Related
I have read couple of the questions regarding my problem on StackOverflow.com now, and none of it seems to solve my problem. Or I maybe have done it wrong...
The overloaded << works if I make it into an inline function. But how do I make it work in my case?
warning: friend declaration std::ostream& operator<<(std::ostream&, const D<classT>&)' declares a non-template function
warning: (if this is not what you intended, make sure the function template has already been declared and add <> after the function name here) -Wno-non-template-friend disables this warning
/tmp/cc6VTWdv.o:uppgift4.cc:(.text+0x180): undefined reference to operator<<(std::basic_ostream<char, std::char_traits<char> >&, D<int> const&)'
collect2: ld returned 1 exit status
The code:
template <class T>
T my_max(T a, T b)
{
if(a > b)
return a;
else
return b;
}
template <class classT>
class D
{
public:
D(classT in)
: d(in) {};
bool operator>(const D& rhs) const;
classT operator=(const D<classT>& rhs);
friend ostream& operator<< (ostream & os, const D<classT>& rhs);
private:
classT d;
};
int main()
{
int i1 = 1;
int i2 = 2;
D<int> d1(i1);
D<int> d2(i2);
cout << my_max(d1,d2) << endl;
return 0;
}
template <class classT>
ostream& operator<<(ostream &os, const D<classT>& rhs)
{
os << rhs.d;
return os;
}
This is one of those frequently asked questions that have different approaches that are similar but not really the same. The three approaches differ in who you are declaring to be a friend of your function --and then on how you implement it.
The extrovert
Declare all instantiations of the template as friends. This is what you have accepted as answer, and also what most of the other answers propose. In this approach you are needlessly opening your particular instantiation D<T> by declaring friends all operator<< instantiations. That is, std::ostream& operator<<( std::ostream &, const D<int>& ) has access to all internals of D<double>.
template <typename T>
class Test {
template <typename U> // all instantiations of this template are my friends
friend std::ostream& operator<<( std::ostream&, const Test<U>& );
};
template <typename T>
std::ostream& operator<<( std::ostream& o, const Test<T>& ) {
// Can access all Test<int>, Test<double>... regardless of what T is
}
The introverts
Only declare a particular instantiation of the insertion operator as a friend. D<int> may like the insertion operator when applied to itself, but it does not want anything to do with std::ostream& operator<<( std::ostream&, const D<double>& ).
This can be done in two ways, the simple way being as #Emery Berger proposed, which is inlining the operator --which is also a good idea for other reasons:
template <typename T>
class Test {
friend std::ostream& operator<<( std::ostream& o, const Test& t ) {
// can access the enclosing Test. If T is int, it cannot access Test<double>
}
};
In this first version, you are not creating a templated operator<<, but rather a non-templated function for each instantiation of the Test template. Again, the difference is subtle but this is basically equivalent to manually adding: std::ostream& operator<<( std::ostream&, const Test<int>& ) when you instantiate Test<int>, and another similar overload when you instantiate Test with double, or with any other type.
The third version is more cumbersome. Without inlining the code, and with the use of a template, you can declare a single instantiation of the template a friend of your class, without opening yourself to all other instantiations:
// Forward declare both templates:
template <typename T> class Test;
template <typename T> std::ostream& operator<<( std::ostream&, const Test<T>& );
// Declare the actual templates:
template <typename T>
class Test {
friend std::ostream& operator<< <T>( std::ostream&, const Test<T>& );
};
// Implement the operator
template <typename T>
std::ostream& operator<<( std::ostream& o, const Test<T>& t ) {
// Can only access Test<T> for the same T as is instantiating, that is:
// if T is int, this template cannot access Test<double>, Test<char> ...
}
Taking advantage of the extrovert
The subtle difference between this third option and the first is in how much you are opening to other classes. An example of abuse in the extrovert version would be someone that wants to get access into your internals and does this:
namespace hacker {
struct unique {}; // Create a new unique type to avoid breaking ODR
template <>
std::ostream& operator<< <unique>( std::ostream&, const Test<unique>& )
{
// if Test<T> is an extrovert, I can access and modify *any* Test<T>!!!
// if Test<T> is an introvert, then I can only mess up with Test<unique>
// which is just not so much fun...
