I am totally new to OpenCV and I have started to dive into it. But I'd need a little bit of help.
So I want to combine these 2 images:
I would like the 2 images to match along their edges (ignoring the very right part of the image for now)
Can anyone please point me into the right direction? I have tried using the findTransformECC function. Here's my implementation:
cv::Mat im1 = [imageArray[1] CVMat3];
cv::Mat im2 = [imageArray[0] CVMat3];
// Convert images to gray scale;
cv::Mat im1_gray, im2_gray;
cvtColor(im1, im1_gray, CV_BGR2GRAY);
cvtColor(im2, im2_gray, CV_BGR2GRAY);
// Define the motion model
const int warp_mode = cv::MOTION_AFFINE;
// Set a 2x3 or 3x3 warp matrix depending on the motion model.
cv::Mat warp_matrix;
// Initialize the matrix to identity
if ( warp_mode == cv::MOTION_HOMOGRAPHY )
warp_matrix = cv::Mat::eye(3, 3, CV_32F);
else
warp_matrix = cv::Mat::eye(2, 3, CV_32F);
// Specify the number of iterations.
int number_of_iterations = 50;
// Specify the threshold of the increment
// in the correlation coefficient between two iterations
double termination_eps = 1e-10;
// Define termination criteria
cv::TermCriteria criteria (cv::TermCriteria::COUNT+cv::TermCriteria::EPS, number_of_iterations, termination_eps);
// Run the ECC algorithm. The results are stored in warp_matrix.
findTransformECC(
im1_gray,
im2_gray,
warp_matrix,
warp_mode,
criteria
);
// Storage for warped image.
cv::Mat im2_aligned;
if (warp_mode != cv::MOTION_HOMOGRAPHY)
// Use warpAffine for Translation, Euclidean and Affine
warpAffine(im2, im2_aligned, warp_matrix, im1.size(), cv::INTER_LINEAR + cv::WARP_INVERSE_MAP);
else
// Use warpPerspective for Homography
warpPerspective (im2, im2_aligned, warp_matrix, im1.size(),cv::INTER_LINEAR + cv::WARP_INVERSE_MAP);
UIImage* result = [UIImage imageWithCVMat:im2_aligned];
return result;
I have tried playing around with the termination_eps and number_of_iterations and increased/decreased those values, but they didn't really make a big difference.
So here's the result:
What can I do to improve my result?
EDIT: I have marked the problematic edges with red circles. The goal is to warp the bottom image and make it match with the lines from the image above:
I did a little bit of research and I'm afraid the findTransformECC function won't give me the result I'd like to have :-(
Something important to add:
I actually have an array of those image "stripes", 8 in this case, they all look similar to the images shown here and they all need to be processed to match the line. I have tried experimenting with the stitch function of OpenCV, but the results were horrible.
EDIT:
Here are the 3 source images:
The result should be something like this:
I transformed every image along the lines that should match. Lines that are too far away from each other can be ignored (the shadow and the piece of road on the right portion of the image)
By your images, it seems that they overlap. Since you said the stitch function didn't get you the desired results, implement your own stitching. I'm trying to do something close to that too. Here is a tutorial on how to implement it in c++: https://ramsrigoutham.com/2012/11/22/panorama-image-stitching-in-opencv/
You can use Hough algorithm with high threshold on two images and then compare the vertical lines on both of them - most of them should be shifted a bit, but keep the angle.
This is what I've got from running this algorithm on one of the pictures:
Filtering out horizontal lines should be easy(as they are represented as Vec4i), and then you can align the remaining lines together.
Here is the example of using it in OpenCV's documentation.
UPDATE: another thought. Aligning the lines together can be done with the concept similar to how cross-correlation function works. Doesn't matter if picture 1 has 10 lines, and picture 2 has 100 lines, position of shift with most lines aligned(which is, mostly, the maximum for CCF) should be pretty close to the answer, though this might require some tweaking - for example giving weight to every line based on its length, angle, etc. Computer vision never has a direct way, huh :)
UPDATE 2: I actually wonder if taking bottom pixels line of top image as an array 1 and top pixels line of bottom image as array 2 and running general CCF over them, then using its maximum as shift could work too... But I think it would be a known method if it worked good.
