Custom std::function-like implementation for both free and member functions - c++

I needed something like std::function but then I found this which is faster (as the author claims) and can even be compared by the == operator. I adapted it to allow a dynamic return type and arguments, like this:
template<typename TReturn, typename... TArgs>
class Delegate {};
template<typename TReturn, typename... TArgs>
class Delegate<TReturn(TArgs...)> final
{
private:
typedef void* InstancePointer;
typedef TReturn (*InternalFunction)(InstancePointer, TArgs...);
private:
// Turns a free function into our internal function stub
template <TReturn (*FreeFunction)(TArgs...)>
static TReturn FreeFunctionStub(InstancePointer instance, TArgs... args) {
// We don't need the instance pointer because we're dealing with free functions
return (FreeFunction)(std::forward<TArgs>(args)...);
}
// Turns a member function into our internal function stub
template <class TClass, TReturn (TClass::*MemberFunction)(TArgs...)>
static TReturn MemberFunctionStub(InstancePointer instance, TArgs... args) {
// Cast the instance pointer back into the original class instance
return (static_cast<TClass*>(instance)->*MemberFunction)(std::forward<TArgs>(args)...);
}
public:
Delegate() = default;
// Resets this delegate to a new free function
template <TReturn(*FreeFunction)(TArgs...)>
void reset() {
m_instance = nullptr;
m_function = &FreeFunctionStub<FreeFunction>;
}
// Resets this delegate to a new member function
template <class TClass, TReturn(TClass::*MemberFunction)(TArgs...)>
void reset(TClass* instance) {
m_instance = instance;
m_function = &MemberFunctionStub<TClass, MemberFunction>;
}
// Resets this delegate to a new free function
void specialReset(TReturn(*FreeFunction)(TArgs...)) {
m_instance = nullptr;
m_function = ???
}
// Resets this delegate to a new member function
template<class TClass>
void specialReset(TClass *instance, TReturn(TClass::*MemberFunction)(TArgs...)) {
m_instance = instance;
m_function = ???
}
// Invokes this delegate
TReturn invoke(TArgs... args) const {
if (m_function == nullptr)
throw new std::runtime_error(""Unbound delegate! Call reset() first."");
return m_function(m_instance, std::forward<TArgs>(args)...);
}
private:
InstancePointer m_instance;
InternalFunction m_function;
};
The usage goes like that:
Delegate<void()> del1;
Delegate<int(double)> del2;
del1.reset<&someParameterlessVoidFreeFunction>();
del1.invoke();
del2.reset<SomeClass, &SomeClass::someIntMemberFunction>(&someClassInstance);
del2.invoke(24.2);
What I am trying to do is to achieve something like this (IMO, much cleaner and intuitive):
Delegate<void()> del1;
Delegate<int(double)> del2;
del1.reset(&someParameterlessVoidFreeFunction);
del1.invoke();
del2.reset(&SomeClass::someIntMemberFunction, &someClassInstance);
del2.invoke(24.2);
However, I dont quite understand the m_function concept. What I am trying to achive is even possible? How could I do that?
Also, what exactly is the <TReturn(TArgs...)> part of class Delegate and why do we need to define a class Delegate {}; first?

Right, so after days of researchs, developing and testing, I made up something that does accomplish a faster std::function/std::bind with a much better syntax.
For those wondering, take a look at Delegator. I can't paste the whole code here because it got too big to be posted here. Also, at this link you'll always have the lastest version.
With Delegator, you can do the following:
Delegate<void(void)> d1; // Blank delegate
Delegate<void(void)> d2(&freeFunction); // Delegate to a free function
Delegate<void(void)> d3(&SomeClass::someClassStaticFunction); // Delegate to a static function
Delegate<void(void)> d4(&SomeClass::someClassFunction, &someClassInstance); // Delegate to a member function
Delegate<void(void)> d5(&SomeClass::someClassConstFunction, &someClassInstance); // Delegate to a member const function
d1.reset(); // Resets the delegate
d1.reset(&freeFunction); // Resets the delegate to a free function
d1.reset(&SomeClass::someClassStaticFunction); // Resets the delegate to a static function
d1.reset(&SomeClass::someClassFunction, &someClassInstance); // Resets the delegate to a member function
d1.reset(&SomeClass::someClassConstFunction, &someClassInstance); // Resets the delegate to a member const function
d1.reset(&d2); // Resets the delegate to d2's state

Basically the solution for your syntax is to get closer to what we'd do to implement std::function and sacrifice speed for flexibility (due to use of run-time polymorphism instead of pure templating)
The first call can be solved by adding another member variable to your Delegate class to hold free functions:
template<typename TReturn, typename... TArgs>
class Delegate<TReturn(TArgs...)> final
{
// ...
typedef TReturn(*FreeFunctionType)(TArgs...);
FreeFunctionType m_free_function = nullptr;
};
Now you can set m_free_function within specialReset, while resetting the other members:
void specialReset(TReturn(*FreeFunction)(TArgs...)) {
m_instance = nullptr;
m_function = nullptr;
m_free_function = FreeFunction;
}
And calling it performs an additional null check:
TReturn invoke(TArgs... args) const {
if (m_function == nullptr && m_free_function == nullptr)
throw new std::runtime_error("Unbound delegate! Call reset() first.");
else if (m_function)
return m_function(m_instance, std::forward<TArgs>(args)...);
else return m_free_function(std::forward<TArgs>(args)...);
}
and a test:
void foo()
{
std::cout << "Called foo()\n";
}
int main()
{
Delegate<void()> del1;
del1.specialReset(&::foo);
del1.invoke();
}
The second one is a little trickier.
