFINITE);
}
} // Load the sample assets.
std::cout << "Creating compute resources" << std::endl;
{
// Create compute resources.
D3D12_COMMAND_QUEUE_DESC queueDesc = { D3D12_COMMAND_LIST_TYPE_COMPUTE, 0, D3D12_COMMAND_QUEUE_FLAG_NONE };
DX::ThrowIfFailed(m_device->CreateCommandQueue(&queueDesc, IID_PPV_ARGS(&m_computeCommandQueue)));
DX::ThrowIfFailed(m_device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_COMPUTE, IID_PPV_ARGS(&m_computeAllocator)));
DX::ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COMPUTE, m_computeAllocator.Get(), nullptr, IID_PPV_ARGS(&m_computeCommandList)));
DX::ThrowIfFailed(m_device->CreateFence(0, D3D12_FENCE_FLAG_SHARED, IID_PPV_ARGS(&m_Fence)));
m_FenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
if (m_FenceEvent == nullptr) {
DX::ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
}
}
std::cout << "Calculating" << std::endl;
Calculate();
std::cout << "Finished" << std::endl;
}
void myClass::Calculate() {
m_computeCommandList.Get()->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_dataBuffer.Get(), D3D12_RESOURCE_STATE_COMMON, D3D12_RESOURCE_STATE_UNORDERED_ACCESS));
m_computeCommandList.Get()->SetPipelineState(m_computeState.Get());
m_computeCommandList.Get()->SetComputeRootSignature(m_computeRootSignature.Get());
ID3D12DescriptorHeap* ppHeaps[] = { m_UavHeap.Get() };
m_computeCommandList.Get()->SetDescriptorHeaps(_countof(ppHeaps), ppHeaps);
CD3DX12_GPU_DESCRIPTOR_HANDLE uavHandle(m_UavHeap->GetGPUDescriptorHandleForHeapStart(), Uav, m_UavDescriptorSize);
m_computeCommandList.Get()->SetComputeRootUnorderedAccessView(ComputeRootUAVTable, m_dataBuffer->GetGPUVirtualAddress());
m_computeCommandList.Get()->Dispatch(1, 1, 1);
m_computeCommandList.Get()->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_dataBuffer.Get(), D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COMMON));
// Close and execute the command list.
DX::ThrowIfFailed(m_computeCommandList.Get()->Close());
ID3D12CommandList* commandLists[] = { m_computeCommandList.Get() };
m_computeCommandQueue->ExecuteCommandLists(1, commandLists);
// Wait for the compute shader to complete the calculation.
UINT64 FenceValue = InterlockedIncrement(&m_FenceValue);
DX::ThrowIfFailed(m_computeCommandQueue.Get()->Signal(m_Fence.Get(), FenceValue));
DX::ThrowIfFailed(m_Fence.Get()->SetEventOnCompletion(FenceValue, m_FenceEvent));
WaitForSingleObject(m_FenceEvent, INFINITE);
std::cout << "FenceValue = " << FenceValue << " " << m_FenceValue << " " << m_Fence.Get()->GetCompletedValue() << std::endl;
// Check the output!
float* dataptr = nullptr;
D3D12_RANGE range = { 0, readbackBufferDesc.Width };
DX::ThrowIfFailed(m_dataBufferReadback->Map(0, &range, (void**)&dataptr));
for (int i = 0; i < readbackBufferDesc.Width / sizeof(data[0]); i++)
printf("uav[%d] = %.2f\n", i, dataptr[i]);
m_dataBufferReadback->Unmap(0, nullptr);
for (unsigned int i = 0; i < data.size(); i++) {
std::cout << "data[" << i << "] = " << data[i] << std::endl;
}
}
myClass.h:
#pragma once
#include "Common\Device.h"
#include <iostream>
// We have to write all of this as its own class, otherwise we cannot
// use the "this" pointer when we create compute resources. We need to
// do that because this code tagets multithreading.
class myClass {
public:
myClass();
private:
// Two buffers full of data are used. The compute thread alternates
// writing to each of them. The render thread renders using the
// buffer that is not currently in use by the compute shader.
