#!/usr/bin/env python
from __future__ import print_function
import sys
import time
import getopt
import alsaaudio
import numpy
from time import sleep
class A_weight():
def __init__(self):
skaler = 2.361E-14
fix_cur = 0.20565360419770495
A = []
hPa = 4e-11
card = 'default'
array_float = numpy.dtype(float)
stream = alsaaudio.PCM(alsaaudio.PCM_CAPTURE, alsaaudio.PCM_NORMAL, card)
stream.setchannels(1)
stream.setrate(48000)
stream.setformat(alsaaudio.PCM_FORMAT_S16_LE)
stream.setperiodsize(128)
def A(f):
return (12200**2*f**4/((f**2+20.6**2)*(f**2+12200**2)*numpy.sqrt(f**2+107.7**2)*numpy.sqrt(f**2+737.9**2)))+fix_cur
def listen(self):
glob_leq = 0
liczba_ramek = 0
index_ramek = 0
while True:
try:
l, data = stream.read()
except IOError, e:
error_count += 1
print(" (%d) Error recording: %s" % (error_count, e))
else:
if l==128:
decoded_block = numpy.frombuffer(data, dtype='int16' )
else:
continue
Y = numpy.fft.fft(decoded_block) # fft computing and normalization
Aw = A(numpy.arange(20.,20000,(19980./len(Y))))
Na = Aw*Y
inverse = numpy.fft.ifft(Y)
maks = 32768
array_float = numpy.divide(inverse.real ,float( maks))
array_float = array_float**2
sum_array = numpy.sum(array_float, dtype=float)
glob_leq = glob_leq + sum_array
liczba_ramek += 1
index_ramek += 1
if index_ramek == 375:
index_ramek=0
cis_chwil = numpy.divide(glob_leq, liczba_ramek * 128)
leq =10*numpy.log10(numpy.divide(cis_chwil, hPa))
print (leq)
#A.append(leq)
#print(max(A))
A_weight().listen()
So i trying writing program compute sound pressure level with weighting A.
All work correct but when i want close may code in class I have problem. Because something wrong with invoke to importing class in this case is it alsaaudio.
I get this feedback:
Traceback (most recent call last):
File "rec_A.py", line 64, in <module>
A_weight().listen()
File "rec_A.py", line 37, in listen
l, data = stream.read()
NameError: global name 'stream' is not defined
Do you have any idea
Change each occurrence of stream to self.stream:
class A_weight():
def __init__(self):
skaler = 2.361E-14
fix_cur = 0.20565360419770495
A = []
hPa = 4e-11
card = 'default'
array_float = numpy.dtype(float)
self.stream = alsaaudio.PCM(alsaaudio.PCM_CAPTURE, alsaaudio.PCM_NORMAL, card)
self.stream.setchannels(1)
self.stream.setrate(48000)
self.stream.setformat(alsaaudio.PCM_FORMAT_S16_LE)
self.stream.setperiodsize(128)
...
def listen(self):
glob_leq = 0
liczba_ramek = 0
index_ramek = 0
while True:
try:
l, data = self.stream.read()
...
This will make it an instance variable, and all other methods of that class (as long as they are passed the self argument) will have access to it through self.stream. See this bit of documentation for more details on instance variables.
Also, this is merely an aesthetic point, but the convention in Python is to use upper camel case for class names, i.e., AWeight instead of A_weight - but this will not affect how your code runs.
Related
I seem to have some problems starting my learning... I am not sure why..
the network is multi input (72 1d arrays) and output is a 1d array length 24. the 1d array output consist of numbers related to 145 different classes.
