LU decomposition of large dense matrices - c++

I wanted to generate LU decomposition of large size dense matrices (N>10^7), the LU decomposition I'm currently using is based on Adaptive Cross Approximation and is taking very long time to execute for larger N, can anybody suggest few LU decomposition techniques that can be very well parallelised(using OpenMP) and take shorter period of time.
Note:
I write the code in C++ and make use of Xeon Processor(128 threads)
and Eigen library.
The entries in the matrix are filled through a kernel function of
form exp(-(x1-x2)^2).
Storage of matrix is not a problem, I'm working on Xeon processor and has enough memory and moreover, I'm not storing the full matrix and whenever I need to find an entry in matrix, I use the kernel function and generate type-double number for that cell.

Related

Sparse Matrix Vs Dense Matrix Multiplication C++ Tensorflow

I would like to write in C++ Tensorflow sparse matrix dense vector (SPMv) multiplication: y = Ax
The sparse matrix, A, is stored in CSR format. The usual sparsity of A is between 50-90%. The goal is to reach better or similar time than that of dense matrix dense vector (DMv) multiplication.
Please note that I have already viewed the following posts: Q1 Q2 Q3. However, I still am wondering about the following:
How does SPMv multiplication compare in terms of time to DMv? Since sparsity is relatively high, I assume that SPMv should be better given the reduction in the number of operations - Yes?
What should I take into to account to make SpMv the same or better in terms of time than the DMv? Why ppl are saying that the DMv will perform petter than SPMv? Does the storage representation make a difference?
Any recommended libraries that do SPMv in C++ for either CPU or GPU implementation.
This question is relevant to my other question here: (CSCC: Convolution Split Compression Calculation Algorithm for Deep Neural Network)
To answer the edited question:
Unless the Matrix is very sparse (<10% nonzeros on CPU, probably <1% on GPU), you will likely not benefit from the sparsity. While the number of floating point operations is reduced, the amount of storage is at least double (column or row index + value), memory access is irregular (you have an indirection via the index for the right-hand side), it becomes far more difficult to vectorize (or to achieve coalescing on the GPU) and if you parallelize you have to deal with the fact that rows are of varying length and therefore a static schedule is likely to be suboptimal.
Beyond the points above, yes, the storage representation matters. For example a COO-matrix stores two indices and the value, while CSR/CSC only store one but require an additional offset array which makes them more complex to build on the fly. Especially on the GPU, storage formats matter if you want to at least achieve some coalescing. This paper looks into how storage formats affect performance on the GPU: https://onlinelibrary.wiley.com/doi/full/10.1111/cgf.13957
For something generic try Eigen or cuSparse on GPU. There are plenty of others that perform better for specific use cases, but this part of the question isn't clearly answerable.
Beyond the matrix format itself, even the ordering of entries in your matrix can have a massive impact on performance, which is why the Cuthill-McKee algorithm is often used to reduce matrix bandwidth (and thereby improve cache performance).

Matrix multiplication is time-consuming when I write the same code in c mex format [duplicate]