}
}
You can't declare a friend like that, you need to specify a different template type for it.
template <typename SclassT>
friend ostream& operator<< (ostream & os, const D<SclassT>& rhs);
note SclassT so that it doesn't shadow classT. When defining
template <typename SclassT>
ostream& operator<< (ostream & os, const D<SclassT>& rhs)
{
// body..
}
This worked for me without any compiler warnings.
#include <iostream>
using namespace std;
template <class T>
T my_max(T a, T b)
{
if(a > b)
return a;
else
return b;
}
template <class classT>
class D
{
public:
D(classT in)
: d(in) {};
bool operator>(const D& rhs) const {
return (d > rhs.d);
}
classT operator=(const D<classT>& rhs);
friend ostream& operator<< (ostream & os, const D& rhs) {
os << rhs.d;
return os;
}
private:
classT d;
};
int main()
{
int i1 = 1;
int i2 = 2;
D<int> d1(i1);
D<int> d2(i2);
cout << my_max(d1,d2) << endl;
return 0;
}
I think you shouldn't make friend in the first place.
You can create a public method call print, something like this (for a non template class):
std::ostream& MyClass::print(std::ostream& os) const
{
os << "Private One" << privateOne_ << endl;
os << "Private Two" << privateTwo_ << endl;
os.flush();
return os;
}
and then, outside the class (but in the same namespace)
std::ostream& operator<<(std::ostream& os, const MyClass& myClass)
{
return myClass.print(os);
}
I think it should work also for template class, but I haven't tested yet.
Here you go:
#include <cstdlib>
#include <iostream>
using namespace std;
template <class T>
T my_max(T a, T b)
{
if(a > b)
return a;
else
return b;
}
template <class classT>
class D
{
public:
D(classT in)
: d(in) {};
bool operator>(const D& rhs) const { return d > rhs.d;};
classT operator=(const D<classT>& rhs);
template<class classT> friend ostream& operator<< (ostream & os, const D<classT>& rhs);
private:
classT d;
};
template<class classT> ostream& operator<<(ostream& os, class D<typename classT> const& rhs)
{
os << rhs.d;
return os;
}
int main()
{
int i1 = 1;
int i2 = 2;
D<int> d1(i1);
D<int> d2(i2);
cout << my_max(d1,d2) << endl;
return 0;
}
When I'm writing a function in a template class how can I find out what my T is?
e.g.
template <typename T>
ostream& operator << (ostream &out,Vector<T>& vec)
{
if (typename T == int)
}
How can I write the above if statement so it works?
Something like this:
template< class T >
struct TypeIsInt
{
static const bool value = false;
};
template<>
struct TypeIsInt< int >
{
static const bool value = true;
};
template <typename T>
ostream& operator << (ostream &out,Vector<T>& vec)
{
if (TypeIsInt< T >::value)
// ...
}
Since C++11 we have std::is_same:
if (std::is_same<T, int>::value) ...
It's implemented similar to the suggested trait TypeIsInt suggested in the other answers,
but with two types to be compared.
Define it explicitly, e.g.:
template <>
ostream& operator << (ostream &out,Vector<int>& vec)
{
}
Simplest, most general solution:
Just write a plain old overload of the function:
ostream& operator << (ostream &out,Vector<int>& vec)
{
// Your int-specific implementation goes here
}
This assumes that the int and non-int versions don't have much code in common, as you have to write two separate implementations.
IF you want to use one common implementation of the function, with just an if statement inside that differs, use Charles Bailey's implementation:
template< class T >
struct TypeIsInt
{
static const bool value = false;
};
template<>
struct TypeIsInt< int >
{
static const bool value = true;
};
template <typename T>
ostream& operator << (ostream &out,Vector<T>& vec)
{
if (TypeIsInt< T >::value) {
// your int-specific code here
}
}
In general, don't use typeid if you don't need to.
The easiest way is to provide a template specialisation:
#include <iostream>
#include <vector>
using namespace std;
template <typename T> struct A {
};
template <typename T >
ostream & operator <<( ostream & os, A<T> & a ) {
return os << "not an int" << endl;
}
template <>
ostream & operator <<( ostream & os, A<int> & a ) {
return os << "an int" << endl;
}
int main() {
A <double> ad;
cout << ad;
A <int> ai;
cout << ai;
}
This way.
ostream & operator << (ostream &out, Vector<int> const & vec)
{
// ...