The idea for solving this is to declare an abstract base class pointer that we can derive from later for making our call:
template<typename TReturn, typename... TArgs>
class Delegate<TReturn(TArgs...)> final
{
private:
//...
struct ICall
{
virtual TReturn doCall(TArgs... args) = 0;
};
std::unique_ptr<ICall> caller;
};
Usually this pointer will be nullptr, which we can check for, but otherwise we can call the function in invoke:
// Invokes this delegate
TReturn invoke(TArgs... args) const {
if (m_function == nullptr && m_free_function == nullptr && caller == nullptr)
throw new std::runtime_error("Unbound delegate! Call reset() first.");
else if (m_function)
return m_function(m_instance, std::forward<TArgs>(args)...);
else if (caller)
return caller->doCall(std::forward<TArgs>(args)...);
else
return m_free_function(std::forward<TArgs>(args)...);
}
And finally the implementation of our second specialReset where we create a derived class and set our pointer:
template<class TClass>
void specialReset(TClass *instance, TReturn(TClass::*MemberFunc)(TArgs...)) {
m_instance = nullptr;
m_function = nullptr;
m_free_function = nullptr;
struct DerivedCall : public ICall
{
DerivedCall(TClass* _instance, TReturn(TClass::*_func)(TArgs...)) : m_instance(_instance), m_func(_func){}
TReturn doCall(TArgs... args) override
{
return (m_instance->*m_func)(std::forward<TArgs>(args)...);
}
TClass* m_instance;
TReturn(TClass::*m_func)(TArgs...);
};
caller = std::make_unique<DerivedCall>(instance, MemberFunc);
}
And a test:
struct A{
int foo(double){std::cout << "Called A::foo\n"; return 42;}
};
int main()
{
Delegate<int(double)> del2;
A a;
del2.specialReset(&a, &A::foo);
del2.invoke(24.2);
}
Demo
I'm sure someone more clever than I can come up with something better. As I said. We're probably already losing the precious speed that you advocated for over std::function because of the runtimeyness of this all, and I'm not sure what it does for the operator== (It probably became infeasible the second I created m_free_function). We cannot use specialReset with lambdas here (...yet).

Related

Save template type parameter pack for later use

I'm working on a code where I can bind events and callbacks to react to those events, the interface looks like this:
void on_close();
struct S
{
void the_app_is_closing();
};
S s;
Events::Register(app::CLOSE, on_close);
Events::Register(app::CLOSE, s, &S::the_app_is_closing);
...
...
if (/* something happens */)
Events::Broadcast(app::CLOSE);
Internally it keeps a container which associates an enum value identifying an event with all the functions expected to react to that event. Those functions are kept into an object which can hold free functions or member functions and feeds the functions through a template function (apply) that forwards the parameters:
class callback
{
struct base {};
template <typename ... params_pack>
struct callable : public base
{
callable(void(*a_function)(params_pack ...)) :
m_call{a_function}
{}
template <typename listener_t>
callable(listener_t &a_listener, void(listener_t:: *a_function)(params_pack ...)) :
m_call{[&a_listener, &a_function](params_pack ... a_argument)
{
(a_listener.*a_function)(a_argument ...);
}}
{}
std::function<void(params_pack ...)> m_call;
};
template <typename ... params_pack>
auto build(void(*a_function)(params_pack ...))
{
return std::make_unique<callable<params_pack ...>>(a_function);
}
template <typename listener_t, typename ... params_pack>
auto build(listener_t &a_listener, void(listener_t:: *a_function)(params_pack ...))
{
return std::make_unique<callable<params_pack ...>>(a_listener, a_function);
}
std::unique_ptr<base> m_function{nullptr};
public:
template <typename function_t>
callback(function_t a_function) :
m_function{build(a_function)}
{}
template <typename listener_t, typename function_t>
callback(listener_t &a_listener, function_t a_function) :
m_function{build(a_listener, a_function)}
{}
template <typename ... params_pack>
void apply(params_pack ... a_argument) const
{
if (auto &call = *static_cast<callable<params_pack ...> *>(m_function.get());
std::is_invocable_v<decltype(call.m_call), params_pack ...>)
{
call.m_call(a_argument ...);
}
}
};
I have an important bug on that apply function that can be reproduced with this code:
void string_parameter(const std::string &s) { std::cout << s << '\n'; }
void long_parameter(long l) { std::cout << l << '\n'; }
int main()
{
callback l(long_parameter);
callback s(string_parameter);
l.apply(123);
s.apply("Test");
return 0;
}
Even if you can call string_parameter directly with a literal string and long_parameter directly with a literal integer, doing the call through callback::apply messes everything up. I know why it is happening:
I'm static_casting callback::callable<const std::string &> to callback::callable<const char *>.
Then the callable::m_call which underlying type is std::function<const std::string &> thinks it is std::function<const char *>.
The callable::m_call receives a literal string but is reinterpreted as std::string during the std::function call, creating the mess.
Same story with long and int.
The solution would be to save the parameter pack used on construction in order to use it inside apply:
template <typename function_t>
callback(function_t a_function) :
m_function{build(a_function)}
{ PARAMETERS = function_t.parameters } // ???
template <typename listener_t, typename function_t>
callback(listener_t &a_listener, function_t a_function) :
m_function{build(a_listener, a_function)}
{ PARAMETERS = function_t.parameters } // ???
...
...
template <typename ... params_pack>
void apply(params_pack ... a_argument) const
{
// Saved parameters --> vvvvvvvvvvvvvv
if (auto &call = *static_cast<callable<PARAMETERS ...> *>(m_function.get());
std::is_invocable_v<decltype(call.m_call), params_pack ...>)
{
call.m_call(a_argument ...);
}
}
But I don't know if this is even possible. Any advise?