So: 72 inputs => 24 outputs
Minimal working example - without the input/output being set.
import keras
from keras.utils import np_utils
from keras import metrics
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Lambda, Reshape,Flatten
from keras.layers import Conv1D,Conv2D, MaxPooling2D, MaxPooling1D, Reshape, ZeroPadding2D
from keras.utils import np_utils
from keras.layers.advanced_activations import LeakyReLU, PReLU
from keras.layers.advanced_activations import ELU
from keras.models import Model
from keras.layers import Input, Dense
from keras.layers import Dropout
from keras import backend as K
from keras.callbacks import ReduceLROnPlateau
from keras.callbacks import CSVLogger
from keras.callbacks import EarlyStopping
from keras.models import load_model
from keras.layers.merge import Concatenate
import numpy as np
def chunks(l, n):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
nano_train_input = []
nano_train_output = []
nano_test_input = []
nano_test_output = []
## Creating train input:
for i in range(974):
nano_train_input.append(np.random.random((78,684,4)))
nano_train_output.append(np.random.randint(145,size=(228)).tolist())
## Creating test input:
for i in range(104):
nano_test_input.append(np.random.random((78,684,4)))
nano_test_output.append(np.random.randint(145,size=(228)).tolist())
def model(train_input, train_output, test_input, test_output, names=0):
# Paper uses dimension (40 x 45 =(15 * 3))
# Filter size 5
# Pooling size
# I use dimension (78 x 72 = (24 * 3)
# Filter size 9
print "In model"
i = 0
print_once = True
data_test_output = []
data_test_input = []
for matrix in test_input:
row,col,channel = matrix.shape
remove_output = (col/3)%24
remove_input = col%72
if remove_output > 0 :
test_output[i] = test_output[i][:-(remove_output)]
for split in chunks(test_output[i],24):
data_test_output.append(np.array(split))
if remove_input > 0:
out = np.split(matrix[:,:-(remove_input),:-1],matrix[:,:-(remove_input),:-1].shape[1]/72,axis=1)
else:
out = np.split(matrix[:,:,:-1],matrix[:,:,:-1].shape[1]/72,axis=1)
data_test_input.extend(out)
del out
i=i+1 # Increment
i=0
data_train_output = []
data_train_input = []
for matrix in train_input:
row,col,channel = matrix.shape
remove_output = (col/3)%24
remove_input = col%72
if remove_output > 0 :
train_output[i] = train_output[i][:-(remove_output)]
for split in chunks(train_output[i],24):
data_train_output.append(np.array(split))
if remove_input > 0:
out = np.split(matrix[:,:-(remove_input),:-1],matrix[:,:-(remove_input),:-1].shape[1]/72,axis=1)
else:
out = np.split(matrix[:,:,:-1],matrix[:,:,:-1].shape[1]/72,axis=1)
data_train_input.extend(out)
del out
i=i+1 # Increment
print
print "Len:"
print len(data_train_input)
print len(data_train_output)
print len(data_test_input)
print len(data_test_output)
print
print "Type[0]:"
print type(data_train_input[0])
print type(data_train_output[0])
print type(data_test_input[0])
print type(data_test_output[0])
print
print "Type:"
print type(data_train_input)
print type(data_train_output)
print type(data_test_input)
print type(data_test_output)
print
print "shape of [0]:"
print data_train_input[0].shape
print data_train_output[0].shape
print data_test_input[0].shape
print data_test_output[0].shape
list_of_input = [Input(shape = (78,3)) for i in range(72)]
list_of_conv_output = []
list_of_max_out = []
for i in range(72):
list_of_conv_output.append(Conv1D(filters = 32 , kernel_size = 6 , padding = "same", activation = 'relu')(list_of_input[i]))
list_of_max_out.append(MaxPooling1D(pool_size=3)(list_of_conv_output[i]))
merge = keras.layers.concatenate(list_of_max_out)
reshape = Flatten()(merge)
dense1 = Dense(units = 500, activation = 'relu', name = "dense_1")(reshape)
dense2 = Dense(units = 250, activation = 'relu', name = "dense_2")(dense1)
dense3 = Dense(units = 24 , activation = 'softmax', name = "dense_3")(dense2)
model = Model(inputs = list_of_input , outputs = dense3)
model.compile(loss="categorical_crossentropy", optimizer="adam" , metrics = [metrics.sparse_categorical_accuracy])
reduce_lr=ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1, mode='auto', epsilon=0.01, cooldown=0, min_lr=0.000000000000000000001)
stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=1, mode='auto')
print "Train!"