}
The compiler will choose this function over the function template if you pass Vector<int>.
Edit: I found this article, which attempts to explain why to prefer overloading to template specialization.
TypeID is never a good idea. It relies on RTTI.
By the way here is your answer :http://www.parashift.com/c++-faq-lite/templates.html#faq-35.7
One more solution is:
if(std::is_same<T, int>::value)
//It is int
if (std::is_same<T, double>::value)
//It is double
if (std::is_same<T, long double>::value)
//It is long double
C++ templates don't work this way. The general idea of templates is express somethings which is common for a lot of different types. And in your case you should use template specialization.
template<class T> ostream& operator<< (ostream& out, const vector<T>& v)
{
// your general code for all type
}
// specialized template
template<> ostream& operator<< <int>(ostream& out, const vector<int>& vec)
{
// your specific to iny type code goes here
}
Then C++ compiler will call this function when you use int type and general implementation for any other type
std::vector<int> f(5, 5);
std::cout << f;
I have read couple of the questions regarding my problem on StackOverflow.com now, and none of it seems to solve my problem. Or I maybe have done it wrong...
The overloaded << works if I make it into an inline function. But how do I make it work in my case?
warning: friend declaration std::ostream& operator<<(std::ostream&, const D<classT>&)' declares a non-template function
warning: (if this is not what you intended, make sure the function template has already been declared and add <> after the function name here) -Wno-non-template-friend disables this warning
/tmp/cc6VTWdv.o:uppgift4.cc:(.text+0x180): undefined reference to operator<<(std::basic_ostream<char, std::char_traits<char> >&, D<int> const&)'
collect2: ld returned 1 exit status
The code:
template <class T>
T my_max(T a, T b)
{
if(a > b)
return a;
else
return b;
}
template <class classT>
class D
{
public:
D(classT in)
: d(in) {};
bool operator>(const D& rhs) const;
classT operator=(const D<classT>& rhs);
friend ostream& operator<< (ostream & os, const D<classT>& rhs);
private:
classT d;
};
int main()
{
int i1 = 1;
int i2 = 2;
D<int> d1(i1);
D<int> d2(i2);
cout << my_max(d1,d2) << endl;
return 0;
}
template <class classT>
ostream& operator<<(ostream &os, const D<classT>& rhs)
{
os << rhs.d;
return os;
}
This is one of those frequently asked questions that have different approaches that are similar but not really the same. The three approaches differ in who you are declaring to be a friend of your function --and then on how you implement it.
The extrovert
Declare all instantiations of the template as friends. This is what you have accepted as answer, and also what most of the other answers propose. In this approach you are needlessly opening your particular instantiation D<T> by declaring friends all operator<< instantiations. That is, std::ostream& operator<<( std::ostream &, const D<int>& ) has access to all internals of D<double>.
template <typename T>
class Test {
template <typename U> // all instantiations of this template are my friends
friend std::ostream& operator<<( std::ostream&, const Test<U>& );
};
template <typename T>
std::ostream& operator<<( std::ostream& o, const Test<T>& ) {
// Can access all Test<int>, Test<double>... regardless of what T is
}
The introverts
Only declare a particular instantiation of the insertion operator as a friend. D<int> may like the insertion operator when applied to itself, but it does not want anything to do with std::ostream& operator<<( std::ostream&, const D<double>& ).
This can be done in two ways, the simple way being as #Emery Berger proposed, which is inlining the operator --which is also a good idea for other reasons:
template <typename T>
class Test {
friend std::ostream& operator<<( std::ostream& o, const Test& t ) {
// can access the enclosing Test. If T is int, it cannot access Test<double>
}
};
In this first version, you are not creating a templated operator<<, but rather a non-templated function for each instantiation of the Test template. Again, the difference is subtle but this is basically equivalent to manually adding: std::ostream& operator<<( std::ostream&, const Test<int>& ) when you instantiate Test<int>, and another similar overload when you instantiate Test with double, or with any other type.