Thanks!
tl;dr:
Completely abstracting away the signature of the function AND still calling it in a type-safe way is impossible in C++
A type-based event system could be a good alternative
1. Why it's impossible to do what you're asking for
1.1 How Type-Erasure works
Type-erasure is fundamentally based on polymorphism. By defining a set of methods that all objects we want to store have in common (the interface) we don't need to know the actual type we're dealing with.
There is no way to do type-erasure without involving polymorphism.
For example, a very crude implementation of std::function could look like this:
template<class RetVal, class... Args>
class function {
public:
template<class U>
function(U u) : ptr(new impl<U>(u)) {}
~function() { delete ptr; }
RetVal operator()(Args... args) {
return ptr->call(args...);
}
private:
struct base {
virtual ~base() = default;
virtual RetVal call(Args... args) = 0;
};
template<class T>
struct impl : base {
impl(T t): t(t) {}
RetVal call(Args... args) override {
return t(args...);
}
private:
T t;
};
base* ptr;
};
template<class RetVal, class... Args>
class function<RetVal(Args...)> : public function<RetVal, Args...> {};
godbolt example
This is how std::function accomplishes to store any function object that is compatible with it's signature - it declares an interface (base) that will be used by all function objects (impl).
The interface only consists of 2 functions in this case:
The destructor (we need to know how to properly cleanup the function object)
The call() function (for invoking the actual function)
Sidenote 1: A real std::function implementation would need a couple more interface functions, e.g. for copying / moving the callable
Sidenote 2: Your existing implementation has a small bug: struct base MUST have a virtual destructor, otherwise the destructor of struct callable would never be called, resulting in undefined behaviour.
1.2 How your callable would need to work
What you want is an object that completely erases both the function object AND the parameters that you pass.
But what should your interface then look like?
struct base {
virtual ~base() = default;
virtual ??? call(???); // how should this work?
};
This is the underlying problem you're facing - it's impossible to define an interface for your callable - because you don't know what the arguments are gonna be.
This is what #Yakk - Adam Nevraumont implied with "non-uniform" objects - there is no definition of call() that can handle all potential function types.
1.3 Options
So at that point you basically have two options:
Don't erase the function type (like #Yakk - Adam Nevraumont suggested)
Sacrifice compile-time type safety and maintainability by creating an interface that can deal with arbitrary function types
The latter option is what your code currently uses - either the function parameters match or your code has undefined behaviour.
A few other ways to implement it that don't rely on undefined behaviour could be:
Add an interface function for each possible argument combination
struct base {
/* ... */
// All possible ways a `callable` could potentially be invoked
virtual void call(int val0) { throw std::exception("invalid call"); };
virtual void call(std::string val0) { throw std::exception("invalid call"); };
virtual void call(const char* val0) { throw std::exception("invalid call"); };
virtual void call(int val0, std::string val1) { throw std::exception("invalid call"); };
virtual void call(int val0, const char* val1) { throw std::exception("invalid call"); };
// etc...
}
// then implement the ones that are sensible
struct callable<std::string> : public base {
/* ... */
void call(std::string val0) override { /* ... */ }
void call(const char* val0) override { /* ... */ }
}
This obviously gets out of hand rather quickly.
"Accept anything" interface
struct base {
/* ... */
virtual void call(std::any* arr, int length);
};
// then implement the ones that are sensible
struct callable<std::string> : public base {
/* ... */
void call(std::any* arr, int length) override {
if(length != 1) throw new std::exception("invalid arg count");
// will throw if first argument is not a std::string
std::string& value = std::any_cast<std::string&>(arr[0]);
/* ... */
}
};
A bit better, but still looses compile-time type safety.
1.4 Conclusion
Compile-time type-safety with type-erasure is only possible if there is an uniform interface for all possible objects.
It is technically possible to type-erase non-uniform objects, but if you do that you'll loose compile-time type-safety (and need to do those checks at runtime instead)
2. Another Approach: Type-Based Event System
I'd like to propose a different way to handle the events that allows you to have arbitrary events without having to hard-code them into your Events class.
2.1 Basic Functionality
The main idea of this implementation is to have a class for each event you'd want to have that contains the parameters for the given event, e.g.:
struct AppClosingEvent {
const std::string message;
const int exitCode;
};
struct BananaPeeledEvent {
const std::shared_ptr<Banana> banana;
const std::shared_ptr<Person> peeler;
};
// etc...
This would then allow you to use the type of the event struct as a key for your event listeners.
A very simple implementation of this event system could look like this: (ignoring unregistration for now)
class EventBus {
private:
using EventMap = std::multimap<std::type_index, std::function<void(void*)>>;
// Adds an event listener for a specific event
template<class EvtCls, class Callable>
requires std::is_invocable_v<Callable, EvtCls&>
inline void Register(Callable&& callable) {
callbacks.emplace(
typeid(EvtCls),
[cb = std::forward<Callable>(callable)](void* evt) {
cb(*static_cast<EvtCls*>(evt));
}
);
}
// Broadcasts the given event to all registered event listeners
template<class EvtCls>
inline void Broadcast(EvtCls& evt) {
auto [first, last] = callbacks.equal_range(typeid(EvtCls));
for(auto it = first; it != last; ++it)
(it->second)(&evt);
}
private:
EventMap callbacks;
};
Register() takes a callable object that needs to be invocable with the given event type. Then it type-erases the callable so we can store it as a std::function<void(void*>
Broadcast(evt) looks up all event listeners that are registered based on the type of the event object and calls them.
Example Usage would look like this:
EventBus bus;
bus.Register<AppClosingEvent>([](AppClosingEvent& evt) {
std::cout << "App is closing! Message: " << evt.message << std::endl;
});
bus.Register<BananaPeeledEvent>([](BananaPeeledEvent& evt) {
// TODO: Handle banana peeling
});
AppClosingEvent evt{"Shutting down", 0};
bus.Broadcast(evt);
By using the type of the event as the key both Register() and Broadcast() are completely type-safe - it's impossible to register a function with incompatible function arguments.