print model.summary()
hist_current = model.fit(x = ,
y = ,
shuffle=False,
validation_data=(,),
validation_split=0.1,
epochs=150000,
verbose=1,
callbacks=[reduce_lr,stop])
model(nano_train_input,nano_train_output,nano_test_input, nano_test_output)
The input and output is stored as a list of numpy.ndarrays.
This is a minimal working example.. how am I supposed to pass the input an output?
I would try:
merge = keras.layers.concatenate(list_of_max_out)
merge = Flatten()(merge) # or GlobalMaxPooling1D or GlobalAveragePooling1D
dense1 = Dense(500, activation = 'relu')(merge)
You probably want to apply something to transform your output from Convolutional layers. In order to do that - you need to squash the time / sequential dimension. In order to do that try techniques I provided.
If you take a look at your code and outputs you indeed have what you say: 24 outputs (data_train_outputs[0].shape). However, if you look at your layer output of Keras, you have this as output:
dense_3 (Dense) (None, 26, 145) 36395
I would say that this should be an array with shape (None, 24)....
I suggest you add a reshape layer to get the output you want to have!
I have working code below.
I have a set of machines operated with Python. I have a gui in Tkinter but very often these machines are run headless with the python code auto-starting at boot.
I really like the design pattern of using root.after() to start multiple tasks and keep them going. My problem is that this comes from the Tkinter library and when running headless the line "root=Tk()" will throw an error.
I have two questions
Can I perform some trick to have the code ignore the fact there is no display?
OR
Is there a library that will match the design pattern of Tkinter "root.after(time_in_ms,function_to_call)".
I did try to poke around in the underlying code of Tkinter to see if there was simply another library wrapped by Tkinter but I don't have the skill to decode what is going on in that library.
This code works with a display connected: (it prints hello 11 times then ends)
from Tkinter import *
# def __init__(self, screenName=None, baseName=None, className='Tk', useTk=1, sync=0, use=None):
root = Tk() # error is thrown here if starting this command in headless hardware setup
h = None
count = 0
c = None
def stop_saying_hello():
global count
global h
global c
if count > 10:
root.after_cancel(h)
print "counting cancelled"
else:
c = root.after(200, stop_saying_hello)
def hello():
global h
global count
print "hello " + str(count)
count += 1
h = root.after(1000, hello)
h = root.after(1000, hello) # time in ms, function
c = root.after(200, stop_saying_hello)
root.mainloop()
If this is run headless - in an ssh session from a remote computer then this error message is returned
Traceback (most recent call last): File "tkinter_headless.py", line
5, in
root = Tk() File "/usr/lib/python2.7/lib-tk/Tkinter.py", line 1813, in init
self.tk = _tkinter.create(screenName, baseName, className, interactive, wantobjects, useTk, sync, use)
_tkinter.TclError: no display name and no $DISPLAY environment variable
You can use
threading and threating.timer()
shed
APSheduler
or create own taks manager with own after() and mainloop()
Simple example
import time
class TaskManager():
def __init__(self):
self.tasks = dict()
self.index = 0
self.running = True
def after(self, delay, callback):
# calcuate time using delay
current_time = time.time()*1000
run_time = current_time + delay
# add to tasks
self.index += 1
self.tasks[self.index] = (run_time, callback)
# return index
return self.index
def after_cancel(self, index):
if index in self.tasks:
del self.tasks[index]