The third version is more cumbersome. Without inlining the code, and with the use of a template, you can declare a single instantiation of the template a friend of your class, without opening yourself to all other instantiations:
// Forward declare both templates:
template <typename T> class Test;
template <typename T> std::ostream& operator<<( std::ostream&, const Test<T>& );
// Declare the actual templates:
template <typename T>
class Test {
friend std::ostream& operator<< <T>( std::ostream&, const Test<T>& );
};
// Implement the operator
template <typename T>
std::ostream& operator<<( std::ostream& o, const Test<T>& t ) {
// Can only access Test<T> for the same T as is instantiating, that is:
// if T is int, this template cannot access Test<double>, Test<char> ...
}
Taking advantage of the extrovert
The subtle difference between this third option and the first is in how much you are opening to other classes. An example of abuse in the extrovert version would be someone that wants to get access into your internals and does this:
namespace hacker {
struct unique {}; // Create a new unique type to avoid breaking ODR
template <>
std::ostream& operator<< <unique>( std::ostream&, const Test<unique>& )
{
// if Test<T> is an extrovert, I can access and modify *any* Test<T>!!!
// if Test<T> is an introvert, then I can only mess up with Test<unique>
// which is just not so much fun...
}
}
You can't declare a friend like that, you need to specify a different template type for it.
template <typename SclassT>
friend ostream& operator<< (ostream & os, const D<SclassT>& rhs);
note SclassT so that it doesn't shadow classT. When defining
template <typename SclassT>
ostream& operator<< (ostream & os, const D<SclassT>& rhs)
{
// body..
}
This worked for me without any compiler warnings.
#include <iostream>
using namespace std;
template <class T>
T my_max(T a, T b)
{
if(a > b)
return a;
else
return b;
}
template <class classT>
class D
{
public:
D(classT in)
: d(in) {};
bool operator>(const D& rhs) const {
return (d > rhs.d);
}
classT operator=(const D<classT>& rhs);
friend ostream& operator<< (ostream & os, const D& rhs) {
os << rhs.d;
return os;
}
private:
classT d;
};
int main()
{
int i1 = 1;
int i2 = 2;
D<int> d1(i1);
D<int> d2(i2);
cout << my_max(d1,d2) << endl;
return 0;
}
I think you shouldn't make friend in the first place.
You can create a public method call print, something like this (for a non template class):
std::ostream& MyClass::print(std::ostream& os) const
{
os << "Private One" << privateOne_ << endl;
os << "Private Two" << privateTwo_ << endl;
os.flush();
return os;
}
and then, outside the class (but in the same namespace)
std::ostream& operator<<(std::ostream& os, const MyClass& myClass)
{
return myClass.print(os);
}
I think it should work also for template class, but I haven't tested yet.
Here you go:
#include <cstdlib>
#include <iostream>
using namespace std;
template <class T>
T my_max(T a, T b)
{
if(a > b)
return a;
else
return b;
}
template <class classT>
class D
{
public:
D(classT in)
: d(in) {};
bool operator>(const D& rhs) const { return d > rhs.d;};
classT operator=(const D<classT>& rhs);
template<class classT> friend ostream& operator<< (ostream & os, const D<classT>& rhs);
private:
classT d;
};
template<class classT> ostream& operator<<(ostream& os, class D<typename classT> const& rhs)
{
os << rhs.d;
return os;
}
int main()
{
int i1 = 1;
int i2 = 2;
D<int> d1(i1);
D<int> d2(i2);
cout << my_max(d1,d2) << endl;
return 0;
}
I've been trying to understand SFINAE and was trying to write a simple overloaded operator << that would call the 'print' method on any class that contains such a method. I read through the answers on the question Is it possible to write a template to check for a function's existence? and tried writing:
template<class T, class = decltype(void(std::declval<T>().print), std::true_type{})>
inline std::ostream &operator<<(std::ostream &out, const T &obj) {
obj.print(out); return out; }
and
template<class T, class = decltype(void(std::declval<T>().print(std::declval<std::ostream &>())), std::true_type{})>
inline std::ostream &operator<<(std::ostream &out, const T &obj) {
obj.print(out); return out; }
but this simply doesn't work -- the compiler seems to have no problem instantiating the template for any type, so gives slews of 'ambiguous overload' errors when I try to print things like string literals...