Additionally the EventBus class doesn't need to know anything about the events it'll handle - adding a new event is as simple as defining a new class with the members you need for your event.
2.2 Adding the ability to unregister an event listener
I chose to use a multimap in this case because they guarantee to not invalidate iterators, unless the element the iterator points to itself gets removed from the multimap - which allows us to use a multimap iterator as the registration token for the event handler.
Full implementation: godbolt example
/*
EventBus - allows you to register listeners for arbitrary events via `.Register()`
and then later invoke all registered listeners for an event type with `.Broadcast()`.
Events are passed as lvalues, to allow event handlers to interact with the event, if required.
*/
class EventBus {
private:
using EventMap = std::multimap<std::type_index, std::function<void(void*)>>;
public:
/*
Represents a registered event handler on the EventBus.
Works a lot like std::unique_ptr (it is movable but not copyable)
Will automatically unregister the associated event handler on destruction.
You can call `.disconnect()` to unregister the event handler manually.
*/
class Connection {
private:
friend class EventBus;
// Internal constructor used by EventBus::Register
inline Connection(EventBus& bus, EventMap::iterator it) : bus(&bus), it(it) { }
public:
inline Connection() : bus(nullptr), it() {}
// not copyable
inline Connection(Connection const&) = delete;
inline Connection& operator=(Connection const&) = delete;
// but movable
inline Connection(Connection&& other)
: bus(other.bus), it(other.it) {
other.detach();
}
inline Connection& operator=(Connection&& other) {
if(this != &other) {
disconnect();
bus = other.bus;
it = other.it;
other.detach();
}
return *this;
}
inline ~Connection() {
disconnect();
}
// Allows to manually unregister the associated event handler
inline void disconnect() {
if(bus) {
bus->callbacks.erase(it);
detach();
}
}
// Releases the associated event handler without unregistering
// Warning: After calling this method it becomes impossible to unregister
// the associated event handler.
inline void detach() {
bus = nullptr;
it = {};
}
private:
EventBus* bus;
EventMap::iterator it;
};
// Adds an event listener for a specific event
template<class EvtCls, class Callable>
requires std::is_invocable_v<Callable, EvtCls&>
inline Connection Register(Callable&& callable) {
auto it = callbacks.emplace(
typeid(EvtCls),
[cb = std::forward<Callable>(callable)](void* evt) {
cb(*static_cast<EvtCls*>(evt));
}
);
return { *this, it };
}
// Broadcasts the given event to all registered event listeners
template<class EvtCls>
inline void Broadcast(EvtCls& evt) {
auto [first, last] = callbacks.equal_range(typeid(EvtCls));
for(auto it = first; it != last;)
(it++)->second(&evt);
}
private:
EventMap callbacks;
};
With this you can easily register listeners and unregister them later (e.g. if the class they're bound to gets destructed)
Example:
struct DispenseNachosEvent {};
struct DispenseCheeseEvent {};
class NachoMachine {
public:
NachoMachine(EventBus& bus) {
// register using std::bind
nachoEvent = bus.Register<DispenseNachosEvent>(
std::bind(
&NachoMachine::OnDispenseNachos,
this,
std::placeholders::_1
)
);
// register with lambda
cheeseEvent = bus.Register<DispenseCheeseEvent>(
[&](DispenseCheeseEvent& evt) {
OnDispenseCheese(evt);
}
);
}
// Default destructor will automatically
// disconnect both event listeners
private:
void OnDispenseNachos(DispenseNachosEvent&) {
std::cout << "Dispensing Nachos..." << std::endl;
}
void OnDispenseCheese(DispenseCheeseEvent&) {
std::cout << "Dispensing Cheese..." << std::endl;
}
private:
EventBus::Connection nachoEvent;
EventBus::Connection cheeseEvent;
};
2.3 Other benefits
If you want you can also allow the event handlers to modify the event object - e.g. cancel it - which allows you to return state to the piece of code that called Broadcast()
Example:
struct CancelableExampleEvent {
inline void Cancel() { isCancelled = true; }
inline bool IsCancelled() { return isCancelled; }
CancelableExampleEvent(std::string message) : message(message) {}
const std::string message;
private:
bool isCancelled = false;
};
// Usage:
CancelableExampleEvent evt;
bus.Broadcast(evt);
if(!evt.IsCancelled()) {
// TODO: Do something
}
Event Handlers can remove themselves - this is usually tricky to implement due to iterators being invalidated, but with multimaps it's rather easy to implement:
template<class EvtCls>
inline void Broadcast(EvtCls& evt) {
auto [first, last] = callbacks.equal_range(typeid(EvtCls));
for(auto it = first; it != last;)
(it++)->second(&evt);
}
By incrementing it before calling the function we make sure that it remains valid, even if the event handler chooses to unregister itself as part of its callback.
e.g. this would work:
EventBus::Connection con;
con = bus.Register<SomeEvent>([&con](SomeEvent&){
std::cout << "Received event once!" << std::endl;
con.disconnect();
});
2.4 Try it online!
Here's a godbolt that contains the entire code of this post to try it out.
This is your problem:
class callback
it should be
template<class...Args>
class callback
because you have to think about what happens when the types do not match
void string_parameter(const std::string &s) { std::cout << s << '\n'; }
void long_parameter(long l) { std::cout << l << '\n'; }
callback<long> l(long_parameter);
callback<std::string> s(string_parameter);
l.apply(123);
s.apply("Test");
which works flawlessly.
Now you run into the problem of a central enum for all callbacks.