I am making some benchmarks with CUDA, C++, C#, Java, and using MATLAB for verification and matrix generation. When I perform matrix multiplication with MATLAB, 2048x2048 and even bigger matrices are almost instantly multiplied.
1024x1024 2048x2048 4096x4096
--------- --------- ---------
CUDA C (ms) 43.11 391.05 3407.99
C++ (ms) 6137.10 64369.29 551390.93
C# (ms) 10509.00 300684.00 2527250.00
Java (ms) 9149.90 92562.28 838357.94
MATLAB (ms) 75.01 423.10 3133.90
Only CUDA is competitive, but I thought that at least C++ will be somewhat close and not 60 times slower. I also don't know what to think about the C# results. The algorithm is just the same as C++ and Java, but there's a giant jump 2048 from 1024.
How is MATLAB performing matrix multiplication so fast?
C++ Code:
float temp = 0;
timer.start();
for(int j = 0; j < rozmer; j++)
{
for (int k = 0; k < rozmer; k++)
{
temp = 0;
for (int m = 0; m < rozmer; m++)
{
temp = temp + matice1[j][m] * matice2[m][k];
}
matice3[j][k] = temp;
}
}
timer.stop();
This kind of question is recurring and should be answered more clearly than "MATLAB uses highly optimized libraries" or "MATLAB uses the MKL" for once on Stack Overflow.
History:
Matrix multiplication (together with Matrix-vector, vector-vector multiplication and many of the matrix decompositions) is (are) the most important problems in linear algebra. Engineers have been solving these problems with computers since the early days.
I'm not an expert on the history, but apparently back then, everybody just rewrote his FORTRAN version with simple loops. Some standardization then came along, with the identification of "kernels" (basic routines) that most linear algebra problems needed in order to be solved. These basic operations were then standardized in a specification called: Basic Linear Algebra Subprograms (BLAS). Engineers could then call these standard, well-tested BLAS routines in their code, making their work much easier.
BLAS:
BLAS evolved from level 1 (the first version which defined scalar-vector and vector-vector operations) to level 2 (vector-matrix operations) to level 3 (matrix-matrix operations), and provided more and more "kernels" so standardized more and more of the fundamental linear algebra operations. The original FORTRAN 77 implementations are still available on Netlib's website.
Towards better performance:
So over the years (notably between the BLAS level 1 and level 2 releases: early 80s), hardware changed, with the advent of vector operations and cache hierarchies. These evolutions made it possible to increase the performance of the BLAS subroutines substantially. Different vendors then came along with their implementation of BLAS routines which were more and more efficient.
I don't know all the historical implementations (I was not born or a kid back then), but two of the most notable ones came out in the early 2000s: the Intel MKL and GotoBLAS. Your Matlab uses the Intel MKL, which is a very good, optimized BLAS, and that explains the great performance you see.
Technical details on Matrix multiplication:
So why is Matlab (the MKL) so fast at dgemm (double-precision general matrix-matrix multiplication)? In simple terms: because it uses vectorization and good caching of data. In more complex terms: see the article provided by Jonathan Moore.
Basically, when you perform your multiplication in the C++ code you provided, you are not at all cache-friendly. Since I suspect you created an array of pointers to row arrays, your accesses in your inner loop to the k-th column of "matice2": matice2[m][k] are very slow. Indeed, when you access matice2[0][k], you must get the k-th element of the array 0 of your matrix. Then in the next iteration, you must access matice2[1][k], which is the k-th element of another array (the array 1). Then in the next iteration you access yet another array, and so on... Since the entire matrix matice2 can't fit in the highest caches (it's 8*1024*1024 bytes large), the program must fetch the desired element from main memory, losing a lot of time.
If you just transposed the matrix, so that accesses would be in contiguous memory addresses, your code would already run much faster because now the compiler can load entire rows in the cache at the same time. Just try this modified version:
timer.start();
float temp = 0;
//transpose matice2
for (int p = 0; p < rozmer; p++)
{
for (int q = 0; q < rozmer; q++)
{
tempmat[p][q] = matice2[q][p];
}
}
for(int j = 0; j < rozmer; j++)
{
for (int k = 0; k < rozmer; k++)
{
temp = 0;
for (int m = 0; m < rozmer; m++)
{
temp = temp + matice1[j][m] * tempmat[k][m];
}
matice3[j][k] = temp;
}
}
timer.stop();
So you can see how just cache locality increased your code's performance quite substantially. Now real dgemm implementations exploit that to a very extensive level: They perform the multiplication on blocks of the matrix defined by the size of the TLB (Translation lookaside buffer, long story short: what can effectively be cached), so that they stream to the processor exactly the amount of data it can process. The other aspect is vectorization, they use the processor's vectorized instructions for optimal instruction throughput, which you can't really do from your cross-platform C++ code.
Finally, people claiming that it's because of Strassen's or Coppersmith–Winograd algorithm are wrong, both these algorithms are not implementable in practice, because of hardware considerations mentioned above.
Here's my results using MATLAB R2011a + Parallel Computing Toolbox on a machine with a Tesla C2070:
>> A = rand(1024); gA = gpuArray(A);
% warm up by executing the operations a couple of times, and then:
>> tic, C = A * A; toc
Elapsed time is 0.075396 seconds.
>> tic, gC = gA * gA; toc
Elapsed time is 0.008621 seconds.