//struct Data {
// float c;
//};
//std::vector<Data> data;
std::vector<float> data;
// For the compute pipeline, the CBV is a struct containing some
// constants used in the compute shader.
struct ConstantBufferCS {
float a;
float b;
};
D3D12_SUBRESOURCE_DATA dataSubResource;
static const UINT FrameCount = 1;
//static const UINT ThreadCount = 1;
UINT m_heightInstances;
UINT m_widthInstances;
UINT m_frameIndex;
Microsoft::WRL::ComPtr<ID3D12RootSignature> m_rootSignature;
Microsoft::WRL::ComPtr<ID3D12RootSignature> m_computeRootSignature;
Microsoft::WRL::ComPtr<ID3D12CommandQueue> m_commandQueue;
Microsoft::WRL::ComPtr<ID3D12DescriptorHeap> m_UavHeap;
Microsoft::WRL::ComPtr<ID3D12CommandAllocator> m_commandAllocators[FrameCount];
Microsoft::WRL::ComPtr<ID3D12PipelineState> m_computeState;
Microsoft::WRL::ComPtr<ID3D12GraphicsCommandList> m_commandList;
Microsoft::WRL::ComPtr<ID3D12Resource> m_constantBufferCS;
UINT64 m_renderContextFenceValue;
HANDLE m_renderContextFenceEvent;
UINT64 m_frameFenceValues[FrameCount];
UINT m_UavDescriptorSize;
ConstantBufferCS constantBufferCS;
Microsoft::WRL::ComPtr<ID3D12Resource> constantBufferCSUpload;
Microsoft::WRL::ComPtr<ID3D12Fence> m_renderContextFence;
Microsoft::WRL::ComPtr<ID3D12Resource> m_dataBuffer;
Microsoft::WRL::ComPtr<ID3D12Resource> m_dataBufferUpload;
Microsoft::WRL::ComPtr<ID3D12Resource> m_dataBufferReadback;
// Compute objects.
Microsoft::WRL::ComPtr<ID3D12CommandAllocator> m_computeAllocator;
Microsoft::WRL::ComPtr<ID3D12CommandQueue> m_computeCommandQueue;
Microsoft::WRL::ComPtr<ID3D12GraphicsCommandList> m_computeCommandList;
Microsoft::WRL::ComPtr<ID3D12Fence> m_Fence;
volatile HANDLE m_FenceEvent;
D3D12_RESOURCE_DESC readbackBufferDesc;
// State
UINT64 volatile m_FenceValue;
/*
struct ThreadData {
myClass* pContext;
UINT threadIndex;
};
ThreadData m_threadData;
HANDLE m_threadHandles;
*/
void Calculate();
// Indices of shader resources in the descriptor heap.
enum DescriptorHeapIndex : UINT32 {
Uav = 0,
DescriptorCount = 1
};
enum ComputeRootParameters : UINT32 {
//ComputeRootCBV = 0,
ComputeRootUAVTable = 0,
ComputeRootParametersCount
};
};
Device.cpp:
#pragma once
#include "pch.h"
#include "Device.h"
#include "DirectXHelper.h"
#include <cassert> // for "assert"
#include <iostream>
static Device* gs_pSingelton = nullptr;
// Constructor
Device::Device(HINSTANCE hInst, bool useWarp)
: m_hInstance(hInst)
, m_useWarp(useWarp)
{
}
void Device::Initialize() {
#if defined(_DEBUG)
// Always enable the debug layer before doing anything DX12 related
// so all possible errors generated while creating DX12 objects
// are caught by the debug layer.
Microsoft::WRL::ComPtr<ID3D12Debug1> debugInterface;
DX::ThrowIfFailed(D3D12GetDebugInterface(IID_PPV_ARGS(&debugInterface)));
debugInterface->EnableDebugLayer();
// Enable these if you want full validation (will slow down rendering a lot).
//debugInterface->SetEnableGPUBasedValidation(TRUE);
//debugInterface->SetEnableSynchronizedCommandQueueValidation(TRUE);
#endif
auto dxgiAdapter = GetAdapter(false);
if (!dxgiAdapter) { // If no supporting DX12 adapters exist, fall back to WARP
dxgiAdapter = GetAdapter(true);
}
if (dxgiAdapter) {
m_device = CreateDevice(dxgiAdapter);
}
else {
throw std::exception("DXGI adapter enumeration failed.");
}
}
void Device::Create(HINSTANCE hInst) {
if (!gs_pSingelton) {
gs_pSingelton = new Device(hInst);
gs_pSingelton->Initialize();
}
}
Device& Device::Get() {
assert(gs_pSingelton);
return *gs_pSingelton;
}
void Device::Destroy() {
if (gs_pSingelton) {
delete gs_pSingelton;
gs_pSingelton = nullptr;
}
}
// Destructor
Device::~Device() {
}
Microsoft::WRL::ComPtr<ID3D12Device2> Device::CreateDevice(Microsoft::WRL::ComPtr<IDXGIAdapter4> adapter) {
Microsoft::WRL::ComPtr<ID3D12Device2> d3d12Device2;
DX::ThrowIfFailed(D3D12CreateDevice(adapter.Get(), D3D_FEATURE_LEVEL_11_0, IID_PPV_ARGS(&d3d12Device2)));
// Enable debug messages in debug mode.