Events::Register(app::CLOSE, on_close);
Events::Register(app::CLOSE, s, &S::the_app_is_closing);
The problem is that all use of app::CLOSE must know what the signature of the callback must be. The code registering it must know, and the code invoking the callback must know.
Your design, however, carefully forgets this fact, and forces type unsafety at both ends. Then you add so,e template code in the middle to ferry types around... which even if it did work, would be work for no good reason.
template<app::event e>
void Events::Register(event_sig<e>* pf);
template<app::event e, class T>
void Events::Register(T* pt, event_mem_sig<T,e>* pf);
template<app::event e, class...Ts>
void Event::Broadcast(Ts&&....ts);
here we have a more sensible API. The event type is compile time value, so we can do type checking, and store the event callbacks in a type safe list.
...
Now, if you have a reasonably bounded number of events (ie, not 1000s of which under 1% are subscribed to), an even simpler solution is to make an event queue an actual object, instead of an enum and traits.
using token=std::shared_ptr<void>;
template<class...Args>
struct broadcaster {
size_t broadcast(Ts...ts)const;
token subscribe(std::function<void(Ts...)>);
void unsafe_subscribe(void(*)(Ts...));
// IMPLEMENTATION
};
now your code becomes
struct Events {
broadcaster<> appClosing;
};
Events g_events;
struct S
{
void the_app_is_closing();
token listening;
};
S s;
s.listening=g_events.appClosing.subscribe(&s, &S::the_app_is_closing);
g_events.appClosing.unsafe_subscribe(on_close);
g_events.appClosing.broadcast();
The types of the arguments are now tied to the appClosing object, so it is checked at both sibscription and at broadcast, conversion is done automatically.
Here each broadcaster maintains its own listener queue (hence bit above about "1000s of event types most unused). Extra work can be done to reduce the queue storage and share it, but that should onlh be done if you need it. And you probably won't.
The enum solution seems like it reduces duplication, but uniform lists of things with non uniform types are often a sign your list shoudln't be uniform.
Members of a struct are a fine way to list non uniform things. Having them be generated from a template means there isn't code writing duplication. And identical signature broadcasters will share binary implementations, somit isn't inefficient.

Callback using lambda with closures

I'm trying to implement a callback which passes control from an Interrupt Service Routine to a member function on a c++ class. I thought lambdas and closures would be a convenient means of doing this, but I'm having trouble implementing it. Below is a simplified version of my code.
The issue I'm stuck on is how to store the "function pointer" to the "lambda".
class Gpio
{
public:
typedef void (*ExtiHandler)();
private:
ExtiHandler handler;
public:
void enable_irq(ExtiHandler handler_in)
{
// enable interrupt
// ...
// save handler so callback can be issued later
handler = handler_in;
}
};
class Button
{
private:
Gpio& pin;
public:
Button(Gpio& pin_in) : pin(pin_in)
{
};
void button_pressed()
{
// do something
}
void init()
{
pin.enable_irq([this]() { this->button_pressed(); });
}
};
Compiling fails with the following error message;
no matching function for call to 'Gpio::enable_irq(Button::init()::<lambda()>)'candidate: void Gpio::enable_irq(Gpio::ExtiHandler) no known conversion for argument 1 from 'Button::init()::<lambda()>' to 'Gpio::ExtiHandler {aka void (*)()}' Build failed
How can I modify this code to resolve the compile error?
The problem is, that enable_irq function expects a typed function pointer of type void (*ExtiHandler)() not a lambda function.
That means, here
pin.enable_irq([this]() { this->button_pressed(); });
you are trying to store a lambda function(with capturing the instance) to a typed function pointer. You could have converted the lambda to a function pointer(easily) if it would have been a capture-less lambda.
See [expr.prim.lambda.closure] (sec 7)
The closure type for a non-generic lambda-expression with no
lambda-capture whose constraints (if any) are satisfied has a
conversion function to pointer to function with C++ language linkage
having the same parameter and return types as the closure type's
function call operator.
Since lambdas are not just ordinary functions and capturing it need to preserve a state,
you can not find any simple or conventional solution to make them assign to function pointers.
Solution - 1
The simplest solution is to use std::function instead, by paying some type erasure overhead. That means, in your code, just need to change the
typedef void(*ExtiHandler)();
to
typedef std::function<void()> ExtiHandler;
// or
// using ExtiHandler = std::function<void()>;
Solution - 2
Can this be accomplished without using the STL?
Yes. After making a small research on this topic, I came up with a type traits solution to store the lambdas with closure to the equivalent typed function pointer.
#include <iostream>
template<typename Lambda> struct convert_lambda : convert_lambda<decltype(&Lambda::operator())> {};
template<typename Lambda, typename ReType, typename... Args>
struct convert_lambda<ReType(Lambda::*)(Args...) const>
{
using funPtr = ReType(*)(Args...);
static funPtr make_function_ptr(const Lambda& t)
{
static const Lambda& lmda = t;
return [](Args... args) { return lmda(args...); };
}
};
template<typename Lambda> using convert_lambda_t = typename convert_lambda<Lambda>::funPtr;
template<typename Lambda> constexpr convert_lambda_t<Lambda> make_function_ptr(const Lambda& t)
{
return convert_lambda<Lambda>::make_function_ptr(t);
}
Usage: SEE LIVE EXAMPLE
You can now simply continue with your Gpio and Button classes, without
changing anything.:
pin.enable_irq(make_function_ptr([this]() { this->button_pressed(); }));
// or
// pin.enable_irq(make_function_ptr([&]() { this->button_pressed();}));
Or with arguments. For example
int aa = 4;
auto lmda = [&aa](const int a, const float f) { std::cout << a * aa * f << std::endl; };
void(*fPtrTest)(const int, const float) = make_function_ptr(lmda);
fPtrTest(1, 2.0f);
Drawbacks: The solution - 2:
is not capable of recognizing the optional sequence of specifiers.(i.e, mutable, constexpr)
is not capable of forwarding parameter pack to the traits. i.e,
the following is not possible:
return [](Args&&... args) { return lmda(std::forward<Args>(args)...); };
Closure object can be assigned to function pointer only if capture list of lambda is empty, in your case this condition is not met - [this].