Your "function exists" expression is incorrect. Try this:
template <typename T,
typename = decltype(
void(std::declval<T>().print(std::declval<std::ostream&>())),
std::true_type{})> // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
std::ostream & operator<<(std::ostream & out, const T & obj)
{
obj.print(out);
return out;
}
You might also consider this alternative:
template <typename T>
auto operator<<(std::ostream & out, const T & obj)
-> decltype(obj.print(out), (void)0, out)
{
obj.print(out);
return out;
}
I don't understand what you've meant your second type parameter
class = decltype(void(std::declval<T>().print), std::true_type{})
to mean. What is this supposed to evaluate to?
I think you can make it work by using the following.
#include <iostream>
#include <type_traits>
template<typename T,
typename = decltype(std::declval<const T>().print(std::cout))>
std::ostream&
operator<<(std::ostream& out, const T& obj)
{
obj.print(out);
return out;
}
struct A
{
void
print(std::ostream& out) const
{
out << "A";
}
};
int
main()
{
A a {};
std::cout << "And the winner is: " << a << std::endl;
}
It will correctly output And the winner is: A but there are probably some corner cases I've overlooked.
The expression
decltype(std::declval<const T>().print(std::cout))
will evaluate to the return type of the print(std::ostream&) const member function if such function is declared and a type error otherwise.
When I'm writing a function in a template class how can I find out what my T is?
e.g.
template <typename T>
ostream& operator << (ostream &out,Vector<T>& vec)
{
if (typename T == int)
}
How can I write the above if statement so it works?
Something like this:
template< class T >
struct TypeIsInt
{
static const bool value = false;
};
template<>
struct TypeIsInt< int >
{
static const bool value = true;
};
template <typename T>
ostream& operator << (ostream &out,Vector<T>& vec)
{
if (TypeIsInt< T >::value)
// ...
}
Since C++11 we have std::is_same:
if (std::is_same<T, int>::value) ...
It's implemented similar to the suggested trait TypeIsInt suggested in the other answers,
but with two types to be compared.
Define it explicitly, e.g.:
template <>
ostream& operator << (ostream &out,Vector<int>& vec)
{
}
Simplest, most general solution:
Just write a plain old overload of the function:
ostream& operator << (ostream &out,Vector<int>& vec)
{
// Your int-specific implementation goes here
}
This assumes that the int and non-int versions don't have much code in common, as you have to write two separate implementations.
IF you want to use one common implementation of the function, with just an if statement inside that differs, use Charles Bailey's implementation:
template< class T >
struct TypeIsInt
{
static const bool value = false;
};
template<>
struct TypeIsInt< int >
{
static const bool value = true;
};
template <typename T>
ostream& operator << (ostream &out,Vector<T>& vec)
{
if (TypeIsInt< T >::value) {
// your int-specific code here
}
}
In general, don't use typeid if you don't need to.
The easiest way is to provide a template specialisation:
#include <iostream>
#include <vector>
using namespace std;
template <typename T> struct A {
};
template <typename T >
ostream & operator <<( ostream & os, A<T> & a ) {
return os << "not an int" << endl;
}
template <>
ostream & operator <<( ostream & os, A<int> & a ) {
return os << "an int" << endl;
}
int main() {
A <double> ad;
cout << ad;
A <int> ai;
cout << ai;
}
This way.
ostream & operator << (ostream &out, Vector<int> const & vec)
{
// ...
}
The compiler will choose this function over the function template if you pass Vector<int>.
Edit: I found this article, which attempts to explain why to prefer overloading to template specialization.
TypeID is never a good idea. It relies on RTTI.
By the way here is your answer :http://www.parashift.com/c++-faq-lite/templates.html#faq-35.7
One more solution is:
if(std::is_same<T, int>::value)
//It is int
if (std::is_same<T, double>::value)
//It is double
if (std::is_same<T, long double>::value)
//It is long double
C++ templates don't work this way. The general idea of templates is express somethings which is common for a lot of different types. And in your case you should use template specialization.
template<class T> ostream& operator<< (ostream& out, const vector<T>& v)
{
// your general code for all type
}
// specialized template
template<> ostream& operator<< <int>(ostream& out, const vector<int>& vec)
{
// your specific to iny type code goes here
}
Then C++ compiler will call this function when you use int type and general implementation for any other type
std::vector<int> f(5, 5);
std::cout << f;