#if defined(_DEBUG)
Microsoft::WRL::ComPtr<ID3D12InfoQueue> pInfoQueue;
if (SUCCEEDED(d3d12Device2.As(&pInfoQueue))) {
pInfoQueue->SetBreakOnSeverity(D3D12_MESSAGE_SEVERITY_CORRUPTION, TRUE);
pInfoQueue->SetBreakOnSeverity(D3D12_MESSAGE_SEVERITY_ERROR, TRUE);
pInfoQueue->SetBreakOnSeverity(D3D12_MESSAGE_SEVERITY_WARNING, TRUE);
// Suppress whole categories of messages
//D3D12_MESSAGE_CATEGORY Categories[] = {};
// Suppress messages based on their severity level
D3D12_MESSAGE_SEVERITY Severities[] = { D3D12_MESSAGE_SEVERITY_INFO };
// Suppress individual messages by their ID
D3D12_MESSAGE_ID DenyIds[] = {
D3D12_MESSAGE_ID_CLEARRENDERTARGETVIEW_MISMATCHINGCLEARVALUE, // I'm really not sure how to avoid this message.
D3D12_MESSAGE_ID_MAP_INVALID_NULLRANGE, // This warning occurs when using capture frame while graphics debugging.
D3D12_MESSAGE_ID_UNMAP_INVALID_NULLRANGE, // This warning occurs when using capture frame while graphics debugging.
};
D3D12_INFO_QUEUE_FILTER NewFilter = {};
//NewFilter.DenyList.NumCategories = _countof(Categories);
//NewFilter.DenyList.pCategoryList = Categories;
NewFilter.DenyList.NumSeverities = _countof(Severities);
NewFilter.DenyList.pSeverityList = Severities;
NewFilter.DenyList.NumIDs = _countof(DenyIds);
NewFilter.DenyList.pIDList = DenyIds;
DX::ThrowIfFailed(pInfoQueue->PushStorageFilter(&NewFilter));
}
#endif
return d3d12Device2;
}
Microsoft::WRL::ComPtr<IDXGIAdapter4> Device::GetAdapter(bool useWarp) {
UINT createFactoryFlags = 0;
#if defined(_DEBUG)
createFactoryFlags = DXGI_CREATE_FACTORY_DEBUG;
#endif
DX::ThrowIfFailed(CreateDXGIFactory2(createFactoryFlags, IID_PPV_ARGS(&m_factory)));
Microsoft::WRL::ComPtr<IDXGIAdapter1> dxgiAdapter1;
Microsoft::WRL::ComPtr<IDXGIAdapter4> dxgiAdapter4;
if (useWarp) {
DX::ThrowIfFailed(m_factory->EnumWarpAdapter(IID_PPV_ARGS(&dxgiAdapter1)));
DX::ThrowIfFailed(dxgiAdapter1.As(&dxgiAdapter4));
}
else {
SIZE_T maxDedicatedVideoMemory = 0;
for (UINT i = 0; m_factory->EnumAdapters1(i, &dxgiAdapter1) != DXGI_ERROR_NOT_FOUND; ++i) {
DXGI_ADAPTER_DESC1 dxgiAdapterDesc1;
dxgiAdapter1->GetDesc1(&dxgiAdapterDesc1);
// Check to see if the adapter can create a D3D12 device without actually
// creating it. The adapter with the largest dedicated video memory
// is favored.
if ((dxgiAdapterDesc1.Flags & DXGI_ADAPTER_FLAG_SOFTWARE) == 0 &&
SUCCEEDED(D3D12CreateDevice(dxgiAdapter1.Get(),
D3D_FEATURE_LEVEL_11_0, __uuidof(ID3D12Device), nullptr)) &&
dxgiAdapterDesc1.DedicatedVideoMemory > maxDedicatedVideoMemory) {
maxDedicatedVideoMemory = dxgiAdapterDesc1.DedicatedVideoMemory;
DX::ThrowIfFailed(dxgiAdapter1.As(&dxgiAdapter4));
}
}
}
return dxgiAdapter4;
}
Device.h:
#pragma once
#include <dxgi1_6.h> // IDXGIAdapter4
// We require this file because we are unable to pass the device pointer to everywhere we need to.
class Device {
public:
/**
* Create the device singleton with the device instance handle.
*/
static void Create(HINSTANCE hInst);
/**
* Destroy the device instance.
*/
static void Destroy();
/**
* Get the device singleton.