You can use std::function as wrapper to store your closures:
#include <functional>
class Gpio
{
public:
using ExtiHandler = std::function<void()>;
private:
std::function<void()> handler;
public:
void enable_irq(const ExtiHandler& handler_in)
{
handler = handler_in;
}
};
If you don't have std library then you could implement the type erasure yourself.
Something like this ...
#include <iostream>
#include <memory>
struct function
{
struct base
{
virtual void call() = 0;
virtual base* clone() = 0;
};
template <typename Fn>
struct impl : base
{
Fn fn_;
impl(Fn&& fn) : fn_(std::forward<Fn>(fn)){}
impl(Fn& fn) : fn_(fn){}
virtual void call()
{
fn_();
}
virtual base* clone() { return new impl<Fn>(fn_); }
};
base* holder_;
function() : holder_(nullptr)
{};
template <typename Fn>
function(Fn&& fn) : holder_(nullptr)
{
holder_ = new impl<Fn>(std::forward<Fn>(fn));
}
function( function&& other)
{
holder_ = other.holder_;
other.holder_ = nullptr;
}
function(const function& other)
{
holder_ = other.holder_->clone();
}
~function()
{
if (holder_) delete holder_;
}
function& operator=(function&& other)
{
if (holder_) delete holder_;
holder_ = other.holder_;
other.holder_ = nullptr;
return *this;
}
function& operator=(const function& other)
{
if (holder_) delete holder_;
holder_ = other.holder_->clone();
return *this;
}
void operator()()
{
holder_->call();
}
};
class Gpio
{
public:
using ExtiHandler = function;
//private:
ExtiHandler handler;
//public:
void enable_irq(ExtiHandler handler_in)
{
// enable interrupt
// ...
// save handler so callback can be issued later
handler = handler_in;
}
};
class Button
{
private:
Gpio& pin;
public:
Button(Gpio& pin_in) : pin(pin_in)
{
};
void button_pressed()
{
std::cout << "Button pressed" << std::endl;
}
void init()
{
pin.enable_irq([this]() { this->button_pressed(); });
}
};
int main() {
Gpio some_pin;
Button b(some_pin);
b.init();
some_pin.handler();
return 0;
}
Demo

factory, unique_ptr and static_cast

Consider polymorphic classes with a base object, a derived interface, and a final object:
// base object
struct object
{
virtual ~object() = default;
};
// interfaces derived from base object
struct interface1 : object
{
virtual void print_hello() const = 0;
template<typename T>
static void on_destruction(object* /*ptr*/)
{
std::cout << "interface1::on_destruction" << std::endl;
}
};
// final object
struct derived1 : interface1
{
virtual void print_hello() const override
{
std::cout << "hello" << std::endl;
}
static std::string get_type_name()
{
return "derived1";
}
};
In the real use case, final objects are defined through a plugin system, but that is not the point. Note that I want to be able to call on_destruction when an object is destroyed (see register_object below). I want to use these classes as follows:
int main()
{
// register derived1 as an instantiable object,
// may be called in a plugin
register_object<derived1>();
// create an instance using the factory system
auto instance = create_unique<interface1>("derived1");
instance->print_hello();
return 0;
}
Using std::unique_ptr to manage the objects, I ended up with the following code for register_object:
template<typename T>
using unique = std::unique_ptr<
T,
std::function<void(object*)> // object deleter
>;
namespace
{
std::map< std::string, std::function<unique<object>(void)> > factory_map;
}
template<typename T>
void register_object()
{
factory_map.emplace(
T::get_type_name(),
[]()
{
unique<T> instance{
new T,
[](object* ptr)
{
T::on_destruction<T>(ptr);
delete ptr;
}
};
return static_move_cast<object>(
std::move(instance)
);
}
);
}
And the create* functions:
unique<object> create_unique_object(const std::string& type_name)
{
auto f = factory_map.at(type_name);
return f();
}
template<typename T>
unique<T> create_unique(const std::string& type_name)
{
return static_move_cast<T>(
create_unique_object(type_name)
);
}
You noticed in register_object and create_unique the call to static_move_cast, which is declared as:
template<typename U, typename T, typename D>
std::unique_ptr<U, D>
static_move_cast
(
std::unique_ptr<T, D>&& to_move_cast
)
{
auto deleter = to_move_cast.get_deleter();
return std::unique_ptr<U, D>{
static_cast<U*>(
to_move_cast.release()
),
deleter
};
}
The goal behind static_move_cast is to allow static_cast on std::unique_ptr while moving the deleter during the cast. The code is working, but I feel like hacking std::unique_ptr. Is there a way to refactor the code to avoid my static_move_cast?
static_move_cast is unnecessary within register_object, since you can just use the converting constructor of unique_ptr template< class U, class E > unique_ptr( unique_ptr<U, E>&& u ):
unique<T> instance{
new T,
// ...
};
return instance;
Or, even simpler, construct and return a unique<object> directly, since T* is convertible to object*:
return unique<object>{
new T,
// ...
};
However for create_unique the use of static_move_cast is unavoidable, since the converting constructor of unique_ptr won't work for downcasts.
Note that shared_ptr has static_pointer_cast, which performs downcasts, but there is no corresponding facility for unique_ptr, presumably because it it is considered straightforward and correct to perform the cast yourself.