MATLAB uses highly optimized libraries for matrix multiplication which is why the plain MATLAB matrix multiplication is so fast. The gpuArray version uses MAGMA.
Update using R2014a on a machine with a Tesla K20c, and the new timeit and gputimeit functions:
>> A = rand(1024); gA = gpuArray(A);
>> timeit(#()A*A)
ans =
0.0324
>> gputimeit(#()gA*gA)
ans =
0.0022
Update using R2018b on a WIN64 machine with 16 physical cores and a Tesla V100:
>> timeit(#()A*A)
ans =
0.0229
>> gputimeit(#()gA*gA)
ans =
4.8019e-04
(NB: at some point (I forget when exactly) gpuArray switched from MAGMA to cuBLAS - MAGMA is still used for some gpuArray operations though)
Update using R2022a on a WIN64 machine with 32 physical cores and an A100 GPU:
>> timeit(#()A*A)
ans =
0.0076
>> gputimeit(#()gA*gA)
ans =
2.5344e-04
This is why. MATLAB doesn't perform a naive matrix multiplication by looping over every single element the way you did in your C++ code.
Of course I'm assuming that you just used C=A*B instead of writing a multiplication function yourself.
Matlab incorporated LAPACK some time ago, so I assume their matrix multiplication uses something at least that fast. LAPACK source code and documentation is readily available.
You might also look at Goto and Van De Geijn's paper "Anatomy of High-Performance Matrix
Multiplication" at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.1785&rep=rep1&type=pdf
The answer is LAPACK and BLAS libraries make MATLAB blindingly fast at matrix operations, not any proprietary code by the folks at MATLAB.
Use the LAPACK and/or BLAS libraries in your C++ code for matrix operations and you should get similar performance as MATLAB. These libraries should be freely available on any modern system and parts were developed over decades in academia. Note that there are multiple implementations, including some closed source such as Intel MKL.
A discussion of how BLAS gets high performance is available here.
BTW, it's a serious pain in my experience to call LAPACK libraries directly from c (but worth it). You need to read the documentation VERY precisely.
When doing matrix multiplying, you use naive multiplication method which takes time of O(n^3).
There exist matrix multiplication algorithm which takes O(n^2.4). Which means that at n=2000 your algorithm requires ~100 times as much computation as the best algorithm.
You should really check the wikipedia page for matrix multiplication for further information on the efficient ways to implement it.
Depending on your version of Matlab, I believe it might be using your GPU already.
Another thing; Matlab keeps track of many properties of your matrix; wether its diagonal, hermetian, and so forth, and specializes its algorithms based thereon. Maybe its specializing based on the zero matrix you are passing it, or something like that? Maybe it is caching repeated function calls, which messes up your timings? Perhaps it optimizes out repeated unused matrix products?
To guard against such things happening, use a matrix of random numbers, and make sure you force execution by printing the result to screen or disk or somesuch.
The general answer to "Why is matlab faster at doing xxx than other programs" is that matlab has a lot of built in, optimized functions.
The other programs that are used often do not have these functions so people apply their own creative solutions, which are suprisingly slower than professionally optimized code.
This can be interpreted in two ways:
1) The common/theoretical way: Matlab is not significantly faster, you are just doing the benchmark wrong
2) The realistic way: For this stuff Matlab is faster in practice because languages as c++ are just too easily used in ineffective ways.
MATLAB uses a highly optimized implementation of LAPACK from Intel known as Intel Math Kernel Library (Intel MKL) - specifically the dgemm function. The speed This library takes advantage of processor features including SIMD instructions and multi-core processors. They don't document which specific algorithm they use. If you were to call Intel MKL from C++ you should see similar performance.
I am not sure what library MATLAB uses for GPU multiplication but probably something like nVidia CUBLAS.
The sharp contrast is not only due to Matlab's amazing optimization (as discussed by many other answers already), but also in the way you formulated matrix as an object.
It seems like you made matrix a list of lists? A list of lists contains pointers to lists which then contain your matrix elements. The locations of the contained lists are assigned arbitrarily. As you are looping over your first index (row number?), the time of memory access is very significant. In comparison, why don't you try implement matrix as a single list/vector using the following method?
#include <vector>
struct matrix {
matrix(int x, int y) : n_row(x), n_col(y), M(x * y) {}
int n_row;
int n_col;
std::vector<double> M;
double &operator()(int i, int j);
};
And
double &matrix::operator()(int i, int j) {
return M[n_col * i + j];
}
The same multiplication algorithm should be used so that the number of flop is the same. (n^3 for square matrices of size n)
I'm asking you to time it so that the result is comparable to what you had earlier (on the same machine). With the comparison, you will show exactly how significant memory access time can be!
It's slow in C++ because you are not using multithreading. Essentially, if A = B C, where they are all matrices, the first row of A can be computed independently from the 2nd row, etc. If A, B, and C are all n by n matrices, you can speed up the multiplication by a factor of n^2, as
a_{i,j} = sum_{k} b_{i,k} c_{k,j}
If you use, say, Eigen [ http://eigen.tuxfamily.org/dox/GettingStarted.html ], multithreading is built-in and the number of threads is adjustable.