Related
My aim is to stitch 1-2 thousand images together. I find the key points in all the images, then I find the matches between them. Next, I find the homography between the two images. I also take into account the current homography and all the previous homographies. Finally, I warp the images based on combined homography. (My code is written in python 2.7)
The issue I am facing is that when I overlay the warped images, they become extremely bright. The reason is that most of the area between two consecutive images is common/overalapping. So, when I overlay them, the intensities of the common areas increase by a factor of 2 and as more and more images are overalid the moew bright the values become and eventually I get a matrix where all the pixels have the value of 255.
Can I do something to adjust the brightness after every image I overlay?
I am combining/overlaying the images via open cv function named cv.addWeighted()
dst = cv.addWeighted( src1, alpha, src2, beta, gamma)
here, I am taking alpha and beta = 1
dst = cv.addWeighted( image1, 1, image2, 1, 0)
I also tried decreasing the value of alpha and beta but here a problem comes that, when around 100 images have been overlaid, the first ones start to vanish probably because the intensity of those images became zero after being multiplied by 0.5 at every iteration. The function looked as follows. Here, I also set the gamma as 5:
dst = cv.addWeighted( image1, 0.5, image2, 0.5, 5)
Can someone please help how can I solve the problem of images getting extremely bright (when aplha = beta = 1) or images vanishing after a certain point (when alpha and beta are both around 0.5).
This is the code where I am overlaying the images:
for i in range(0, len(allWarpedImages)):
for j in range(1, len(allWarpedImages[i])):
allWarpedImages[i][0] = cv2.addWeighted(allWarpedImages[i][0], 1, allWarpedImages[i][j], 1, 0)
images.append(allWarpedImages[i][0])
cv2.imwrite('/root/Desktop/thesis' + 'final.png', images[0])
When you stitch two images, the pixel values of overlapping part do not just add up. Ideally, two matching pixels should have the same value (a spot in the first image should also has the same value in the second image), so you simply keep one value.
In reality, two matching pixels may have slightly different pixel value, you may simply average them out. Better still, you adjust their exposure level to match each other before stitching.
For many images to be stitched together, you will need to adjust all of their exposure level to match. To equalize their exposure level is a rather big topic, please read about "histogram equalization" if you are not familiar with it yet.
Also, it is very possible that there is high contrast across that many images, so you may need to make your stitched image an HDR (high dynamic range) image, to prevent pixel value overflow/underflow.
I'm working with OpenCV 3.4.8 with C++11 and I'm trying to blend images together.
In this example I have 2 images (thiers mask shown in the screen belowe). I have georeference, so I can easy calculate corners of this images in the final image.
The data outside the masks are black.
My code looks like something like that:
std::vector<cv::UMat> inputImages;
std::vector<cv::UMat> masks;
std::vector<cv::Point> corners;
std::vector<cv::Size> imgSizes;
/*
here is code where I load images, create thier masks
(like in the screen above) and calculate corners.
*/
cv::Ptr<cv::detail::SeamFinder> seamFinder = new cv::detail::DpSeamFinder();
seamFinder->find(inputImages, corners, masks);
cv::Ptr<cv::detail::Blender> blender = new cv::detail:: MultiBandBlender(false);
blender->prepare(corners, imgSizes);
for(size_t i = 0; i < inputImages.size(); i++)
{
blender->feed(inputImages[i], masks[i], corners[i]);
}
cv::UMat blendedImg, outMask;
blender->blend(blendedImg, outMask);
SeamFinder gives me result like in the screen above. Finded seam lines looks good and Im very satisied form them. But the other problem occurs in the next step. The MultiBandBlender is making strange white streaks when the seam line goes on the end of the data.
This is an example:
When I don't use blender, but just use masks to cut the oryginal images and just add (cv::add()) images together with additional alpha channel (made from masks) I get very good results without any holes and strange colors, but I need to have more smoothed transition :/
Can anyone help me? When I create MultiBand Blender with smaller num_bands the white streaks are smaller, and with the num_bands = 0 the results looks like with just adding images.
I looked at feed() and blend() methods in the MultiBandBlender and I think that it is connected with Gaussian or Laplacian pyramid and the final restoring images from Laplacian pyramid in the blend() method.
EDIT1:
When Gaussian and Laplacian pyramids are created the copyMakeBorder(), which prevents the MultiBandBlender from making this white streaks when images are fully filled with the data. So in my case I think that I need to create my blender almost the same like MultiBandBlender, but copyMakeBorder() method in the feed() method change to the something that will "extend" my image inside the mask, like #AlexanderKondratskiy suggested.
Now I don't know how to achive correct "extend" similar to BORDER_REFLECT or BORDER_REFLECT_101.