I would say it is good solution given the requirements. You transfer the responsibility to the caller of create_unique. He must give correct combination of type and string and string that is in the registry.
auto instance = create_unique<interface1>("derived1");
// ^^^^^^^^^^ ^^^^^^^^
// what if those two don't match?
You could improve it a bit by changing the static_cast to dynamic_cast. And the caller of create_unique should always check that he got non-null pointer before calling anything on it.
Or at least use dynamic_cast with assert in debug mode, so you catch mismatches while developing.
Alternative refactoring: Have separate factory for every existing interface.

Bypass a template error with a private destructor

In compile time, I've got the following issue, how to make this compile, because conceptually for me it's correct, any suggestions of refactoring are welcome.
I got a compile error because "Search" destructor is private but I won't use delete on a Search pointer since I provided a custom Deleter in the initialization of the base class. I know that the compiler doesn't know that, how to bypass it.
error description :
error C2248: cannot access private member declared in class 'Search'
compiler has generated 'Search::~Search' here
class Search
{
public:
static Search* New(/* */); // using a pool of already allocated objects to avoid expensive allocations
static void Delete(Search*);
private:
Search(/* */) {/* */}
~Search() {/* */}
};
template<class T>
class MyList
{
public:
typedef (*CustomDeleter) (T* pElement);
MyList(CustomDeleter lpfnDeleter = NULL) {};
void Empty()
{
for (/**/)
{
if (m_pList[m_nListLastUsed])
{
if (m_lpfnCustomDeleter == NULL)
delete m_pList[m_nListLastUsed]; // COMPILE ERROR HERE BECAUSE Search destructor is private BUT I won't use that instruction since
// I provided a custom Deletern I know that the compiler doesn't know that, how to bypass it
else
m_lpfnCustomDeleter(m_pList[m_nListLastUsed]);
}
}
}
private:
T** m_pList;
CustomDeleter m_lpfnCustomDeleter; // Pointer to a custom deleter
};
class Query : public MyList<Search>
{
public:
Query() : MyList<Search>(&Search::Delete) // I set a custom deleter since Search hides its destructor : is this the right way ?
{}
~Query()
{
/****/
Empty(); // PROBLEM HERE
/***/
}
};
Make sure that 'm_lpfnCustomDeleter' is never NULL or better nullptr. You can make sure of this by falling back to a default 'deleter' if the user does not provide with any custom deleter.
I would prefer something like below.
#include <iostream>
template <typename PointerType>
struct DefaultDeleter {
void operator()(PointerType* ptr) {
std::cout << "Delete\n";
}
};
struct CustomDeleter {
void operator()(int* ptr) {
std::cout << "Custom int deleter" << std::endl;
}
};
template <typename T, typename Deleter = DefaultDeleter<T>>
class Whatever
{
public:
Whatever() {
std::cout << "Cons\n";
}
void deinit() {
Deleter d;
auto v = new T;
d(v); // Just for the sake of example
}
};
int main() {
Whatever<char> w;
w.deinit();
Whatever<int, CustomDeleter> w2;
w2.deinit();
return 0;
}
Updated :: W/o code refactoring
Assuming w/o c++11
Have this small metaprogram added to your code base.
namespace my {
template <typename T, typename U> struct is_same {
static const bool value = false;
};
template <typename T>
struct is_same<T, T> {
static const bool value = true;
};
template <bool v, typename T = void> struct enable_if;
template <typename T = void> struct<true, T> {
typedef T type;
};
}
Change your Empty function to:
void Empty() {
for (/****/) {
do_delete();
}
}
template <typename =
typename my::enable_if<my::is_same<T, Search>::value>::type>
void do_delete() {
assert (m_lpfnCustomDeleter != NULL);
m_lpfnCustomDeleter(m_pList[m_nListLastUsed]);
}
void do_delete() {
delete m_pList[m_nListLastUsed];
}
If you are using c++11, the you dont have to write the metaprogram under namespace 'my'. Just replace 'my::is_same' and 'my::enable_if' with 'std::is_same' and 'std::enable_if'.
Note:, Have not compiled and tested the above code.
Separate the code doing the deleting from the rest:
if (m_pList[m_nListLastUsed])
{
if (m_lpfnCustomDeleter == NULL)
delete m_pList[m_nListLastUsed]; // COMPILE ERROR HERE BECAUSE Search destructor is private BUT I won't use that instruction since
// I provided a custom Deletern I know that the compiler doesn't know that, how to bypass it
else
m_lpfnCustomDeleter(m_pList[m_nListLastUsed]);
}
Replace the code above by a call to:
custom_delete(m_pList[m_nListLastUsed]);
Then add it as a method of your list class, don't forget to include <type_traits> as well:
std::enabled_if<std::is_destructible<T>::value, void>::type custom_delete(T* ptr) {
/* Note: this isn't pre-2000 anymore, 'lpfn' as a prefix is horrible,
don't use prefixes! */
if (m_lpfnCustomDeleter) {
m_lpfnCustomDeleter(ptr);
} else {
delete ptr;
}
}
std::enabled_if<!std::is_destructible<T>::value, void>::type custom_delete(T* ptr) {
if (!m_lpfnCustomDeleter) {
throw "No custom deleter for a non destructible type!";
}
m_lpfnCustomDeleter(ptr);
}
enabled_if will make it so that the function where it can delete the object directly doesn't exist in your list if the object has a private destructor.
Alternatively, you could pass a structure (or function) acting as a custom deleter as the second template argument of your list with a default value as one that calls the delete operator, then directly call this structure on your pointer, as in Arunmu's anser.