Because MATLAB is a programming language at first developed for numerical linear algebra (matrix manipulations), which has libraries especially developed for matrix multiplications. And now MATLAB can also use the GPUs (Graphics processing unit) for this additionally.
And if we look at your computation results:
1024x1024 2048x2048 4096x4096
--------- --------- ---------
CUDA C (ms) 43.11 391.05 3407.99
C++ (ms) 6137.10 64369.29 551390.93
C# (ms) 10509.00 300684.00 2527250.00
Java (ms) 9149.90 92562.28 838357.94
MATLAB (ms) 75.01 423.10 3133.90
then we can see that not only MATLAB is so fast in matrix multiplication: CUDA C (programming language from NVIDIA) has some better results than MATLAB. CUDA C has also libraries especially developed for matrix multiplications and it uses the GPUs.
Short history of MATLAB
Cleve Moler, the chairman of the computer science department at the University of New Mexico, started developing MATLAB in the late 1970s. He designed it to give his students access to LINPACK (a software library for performing numerical linear algebra) and EISPACK (is a software library for numerical computation of linear algebra) without them having to learn Fortran. It soon spread to other universities and found a strong audience within the applied mathematics community. Jack Little, an engineer, was exposed to it during a visit Moler made to Stanford University in 1983. Recognizing its commercial potential, he joined with Moler and Steve Bangert. They rewrote MATLAB in C and founded MathWorks in 1984 to continue its development. These rewritten libraries were known as JACKPAC. In 2000, MATLAB was rewritten to use a newer set of libraries for matrix manipulation, LAPACK (is a standard software library for numerical linear algebra).
Source
What is CUDA C
CUDA C uses also libraries especially developed for matrix multiplications like OpenGL (Open Graphics Library). It uses also GPU and Direct3D (on MS Windows).
The CUDA platform is designed to work with programming languages such as C, C++, and Fortran. This accessibility makes it easier for specialists in parallel programming to use GPU resources, in contrast to prior APIs like Direct3D and OpenGL, which required advanced skills in graphics programming. Also, CUDA supports programming frameworks such as OpenACC and OpenCL.
Example of CUDA processing flow:
Copy data from main memory to GPU memory
CPU initiates the GPU compute kernel
GPU's CUDA cores execute the kernel in parallel
Copy the resulting data from GPU memory to main memory
Comparing CPU and GPU Execution Speeds
We ran a benchmark in which we measured the amount of time it took to execute 50 time steps for grid sizes of 64, 128, 512, 1024, and 2048 on an Intel Xeon Processor X5650 and then using an NVIDIA Tesla C2050 GPU.
For a grid size of 2048, the algorithm shows a 7.5x decrease in compute time from more than a minute on the CPU to less than 10 seconds on the GPU. The log scale plot shows that the CPU is actually faster for small grid sizes. As the technology evolves and matures, however, GPU solutions are increasingly able to handle smaller problems, a trend that we expect to continue.
Source
From introduction for CUDA C Programming Guide:
Driven by the insatiable market demand for realtime, high-definition 3D graphics, the programmable Graphic Processor Unit or GPU has evolved into a highly parallel, multithreaded, manycore processor with tremendous computational horsepower and very high memory bandwidth, as illustrated by Figure 1 and Figure 2.
Figure 1. Floating-Point Operations per Second for the CPU and GPU
Figure 2. Memory Bandwidth for the CPU and GPU
The reason behind the discrepancy in floating-point capability between the CPU and the GPU is that the GPU is specialized for compute-intensive, highly parallel computation - exactly what graphics rendering is about - and therefore designed such that more transistors are devoted to data processing rather than data caching and flow control, as schematically illustrated by Figure 3.
Figure 3. The GPU Devotes More Transistors to Data Processing
More specifically, the GPU is especially well-suited to address problems that can be expressed as data-parallel computations - the same program is executed on many data elements in parallel - with high arithmetic intensity - the ratio of arithmetic operations to memory operations. Because the same program is executed for each data element, there is a lower requirement for sophisticated flow control, and because it is executed on many data elements and has high arithmetic intensity, the memory access latency can be hidden with calculations instead of big data caches.
Data-parallel processing maps data elements to parallel processing threads. Many applications that process large data sets can use a data-parallel programming model to speed up the computations. In 3D rendering, large sets of pixels and vertices are mapped to parallel threads. Similarly, image and media processing applications such as post-processing of rendered images, video encoding and decoding, image scaling, stereo vision, and pattern recognition can map image blocks and pixels to parallel processing threads. In fact, many algorithms outside the field of image rendering and processing are accelerated by data-parallel processing, from general signal processing or physics simulation to computational finance or computational biology.
Source
Advanced reading
GPUs (Graphics processing unit)
MATLAB
CUDA C Programming Guide
Using GPUs in MATLAB
Basic Linear Algebra Subprograms (BLAS)
Anatomy of High-Performance Matrix Multiplication, from Kazushige Goto and Robert A. Van De Geijn
Some interesting facs
I've written C++ matrix multiplication that is as fast as Matlab's but it took some care. (Before Matlab was using GPUs for this).
Сitation from this answer.