*/
static Device& Get();
/**
* Get the Direct3D 12 device
*/
Microsoft::WRL::ComPtr<ID3D12Device2> GetDevice() const { return m_device; }
Microsoft::WRL::ComPtr<IDXGIFactory4> GetFactory() const { return m_factory; }
protected:
// Create a device instance
Device(HINSTANCE hInst, bool useWarp = false);
// Destroy the device instance.
virtual ~Device();
// Initialize the device instance.
void Initialize();
Microsoft::WRL::ComPtr<IDXGIAdapter4> GetAdapter(bool useWarp);
Microsoft::WRL::ComPtr<ID3D12Device2> CreateDevice(Microsoft::WRL::ComPtr<IDXGIAdapter4> adapter);
private:
Device(const Device& copy) = delete;
Device& operator=(const Device& other) = delete;
HINSTANCE m_hInstance;
Microsoft::WRL::ComPtr<ID3D12Device2> m_device;
Microsoft::WRL::ComPtr<IDXGIFactory4> m_factory;
bool m_useWarp;
};
ComputeShader.hlsl:
RWStructuredBuffer<float> output : register(u0); // UAV
[numthreads(1, 1, 1)]
void main( uint3 DTid : SV_DispatchThreadID ) {
output[DTid.x] = 1 + 1;
}
Please let me know if you are able to find what I do not understand. I can also try uploading my project to GitHub if it helps... SOS :(
In my application, I am receiving messages from LCM (Lightweight Communications and Marshalling) that contain data for multiple consumers within the application. I imagined this working with the LCM handler as a singleton so that there is one instance that each class could use. For example, each consumer class would have:
QObject::connect(LCMHandler::getInstance(), SIGNAL(messageReceived()),
this, SLOT(processMessage()));
Where lcmhandler.h is:
class LCMHandler : public QObject
{
Q_OBJECT
public:
static LCMHandler* getInstance();
LCMHandler();
~LCMHandler() {}
void handleMessage(const lcm::ReceiveBuffer* rbuf,
const std::string &chan,
const example::example_t *msg);
signals:
void messageReceived();
private:
static LCMReceiver* _instance;
};
And lcmhandler.cpp is:
LCMHandler* LCMHandler::_instance = 0;
LCMHandler::LCMHandler()
{
lcm::LCM lcm;
if(lcm.good())
{
lcm.subscribe("MyChannel", &LCMHandler::handleMessage, this);
while(0 == lcm.handle());
} else {
std::cerr << "LCM Error" << std::endl;
}
}
LCMHandler* LCMHandler::getInstance() {
if (!_instance) {
_instance = new LCMHandler();
}
return _instance;
}
void LCMHandler::handleMessage(const lcm::ReceiveBuffer *rbuf,
const std::string &chan,
const hlelcm::transponder_t *msg)
{
std::cout << "Received message on channel " << chan.c_str() << std::endl;
emit messageReceived();
}
The application successfully prints "Received message on channel..." repeatedly; however, nothing else is executed, including code in the consumer class's processMessage(), presumably because the application gets stuck looping on handleMessage(...) and never executes the signal/slot procedure (or refreshes the UI components). So, if the implementation of processMessage() is:
void Consumer::processMessage() {
std::cout << "Message received" << std::endl;
}
It never executes, while handleMessage(...) loops infinitely. Similarly, the Qt UI never loads because handleMessage is busy looping.
What is the best way to handle the incoming messages? Should I refrain from using a singleton for LCMHandler? What do I need to change to make this implementation work?
Move the contents of your LCM constructor to another function:
LCMHandler::beginCommunication()
{
lcm::LCM lcm;
if(lcm.good())
{
//QObject base class call.
moveToThread( &_myLocalQThread );
_myLocalThread.start();
lcm.subscribe("MyChannel", &LCMHandler::handleMessage, this);
_isActive = true;
// This is blocking, we don't want it to interfere with
// the QApplication loop
while(0 == lcm.handle());
}
else
{
std::cerr << "LCM Error" << std::endl;
}
_isActive = false;
}
Then something along these lines to allow your LCM loop to happen in another thread.
auto lcmHandler = LCMHandler::getInstance();
// I like to be explicit about the Qt::QueuedConnection. Default behavior should be thread safe, though.
connect( lcmHandler, &LCMHandler::messageReceived,
this, &Consumer::processMessage, Qt::QueuedConnection );
// Add a std::atomic< bool > _isActive to LCMHandler
if( not lcmHandler.isActive() )
{
lcmHandler.beginCommunication();
}
And then make sure to properly close your QThread in the destructor.
LCMHandler::~LCMHandler()
{
_myLocalQThread.quit();
_myLocalQThread.wait();
}
Below is my code, my problem is that readEvent() function never gets called.