I suspect your input images contain white pixels outside those masks. The white banding occurs around the areas where the seam follows the mask exactly. For Laplacian for example, pixels outside the mask do influence the final result, as each layer of a pyramid is essentially some blurring kernel on the image.
If you have some kind of good data outside the mask, keep it. If you do not, I suggest "extending" your image beyond the mask to maintain a smooth transition.
Edit:
Here's two things you could try, unless someone with more experience with OpenCV comes along.
To prove/disprove my hypothesis, fill the black region with just the average or median color within the mask. This should make the transition to the outside region less sharp, and hopefully reduce the artefacts. If that does not happen, my answer is wrong.
In terms of what is probably a good generalization of "BORDER_REFLECT" when the edge is arbitrary, you could try something like this:
Find the centroid c of the mask polygon
For each pixel p outside the mask, think of the line between it and c
Calculate point p' along this line that is the same distance inside the mask area, as p is from the mask edge. (i.e. you're reflecting along the mask edge)
Linearly interpolate the color of from the neighbors of p' (as it's position may not fall exactly in the middle of a pixel). That's the color of pixel p
I have an image here with a table.. In the column on the right the background is filled with noise
How to detect the areas with noise? I only want to apply some kind of filter on the parts with noise because I need to do OCR on it and any kind of filter will reduce the overall recognition
And what kind of filter is the best to remove the background noise in the image?
As said I need to do OCR on the image
I tried some filters/operations in OpenCV and it seems to work pretty well.
Step 1: Dilate the image -
kernel = np.ones((5, 5), np.uint8)
cv2.dilate(img, kernel, iterations = 1)
As you see, the noise is gone but the characters are very light, so I eroded the image.
Step 2: Erode the image -
kernel = np.ones((5, 5), np.uint8)
cv2.erode(img, kernel, iterations = 1)
As you can see, the noise is gone however some characters on the other columns are broken. I would recommend running these operations on the noisy column only. You might want to use HoughLines to find the last column. Then you can extract that column only, run dilation + erosion and replace this with the corresponding column in the original image.
Additionally, dilation + erosion is actually an operation called closing. This you could call directly using -
cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
As #Ermlg suggested, medianBlur with a kernel of 3 also works wonderfully.
cv2.medianBlur(img, 3)
Alternative Step
As you can see all these filters work but it is better if you implement these filters only in the part where the noise is. To do that, use the following:
edges = cv2.Canny(img, 50, 150, apertureSize = 3) // img is gray here
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 100, 1000, 50) // last two arguments are minimum line length and max gap between two lines respectively.
for line in lines:
for x1, y1, x2, y2 in line:
print x1, y1
// This gives the start coordinates for all the lines. You should take the x value which is between (0.75 * w, w) where w is the width of the entire image. This will give you essentially **(x1, y1) = (1896, 766)**
Then, you can extract this part only like :
extract = img[y1:h, x1:w] // w, h are width and height of the image
Then, implement the filter (median or closing) in this image. After removing the noise, you need to put this filtered image in place of the blurred part in the original image.
image[y1:h, x1:w] = median
This is straightforward in C++ :
extract.copyTo(img, new Rect(x1, y1, w - x1, h - y1))
Final Result with alternate method
Hope it helps!
My solution is based on thresholding to get the resulted image in 4 steps.
Read image by OpenCV 3.2.0.
Apply GaussianBlur() to smooth image especially the region in gray color.
Mask the image to change text to white and the rest to black.
Invert the masked image to black text in white.
The code is in Python 2.7. It can be changed to C++ easily.
import numpy as np
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# read Danish doc image
img = cv2.imread('./imagesStackoverflow/danish_invoice.png')
# apply GaussianBlur to smooth image
blur = cv2.GaussianBlur(img,(5,3), 1)
# threshhold gray region to white (255,255, 255) and sets the rest to black(0,0,0)
mask=cv2.inRange(blur,(0,0,0),(150,150,150))
# invert the image to have text black-in-white
res = 255 - mask
plt.figure(1)
plt.subplot(121), plt.imshow(img[:,:,::-1]), plt.title('original')
plt.subplot(122), plt.imshow(blur, cmap='gray'), plt.title('blurred')
plt.figure(2)
plt.subplot(121), plt.imshow(mask, cmap='gray'), plt.title('masked')
plt.subplot(122), plt.imshow(res, cmap='gray'), plt.title('result')
plt.show()
The following is the plotted images by the code for reference.
Here is the result image at 2197 x 3218 pixels.