Make_shared - own implementation

I am trying to make my own implementation of shared_ptr. I have problems with make_shared. The main feature of std::make_shared that it allocates counter block and object in continuous block of memory. How I can do the same?
I tried do something like that:
template<class T>
class shared_ptr
{
private:
class _ref_cntr
{
private:
long counter;
public:
_ref_cntr() :
counter(1)
{
}
void inc()
{
++counter;
}
void dec()
{
if (counter == 0)
{
throw std::logic_error("already zero");
}
--counter;
}
long use_count() const
{
return counter;
}
};
template<class _T>
struct _object_and_block
{
_T object;
_ref_cntr cntr_block;
template<class ... Args>
_object_and_block(Args && ...args) :
object(args...)
{
}
};
T* _obj_ptr;
_ref_cntr* _ref_counter;
void _check_delete_ptr()
{
if (_obj_ptr == nullptr)
{
return;
}
_ref_counter->dec();
if (_ref_counter->use_count() == 0)
{
_delete_ptr();
}
_obj_ptr = nullptr;
_ref_counter = nullptr;
}
void _delete_ptr()
{
delete _ref_counter;
delete _obj_ptr;
}
template<class _T, class ... Args>
friend shared_ptr<_T> make_shared(Args && ... args);
public:
shared_ptr() :
_obj_ptr(nullptr),
_ref_counter(nullptr)
{
}
template<class _T>
explicit shared_ptr(_T* ptr)
{
_ref_counter = new counter_block();
_obj_ptr = ptr;
}
template<class _T>
shared_ptr(const shared_ptr<_T> & other)
{
*this = other;
}
template<class _T>
shared_ptr<T> & operator=(const shared_ptr<_T> & other)
{
_obj_ptr = other._obj_ptr;
_ref_counter = other._ref_counter;
_ref_counter->inc();
return *this;
}
~shared_ptr()
{
_check_delete_ptr();
}
};
template<class T, class ... Args>
shared_ptr<T> make_shared(Args && ... args)
{
shared_ptr<T> ptr;
auto tmp_object = new shared_ptr<T>::_object_and_block<T>(args...);
ptr._obj_ptr = &tmp_object->object;
ptr._ref_counter = &tmp_object->cntr_block;
return ptr;
}
But when I delete object and counter block, the invalid heap block exception occurs.
N.B. _T is a reserved name and you must not use it for names of your own types/variables/parameters etc.
The problem is here:
void _delete_ptr()
{
delete _ref_counter;
delete _obj_ptr;
}
This is wrong for the make_shared case because you didn't allocate two separate objects.
The approach taken for make_shared in Boost's and GCC's shared_ptr is to use a new derived type of control block, which includes the reference counts in the base class and adds storage space for the managed object in the derived type. If you make _ref_cntr responsible for deleting the object via a virtual function then the derived type can override that virtual function to do something different (e.g. just use an explicit destructor call to destroy the object without freeing the storage).
If you give _ref_cntr a virtual destructor then delete _ref_counter will correctly destroy the derived type, so it should become something like:
void _delete_ptr()
{
_ref_counter->dispose();
delete _ref_counter;
}
Although if you don't plan to add weak_ptr support then there is no need to separate the destruction of the managed object and the control block, you can just have the control block's destructor do both:
void _delete_ptr()
{
delete _ref_counter;
}
Your current design fails to support an important property of shared_ptr, which is that the template<class Y> explicit shared_ptr(Y* ptr) constructor must remember the original type of ptr and call delete on that, not on _obj_ptr (which has been converted to T*). See the note in the docs for the corresponding constructor of boost::shared_ptr. To make that work the _ref_cntr needs to use type-erasure to store the original pointer, separate from the _obj_ptr in the shared_ptr object, so that _ref_cntr::dispose() can delete the correct value. That change in the design is also needed to support the aliasing constructor.
class _ref_cntr
{
private:
long counter;
public:
_ref_cntr() :
counter(1)
{
}
virtual ~_ref_cntr() { dispose(); }
void inc()
{
++counter;
}
void dec()
{
if (counter == 0)
{
throw std::logic_error("already zero");
}
--counter;
}
long use_count() const
{
return counter;
}
virtual void dispose() = 0;
};
template<class Y>
struct _ptr_and_block : _ref_cntr
{
Y* _ptr;
explicit _ptr_and_block(Y* p) : _ptr(p) { }
virtual void dispose() { delete _ptr; }
};
template<class Y>
struct _object_and_block : _ref_cntr
{
Y object;
template<class ... Args>
_object_and_block(Args && ...args) :
object(args...)
{
}
virtual void dispose() { /* no-op */ }
};
With this design, make_shared becomes:
template<class T, class ... Args>
shared_ptr<T> make_shared(Args && ... args)
{
shared_ptr<T> ptr;
auto tmp_object = new shared_ptr<T>::_object_and_block<T>(args...);
ptr._obj_ptr = &tmp_object->object;
ptr._ref_counter = tmp_object;
return ptr;
}
So _ref_counter points to the allocated control block and when you do delete _ref_counter that means you you have a correctly-matched new/delete pair that allocates and deallocates the same object, instead of creating one object with new then trying to delete two different objects.
To add weak_ptr support you need to add a second count to the control block, and move the call to dispose() out of the destructor, so it is called when the first count goes to zero (e.g. in dec()) and only call the destructor when the second count goes to zero. Then to do all that in a thread-safe way adds a lot of subtle complexity that would take much longer to explain than this answer.
Also, this part of your implementation is wrong and leaks memory:
void _check_delete_ptr()
{
if (_obj_ptr == nullptr)
{
return;
}
It's possible to constructor a shared_ptr with a null pointer, e.g. shared_ptr<int>((int*)nullptr), in which case the constructor will allocate a control block, but because _obj_ptr is null you will never delete the control block.