Header file
class MyServer
{
public :
MyServer(MFCPacketWriter *writer_);
~MyServer();
void startReading();
void stopReading();
private :
MFCPacketWriter *writer;
pthread_t serverThread;
bool stopThread;
static void *readEvent(void *);
};
CPP file
MyServer::MyServer(MFCPacketWriter *writer_):writer(writer_)
{
serverThread = NULL;
stopThread = false;
LOGD(">>>>>>>>>>>>> constructed MyServer ");
}
MyServer::~MyServer()
{
writer = NULL;
stopThread = true;
}
void MyServer::startReading()
{
LOGD(">>>>>>>>>>>>> start reading");
if(pthread_create(&serverThread,NULL,&MyServer::readEvent, this) < 0)
{
LOGI(">>>>>>>>>>>>> Error while creating thread");
}
}
void *MyServer::readEvent(void *voidptr)
{
// this log never gets called
LOGD(">>>>>>>>>>>>> readEvent");
while(!MyServer->stopThread){
//loop logic
}
}
Another class
MyServer MyServer(packet_writer);
MyServer.startReading();
Since you are not calling pthread_join, your main thread is terminating without waiting for your worker thread to finish.
Here is a simplified example that reproduces the problem:
#include <iostream>
#include <pthread.h>
class Example {
public:
Example () : thread_() {
int rcode = pthread_create(&thread_, nullptr, Example::task, nullptr);
if (rcode != 0) {
std::cout << "pthread_create failed. Return code: " << rcode << std::endl;
}
}
static void * task (void *) {
std::cout << "Running task." << std::endl;
return nullptr;
}
private:
pthread_t thread_;
};
int main () {
Example example;
}
View Results
No output is produced when running this program, even though pthread_create was successfully called with Example::task as the function parameter.
This can be fixed by calling pthread_join on the thread:
#include <iostream>
#include <pthread.h>
class Example {
public:
Example () : thread_() {
int rcode = pthread_create(&thread_, nullptr, Example::task, nullptr);
if (rcode != 0) {
std::cout << "pthread_create failed. Return code: " << rcode << std::endl;
}
}
/* New code below this point. */
~Example () {
int rcode = pthread_join(thread_, nullptr);
if (rcode != 0) {
std::cout << "pthread_join failed. Return code: " << rcode << std::endl;
}
}
/* New code above this point. */
static void * task (void *) {
std::cout << "Running task." << std::endl;
return nullptr;
}
private:
pthread_t thread_;
};
int main () {
Example example;
}
View Results
Now the program produces the expected output:
Running task.
In your case, you could add a call to pthread_join to the destructor of your MyServer class.
I am trying to develop a console application, where I will display the system date and time in real time (or as real as I can get). This is the easy part. The hard part is that I must also have the cursor available for the user to enter information through. I can't use NCurses in my application, nor any other library that it not included in vanilla GCC 4.4 (there goes boost! Noooo....)
This is my code so far:
The realtime class, where I am incorporating the solution given by Jeremy Friesner here pthreads in c++ inside classes
#ifndef _REALTIME_H_
#define _REALTIME_H_
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
class MyThreadClass
{
public:
MyThreadClass() {/* empty */}
virtual ~MyThreadClass() {/* empty */}
/** Returns true if the thread was successfully started, false if there was an error starting the thread */
bool startMainThread()
{
return (pthread_create(&_mainThread, NULL, mainRunnerFunc, this) == 0);
}
bool startDisplayThread()
{
return (pthread_create(&_displayThread, NULL, displayThreadFunc, this) == 0);
}
/** Will not return until the main thread has exited. */
void waitForMainThreadToExit()
{
(void) pthread_join(_mainThread, NULL);
}
void waitForDisplayThreadToExit()
{
(void) pthread_join(_displayThread, NULL);
}
protected:
/** Implement this method in your subclass with the code you want your thread to run. */
virtual void mainRunner() = 0;
virtual void displayTime() = 0;
private:
static void * mainRunnerFunc(void * This) {((MyThreadClass *)This)->mainRunner(); return NULL;}
static void * displayThreadFunc(void * This) {((MyThreadClass *)This)->displayTime(); return NULL;}
pthread_t _mainThread;
pthread_t _displayThread;
};
class DynamicTime : public MyThreadClass
{
private:
const string currentDate();
void gotoxy(int,int);
void displayTime();
void mainRunner();
pthread_mutex_t mutex1;
public:
// pthread_mutex_t mutex1;
DynamicTime();
unsigned int lifeTime;
unsigned int updateTime;
void start();
int Exit;
};
const string DynamicTime::currentDate()
{
time_t now = time(0);
struct tm tstruct;
char buf[80];
tstruct = *localtime(&now);
strftime(buf,sizeof(buf),"%I:%M:%S %p, %d-%m-%y",&tstruct);
return buf;
}
DynamicTime::DynamicTime()
{
pthread_mutex_init(&(mutex1),NULL);
lifeTime=-1; /* 100 seconds */