Matrix from a input file to LAPACK and inverse to a output file again

I am working on a FEM project where I need a linear solution of Ku=f.
I am doing this by LAPACK solver.
As you may be familiar that sometimes the K matrix will be so huge (30GB).
Its needs good ram to malloc such a matrix in conventional way. I just need your help if I can write the matrix to a file
Can you please suggest me to input such a matrix from file itself to lapack solver and get output to a file.
Thanks in advance.
Maharshi.
30G is not a large size for computing servers. You may want to upgrade your server.
With limited hardware, yes, you can put the matrix in file, and use the same LAPACK routines to solve the equation. The technique is called memory mapped file. It maps the content of a file to a memory address range with the same size, without allocating the physical memory. When you read/write the data from/to this address range, you are actually read/write the file.
https://en.wikipedia.org/wiki/Memory-mapped_file
On linux you can use mmap() to achieve this.
http://man7.org/linux/man-pages/man2/mmap.2.html
However the speed to access the memory address range is as slow as accessing the disk file.
Depending on the support of shape functions used in your FEM code, the matrix K is often sparse : most of the elements of the matrix are null. Hence, using a format dedicated to sparse matrices such as CSR is much more efficient to store the matrix. Unfortunately, LAPACK offers little support for such matrices, although it can handle banded matrices.
Take a look at the Eigen library or the PETSc library. These libraries provide interfaces to efficient solvers dedicated to sparse matrices. See there for PETSc. For instance, see Mumps or SuiteSparse.

How to speed up 2D 'full' convolution (multiple kernels) with matrix multiplication?

I'm working with convolutional deep neural networks (CRBM in particular). I need to perform several 'valid' convolution and several 'full' convolutions. I need to optimize their speed. I'm working with C++.
In the case of the 'valid' convolution I have been able to speed it up by around 50% by rearranging the image (This is the equivalent of im2col in Matlab) and multiplying (matrix multiply) by the matrix of kernels (one per line), replacing several convolutions by one matrix multiplication.
Unfortunately, I haven't been able to gain anything with 'full' convolution. I know that I can also rearrange the image (using an equivalent of convmtx2 in Matlab), but simply doing the rearranging of the image matrix to a convolution matrix is already much slower (almost an order of magnitude) than doing all the convolutions. The convolution matrix becomes large very quickly.
Is there a good practical way of speeding 'full' convolution (with multiple kernels) up with matrix multiplication in C++ ? Perhaps, an efficient way of computing convmtx2 ?

Calculating (very) large matrix products with CUDA

I am just beginning to learn some cuda programming and I am interested how to handle calculation of large matrices which surpass the Block/thread sizes.
For example, I have seen code which shows how to perform tiled matrix multiplication but it fails with the Block size and grid size are too small. In the mentioned code, if the Block size and Grid size are each set to 1, then only the first element of the final matrix will be computed.
The answer is simple: call the kernel with larger block and grid sizes, but what happens when I want to perform a matrix multiplication with 8 million rows and 6 million columns - something arbitrarily large for which there cannot be a proper Grid and Block size for any modern GPU?
Where can I find example code or an algorithm for how to work with this sort of thing? I believe that the simple case should be a matrix multiplication algorithm which works if called with <<<1,1>>> and any algorithm which can account for this call should be able to account for any larger matrix.
The main problem with very large matrix is not the number of blocks or number of threads. The main problem is that you cannot fit the whole matrix in GPU's DRAM memory. So for doing the multiplication, you need to manually use tiling to divide the input matrix into tiles that you can fit in the GPU's memory. Then, you need to run matrix multiplication on that tile on GPU with as many threads as you need and then return the tile result back to the host (CPU).
When you are working on these big tiles on the GPU, you need to launch 1000s of threads to get the performance that you need. launching only one thread does not help you in any way.
for more information you can look at this paper:
CUDA Based Fast Implementation of Very Large Matrix Computation
I just found it by googling "large matrix multiplication CUDA"