As I know the median filter is the best solution to reduce noise. I would recommend to use median filter with 3x3 window. See function cv::medianBlur().
But be careful when use any noise filtration simultaneously with OCR. Its can lead to decreasing of recognition accuracy.
Also I would recommend to try using pair of functions (cv::erode() and cv::dilate()). But I'm not shure that it will best solution then cv::medianBlur() with window 3x3.
I would go with median blur (probably 5*5 kernel).
if you are planning to apply OCR the image. I would advise you to the following:
Filter the image using Median Filter.
Find contours in the filtered image, you will get only text contours (Call them F).
Find contours in the original image (Call them O).
isolate all contours in O that have intersection with any contour in F.
Faster solution:
Find contours in the original image.
Filter them based on size.
Blur (3x3 box)
Threshold at 127
Result:
If you are very worried of removing pixels that could hurt your OCR detection. Without adding artefacts ea be as pure to the original as possible. Then you should create a blob filter. And delete any blobs that are smaller then n pixels or so.
Not going to write code, but i know this works great as i use this myself, though i dont use openCV (i wrote my own multithreaded blobfilter out of speed reasons). And sorry but i cannot share my code here. Just describing how to do it.
If processing time is not an issue, a very effective method in this case would be to compute all black connected components, and remove those smaller than a few pixels. It would remove all the noisy dots (apart those touching a valid component), but preserve all characters and the document structure (lines and so on).
The function to use would be connectedComponentWithStats (before you probably need to produce the negative image, the threshold function with THRESH_BINARY_INV would work in this case), drawing white rectangles where small connected components where found.
In fact, this method could be used to find characters, defined as connected components of a given minimum and maximum size, and with aspect ratio in a given range.
I had already faced the same issue and got the best solution.
Convert source image to grayscale image and apply fastNlMeanDenoising function and then apply threshold.
Like this -
fastNlMeansDenoising(gray,dst,3.0,21,7);
threshold(dst,finaldst,150,255,THRESH_BINARY);
ALSO use can adjust threshold accorsing to your background noise image.
eg- threshold(dst,finaldst,200,255,THRESH_BINARY);
NOTE - If your column lines got removed...You can take a mask of column lines from source image and can apply to the denoised resulted image using BITWISE operations like AND,OR,XOR.
Try thresholding the image like this. Make sure your src is in grayscale. This method will only retain the pixels which are between 150 and 255 intensity.
threshold(src, output, 150, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
You might want to invert the image as you are trying to negate the gray pixels. After the operation, invert it again to get your desired result.
So, I'm taking over the work on an ortho-rectification algorithm that is intended to produce "accurate" results. I'm running into trouble trying to increase the accuracy and could use a little help.
Here is the basic approach.
Extract a calibration pattern from an image that was taken from a mobile phone.
Rectify the image based on a calibration pattern in the image
Scale the image to get the real world size of the scene around the pattern.
The calibration pattern is held against a flat surface, like a wall, counter, table, floor and the user takes a picture. With that picture, we want to measure artifacts on the same surface as the calibration pattern. We have tried this with calibration patterns ranging from the size of a credit card to a sheet of paper (8.5" x 11")
Here is an example input picture
With this resulting output image
Right now our measurements are usually within 1-2% of what we expect. This is sufficient for small areas (less than 25cm away from the calibration pattern. However, we'd like the algorithm to scale so that we can accurately measure a 2x2 meter area. However, at that size, the current error is too much (2-4 cm).
Here is the algorithm we are following.