updateTime = 1; /* 5 seconds interval */
Exit=1;
}
void DynamicTime::gotoxy(int x,int y)
{
/* go to location */
printf("\033[%d;%df",y,x);
}
void DynamicTime::displayTime()
{
pthread_mutex_lock(&mutex1);
/* save the cursor location */
printf("\033[s");
gotoxy(75,30);
cout << "Date : " << currentDate() << endl;
/* restore the cursor location */
printf("\033[u");
pthread_mutex_unlock(&mutex1);
}
void DynamicTime::mainRunner()
{
unsigned long iterate, iterate2;
int iret1,iret2;
if(lifeTime!=-1)
{
for(iterate=0;iterate<lifeTime*100000;iterate++)
{
if(iterate%(updateTime*50)==0)
{
iret2 = startDisplayThread();
waitForDisplayThreadToExit();
}
for(iterate2=0;iterate2<100000;iterate2++);
}
std::cout << "Ending main thread..." << endl;
}
else
{
while(1&Exit) /* infinitely */
{
iret2 = startDisplayThread();
waitForDisplayThreadToExit();
for(iterate2=0;iterate2<100000;iterate2++);
}
std::cout << "Exiting Application.... " << endl;
}
}
void DynamicTime::start()
{
//system("clear");
//cout << "Starting...." << endl;
if(startMainThread()==false)
{
std::cerr << "Coudln't start main Thread! " << endl;
}
/* call this function in the main program
* else
{
waitForMainThreadToExit();
}*/
}
/* Example
* on how to use the program
* int main()
{
DynamicTime DT;
DT.lifeTime = 100;
DT.start();
return 0;
}
*/
#endif
and my example program, where I am trying to read data from the user, while showing the time at the same time:
//#include <iostream>
#include "realtime2.h"
int main()
{
DynamicTime DT;
string temp="abcd";
DT.start();
while(temp!="exit")
{
std::cout << "$> " ;
std::cin >> temp;
}
DT.waitForMainThreadToExit();
return 0;
}
This would be called a fully-functional program, if only I could get the user to enter data without interruption from the display thread. Any ideas as to how to get around this ? Or if I can't get around this, what would be the proper way to do so ?
I am using boost library to develop a asynchronous udp communication. A data received at the receiver side is being precessed by another thread. Then my problem is when I read the received data in another thread rather than the receiver thread it self it gives a modified data or updated data which is not the data that is supposed to be.
My code is working on unsigned character buffer array at sender side and receiver side. The reason is I need consider unsigned character buffer as a packet of data
e.g buffer[2] = Engine_start_ID
/* global buffer to store the incomming data
unsigned char received_buffer[200];
/*
global buffer accessed by another thread
which contains copy the received_buffer
*/
unsigned char read_hmi_buffer[200];
boost::mutex hmi_buffer_copy_mutex;
void udpComm::start_async_receive() {
udp_socket.async_receive_from(
boost::asio::buffer(received_buffer, max_length), remote_endpoint,
boost::bind(&udpComm::handle_receive_from, this,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
/* the data received is stored in the unsigned char received_buffer data buffer*/
void udpComm::handle_receive_from(const boost::system::error_code& error,
size_t bytes_recvd) {
if (!error && bytes_recvd > 0) {
received_bytes = bytes_recvd;
hmi_buffer_copy_mutex.lock();
memcpy(&read_hmi_buffer[0], &received_buffer[0], received_bytes);
hmi_buffer_copy_mutex.unlock();
/*data received here is correct 'cus i printed in the console
checked it
*/
cout<<(int)read_hmi_buffer[2]<<endl;
}
start_async_receive();
}
/* io_service is running in a thread
*/
void udpComm::run_io_service() {
udp_io_service.run();
usleep(1000000);
}
The above code is the asynchronous udp communication running a thread
/* My second thread function is */
void thread_write_to_datalink()
{ hmi_buffer_copy_mutex.lock();
/* here is my problem begins*/
cout<<(int)read_hmi_buffer[2]<<endl;
hmi_buffer_copy_mutex.unlock();
/* all data are already changed */
serial.write_to_serial(read_hmi_buffer, 6);
}
/* threads from my main function
are as below */
int main() {
receive_from_hmi.start_async_receive();
boost::thread thread_receive_from_hmi(&udpComm::run_io_service,
&receive_from_hmi);
boost::thread thread_serial(&thread_write_to_datalink);
thread_serial.join();
thread_receive_from_hmi.join();
return 0;
}
/* The Serial_manager class contains functions for writting and reading from serial port*/
#include <iostream>
#include <boost/thread.hpp>
#include <boost/asio.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
using namespace boost::asio;
class Serial_manager {
public:
Serial_manager(boost::asio::io_service &serial_io_service,char *dev_name);
void open_serial_port();
void write_to_serial(void *data, int size);
size_t read_from_serial(void *data, int size);
void handle_serial_exception(std::exception &ex);
virtual ~Serial_manager();
void setDeviceName(char* deviceName);
protected:
io_service &port_io_service;
serial_port datalink_serial_port;
bool serial_port_open;
char *device_name;
};
void Serial_manager::setDeviceName(char* deviceName) {
device_name = deviceName;
}
Serial_manager::Serial_manager(boost::asio::io_service &serial_io_service,char *dev_name):
port_io_service(serial_io_service),
datalink_serial_port(serial_io_service) {
device_name = dev_name;
serial_port_open = false;
open_serial_port();
}
void Serial_manager::open_serial_port() {
bool temp_port_status = false;
bool serial_port_msg_printed = false;
do {
try {
datalink_serial_port.open(device_name);
temp_port_status = true;
} catch (std::exception &ex) {
if (!serial_port_msg_printed) {
std::cout << "Exception-check the serial port device "
<< ex.what() << std::endl;
serial_port_msg_printed = true;
}
datalink_serial_port.close();
temp_port_status = false;
}
} while (!temp_port_status);
serial_port_open = temp_port_status;
std::cout <<std::endl <<"serial port device opened successfully"<<std::endl;
datalink_serial_port.set_option(serial_port_base::baud_rate(115200));
datalink_serial_port.set_option(
serial_port_base::flow_control(
serial_port_base::flow_control::none));
datalink_serial_port.set_option(
serial_port_base::parity(serial_port_base::parity::none));
datalink_serial_port.set_option(
serial_port_base::stop_bits(serial_port_base::stop_bits::one));
datalink_serial_port.set_option(serial_port_base::character_size(8));
}
void Serial_manager::write_to_serial(void *data, int size) {
boost::asio::write(datalink_serial_port, boost::asio::buffer(data, size));
}
size_t Serial_manager::read_from_serial(void *data, int size) {
return boost::asio::read(datalink_serial_port, boost::asio::buffer(data, size));
}
void Serial_manager::handle_serial_exception(std::exception& ex) {
std::cout << "Exception-- " << ex.what() << std::endl;
std::cout << "Cannot access data-link, check the serial connection"
<< std::endl;
datalink_serial_port.close();
open_serial_port();
}
Serial_manager::~Serial_manager() {
// TODO Auto-generated destructor stub
}
I think my area of problem is about thread synchronization and notification and I will be happy if you help me. You should not worry about the sender it is works perfectly as I already checked it the data is received at the receiver thread. I hope you understand my question.
Edit: Here is the modification.My whole idea here is to develop a simulation for the Manual flight control so according my design i have client application that sends commands through
udp communication. At the receiver side intended to use 3 threads. one thread receives input from sticks i.e void start_hotas() the second thread is a thread that receives commands from sender(client): void udpComm::run_io_service() and 3rd is the void thread_write_to_datalink().
/* a thread that listens for input from sticks*/
void start_hotas() {
Hotas_manager hotasobj;
__s16 event_value; /* value */
__u8 event_number; /* axis/button number */
while (1) {
hotasobj.readData_from_hotas();
event_number = hotasobj.getJoystickEvent().number;
event_value = hotasobj.getJoystickEvent().value;
if (hotasobj.isAxisPressed()) {
if (event_number == 0) {
aileron = (float) event_value / 32767;
} else if (event_number == 1) {
elevator = -(float) event_value / 32767;
} else if (event_number == 2) {
rudder = (float) event_value / 32767;
} else if (event_number == 3) {
brake_left = (float) (32767 - event_value) / 65534;
} else if (event_number == 4) {
} else if (event_number == 6) {
} else if (event_number == 10) {
} else if (event_number == 11) {
} else if (event_number == 12) {
}
} else if (hotasobj.isButtonPressed()) {
}
usleep(1000);
}
}
/*
* Hotas.h
*
* Created on: Jan 31, 2013
* Author: metec
*/
#define JOY_DEV "/dev/input/js0"
#include <iostream>
#include <boost/thread.hpp>
#include <boost/asio.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <linux/joystick.h>
bool message_printed = false;
bool message2_printed = false;
class Hotas_manager {
public:
Hotas_manager();
virtual ~Hotas_manager();
void open_hotas_device();
/*
*
* read from hotas input
* used to the updated event data and status of the joystick from the
* the file.
*
*/
void readData_from_hotas();
js_event getJoystickEvent() {
return joystick_event;
}
int getNumOfAxis() {
return num_of_axis;
}
int getNumOfButtons() {
return num_of_buttons;
}
bool isAxisPressed() {
return axis_pressed;
}
bool isButtonPressed() {
return button_pressed;
}
int* getAxis() {
return axis;
}
char* getButton() {
return button;
}
private:
int fd;
js_event joystick_event;
bool hotas_connected;
int num_of_axis;
int num_of_buttons;
int version;
char devName[80];
/*
* the the variables below indicates
* the state of the joystick.