// convert original image to grayscale and perform morphological dilation to reduce false matches when finding circle grid
Mat imgGray;
cvtColor(imgOriginal, imgGray, CV_BGR2GRAY);
// find calibration pattern in original image
Size patternSize(4, 11);
vector <Point2f> circleCenters_OriginalImage;
if (!findCirclesGrid(imgGray, patternSize, circleCenters_OriginalImage, CALIB_CB_ASYMMETRIC_GRID))
{
return false;
}
Point2f inputQuad[4];
inputQuad[0] = Point2f(circleCenters_OriginalImage[0].x, circleCenters_OriginalImage[0].y);
inputQuad[1] = Point2f(circleCenters_OriginalImage[3].x, circleCenters_OriginalImage[3].y);
inputQuad[2] = Point2f(circleCenters_OriginalImage[43].x, circleCenters_OriginalImage[43].y);
inputQuad[3] = Point2f(circleCenters_OriginalImage[40].x, circleCenters_OriginalImage[40].y);
// create model points for calibration pattern
vector <Point2f> circleCenters_ObjectSpace = GeneratePatternPointsInObjectSpace(circleCenters_OriginalImage[0], Distance(circleCenters_OriginalImage[0], circleCenters_OriginalImage[1]) / 2.0f, ioData.marker_up);
Point2f outputQuad[4];
outputQuad[0] = Point2f(circleCenters_ObjectSpace[0].x, circleCenters_ObjectSpace[0].y);
outputQuad[1] = Point2f(circleCenters_ObjectSpace[3].x, circleCenters_ObjectSpace[3].y);
outputQuad[2] = Point2f(circleCenters_ObjectSpace[43].x, circleCenters_ObjectSpace[43].y);
outputQuad[3] = Point2f(circleCenters_ObjectSpace[40].x, circleCenters_ObjectSpace[40].y);
Mat lambda(2,4,CV_32FC1);
lambda = Mat::zeros(imgOriginal.rows, imgOriginal.cols, imgOriginal.type());
lambda = getPerspectiveTransform(inputQuad, outputQuad);
warpPerspective(imgOriginal, imgOrthorectified, lambda, imgOrthorectified.size());
...
My Questions:
Is it reasonable to shoot for error < 0.25%? Is there a different algorithm that would yield more accurate results? What are the most valuable sources of error to identify and resolve?
As I've worked on this, I've also looked at removing pincushion / barrel distortions, and trying homographies to find the perspective transform. The best approaches I have found so far remain in the 1-2% error.
Any suggestions of where to go next would be really helpful
I am detecting and matching features of a pair of images, using a typical detector-descriptor-matcher combination and then findHomography to produce a transformation matrix.
After this, I want the two images to be overlapped (the second one (imgTrain) over the first one (imgQuery), so I warp the second image using the transformation matrix using:
cv::Mat imgQuery, imgTrain;
...
TRANSFORMATION_MATRIX = cv::findHomography(...)
...
cv::Mat imgTrainWarped;
cv::warpPerspective(imgTrain, imgTrainWarped, TRANSFORMATION_MATRIX, imgTrain.size());
From here on, I don't know how to produce an image that contains the original imgQuery with the warped imgTrainWarped on it.
I consider two scenarios:
1) One where the size of the final image is the size of imgQuery
2) One where the size of the final image is big enough to accommodate both imgQuery and imgTrainWarped, since they overlap only partially, not completely. I understand this second case might have black/blank space somewhere around the images.
You should warp to a destination matrix that has the same dimensions as imgQuery after that, loop over the whole warped image and copy pixel to the first image, but only if the warped image actually holds a warped pixel. That is most easily done by warping an additional mask. Please try this:
cv::Mat imgMask = cv::Mat(imgTrain.size(), CV_8UC1, cv::Scalar(255));
cv::Mat imgMaskWarped;
cv::warpPerspective(imgMask , imgMaskWarped, TRANSFORMATION_MATRIX, imgQuery.size());
cv::Mat imgTrainWarped;
cv::warpPerspective(imgTrain, imgTrainWarped, TRANSFORMATION_MATRIX, imgQuery.size());
// now copy only masked pixel:
imgTrainWarped.copyTo(imgQuery, imgMaskWarped);
please try and tell whether this is ok and solves scenario 1. For scenario 2 you would test how big the image must be before warping (by using the transformation) and copy both images to a destination image big enough.
Are you trying to create a panoramic image out of two overlapping pictures taken from the same viewpoint in different directions? If so, I am concerned about the "the second one over the first one" part. The correct way to stitch the panorama together is to cut both images off down the central line (symmetry axis) of the overlapping part, and not to add a part of one image to the (whole) other one.
Accepted answer works but could be done easier with using BORDER_TRANSPARENT:
cv::warpPerspective(imgTrain, imgQuery, TRANSFORMATION_MATRIX, imgQuery.size(), INTER_LINEAR, BORDER_TRANSPARENT);
When using BORDER_TRANSPARENT the source pixel of imgQuery remains untouched.
For OpenCV 4 INTER_LINEAR and BORDER_TRANSPARENT
can be resolved by using
cv::InterpolationFlags::INTER_LINEAR, cv::BorderTypes::BORDER_TRANSPARENT, e.g.
cv::warpPerspective(imgTrain, imgQuery, TRANSFORMATION_MATRIX, imgQuery.size(), cv::InterpolationFlags::INTER_LINEAR, cv::BorderTypes::BORDER_TRANSPARENT);