*/
int axis[30];
char button[30];
bool button_pressed;
bool axis_pressed;
};
Hotas_manager::Hotas_manager() {
// TODO Auto-generated constructor stub
hotas_connected = false;
open_hotas_device();
std::cout << "joystick device detected" << std::endl;
}
Hotas_manager::~Hotas_manager() {
// TODO Auto-generated destructor stub
}
void Hotas_manager::open_hotas_device() {
bool file_open_error_printed = false;
while (!hotas_connected) {
if ((fd = open(JOY_DEV, O_RDONLY)) > 0) {
ioctl(fd, JSIOCGAXES, num_of_axis);
ioctl(fd, JSIOCGBUTTONS, num_of_buttons);
ioctl(fd, JSIOCGVERSION, version);
ioctl(fd, JSIOCGNAME(80), devName);
/*
* NON BLOCKING MODE
*/
ioctl(fd, F_SETFL, O_NONBLOCK);
hotas_connected = true;
} else {
if (!file_open_error_printed) {
std::cout << "hotas device not detected. check "
"whether it is "
"plugged" << std::endl;
file_open_error_printed = true;
}
close(fd);
hotas_connected = false;
}
}
}
void Hotas_manager::readData_from_hotas() {
int result;
result = read(fd, &joystick_event, sizeof(struct js_event));
if (result > 0) {
switch (joystick_event.type & ~JS_EVENT_INIT) {
case JS_EVENT_AXIS:
axis[joystick_event.number] = joystick_event.value;
axis_pressed = true;
button_pressed = false;
break;
case JS_EVENT_BUTTON:
button[joystick_event.number] = joystick_event.value;
button_pressed = true;
axis_pressed = false;
break;
}
message2_printed = false;
message_printed = false;
} else {
if (!message_printed) {
std::cout << "problem in reading the stick file" << std::endl;
message_printed = true;
}
hotas_connected = false;
open_hotas_device();
if (!message2_printed) {
std::cout << "stick re-connected" << std::endl;
message2_printed = true;
}
}
}
I updated the main function to run 3 threads .
int main() {
boost::asio::io_service receive_from_hmi_io;
udpComm receive_from_hmi(receive_from_hmi_io, 6012);
receive_from_hmi.setRemoteEndpoint("127.0.0.1", 6011);
receive_from_hmi.start_async_receive();
boost::thread thread_receive_from_hmi(&udpComm::run_io_service,
&receive_from_hmi);
boost::thread thread_serial(&thread_write_to_datalink);
boost::thread thread_hotas(&start_hotas);
thread_hotas.join();
thread_serial.join();
thread_receive_from_hmi.join();
return 0;
}
The void thread_write_to_datalink() also writes the data come from the hotas_manager(joysticks).
void thread_write_to_datalink() {
/*
* boost serial communication
*/
boost::asio::io_service serial_port_io;
Serial_manager serial(serial_port_io, (char*) "/dev/ttyUSB0");
cout << "aileron " << "throttle " << "elevator " << endl;
while (1) {
// commands from udp communication
serial.write_to_serial(read_hmi_buffer, 6);
// data come from joystick inputs
//cout << aileron<<" "<<throttle<<" "<<elevator<< endl;
memcpy(&buffer_manual_flightcontrol[4], &aileron, 4);
memcpy(&buffer_manual_flightcontrol[8], &throttle, 4);
memcpy(&buffer_manual_flightcontrol[12], &elevator, 4);
unsigned char temp;
try {
serial.write_to_serial(buffer_manual_flightcontrol, 32);
//serial.write_to_serial(buffer_manual_flightcontrol, 32);
} catch (std::exception& exp) {
serial.handle_serial_exception(exp);
}
try {
serial.write_to_serial(buffer_payloadcontrol, 20);
} catch (std::exception& exp) {
serial.handle_serial_exception(exp);
}
usleep(100000);
}
}
My question is how better can I design to synchronize these 3 threads. If your answer says you do not need to use 3 threads I need you to tell me how.
Let's back up a little bit from multi-threading, your program mixes synchronous and asynchronous operations. You don't need to do this, as it will only cause confusion. You can asynchronously write the buffer read from the UDP socket to the serial port. This can all be achieved with a single thread running the io_service, eliminating any concurrency concerns.
You will need to add buffer management to keep the data read from the socket in scope for the lifetime of the async_write for the serial port, study the async UDP server as an example. Also study the documentation, specifically the requirements for buffer lifetime in async_write
buffers
One or more buffers containing the data to be written.
Although the buffers object may be copied as necessary, ownership of
the underlying memory blocks is retained by the caller, which must
guarantee that they remain valid until the handler is called.
Once you have completed that design, then you can move to more advanced techniques such as a thread pool or multiple io_services.
You need to make your access to read_hmi_buffer synchronized.
Therefore you need a mutex (std::mutex, pthread_mutex_t, or the windows equivalent), to lock onto whenever a piece of code read or write in that buffer.
See this question for a few explanations on the concept and links to other tutorials.