def mainloop(self):
self.running = True
while self.running:
current_time = time.time()*1000
# check all tasks
# Python 3 needs `list(self.tasks.keys())`
# because `del` changes `self.tasks.keys()`
for key in self.tasks.keys():
if key in self.tasks:
run_time, callback = self.tasks[key]
if current_time >= run_time:
# execute task
callback()
# remove from list
del self.tasks[key]
# to not use all CPU
time.sleep(0.1)
def quit(self):
self.running = False
def destroy(self):
self.running = False
# --- function ---
def stop_saying_hello():
global count
global h
global c
if count > 10:
root.after_cancel(h)
print "counting cancelled"
else:
c = root.after(200, stop_saying_hello)
def hello():
global count
global h
print "hello", count
count += 1
h = root.after(1000, hello)
# --- main ---
count = 0
h = None
c = None
root = TaskManager()
h = root.after(1000, hello) # time in ms, function
c = root.after(200, stop_saying_hello)
d = root.after(12000, root.destroy)
root.mainloop()
I am unexpectedly getting IOError: bad message length error when trying to share pyodbc connection across multiple processes, especially when N is more than 4 (no. of cores). Sometimes I also get cPickle.UnpicklingError: invalid load key, '#'., pyodbc.ProgrammingError: ('24000', '[24000] [FreeTDS][SQL Server]Invalid cursor state (0) (SQLExecDirectW)') as errors.
# Import custom python packages
import multiprocessing
import multiprocessing.managers as mm
import pathos.multiprocessing as mp
import pyodbc, datetime, time
class MyConn(object):
def __init__(self):
self.conn = None
self.cursor = None
def connect_to_db(self):
self.conn = pyodbc.connect("DSN=cpmeast;UID=dntcore;PWD=dntcorevs2")
self.cursor = self.conn.cursor()
def run_qry(self, data):
print 'Running query', data
self.cursor.execute("WAITFOR DELAY '00:00:01';select GETDATE(), '"+str(data)+"';")
l = self.cursor.fetchall()
_l = []
for i in l:
_l.append(list(i))
print 'Result for query', data, _l
return _l
class MyManagerClass(object):
def __init__(self):
self.result = multiprocessing.Manager().list()
def read_data(self, *args):
conn = args[0][0]
data = args[0][1]
l = conn.run_qry(data)
self.result.append(l)
class MyManager(mm.BaseManager):
pass # Pass is really enough. Nothing needs to be done here.
def main():
time_start = time.time()
MyManager.register("MyConn", MyConn)
manager = MyManager()
manager.start()
a = manager.MyConn()
a.connect_to_db()
dbm = MyManagerClass()
pool = mp.ProcessingPool(4)
jobs = []
N = 5
for i in range(N):
jobs.append((a, str(i)))
for i in pool.imap(dbm.read_data, jobs):
print 'result'
pool.close()
pool.join()
print 'Result', dbm.result
print 'Closed'
time_stop = time.time()
msg = 'runtime: {0}'.format(str(datetime.timedelta
(seconds=time_stop-time_start)))
print msg
if __name__ == '__main__':
main()
So I am trying to multi process function F. Which is accessed by a button press with tkinter.
def f(x):
global doom,results,info
doom = doom + 1
if check(x) == True:
results.add(x)
info.append(get_column_number(x))
j.step(1)
texx = "1/"+doom
s.configure(text=texx)
root.update()
The function is called within a function like so:
def dojob():
index = ['URLS'...]
pool = Pool(processes=4)
s.configure(text="Shifting Workload to cores..")
root.update()
pool.map(f, index)
The button is inside root window.
I get the following error:
Exception in thread Thread-2:
Traceback (most recent call last):
File "C:\Python27\lib\threading.py", line 808, in __bootstrap_inner
self.run()
File "C:\Python27\lib\threading.py", line 761, in run
self.__target(*self.__args, **self.__kwargs)
File "C:\Python27\lib\multiprocessing\pool.py", line 342, in _handle_tasks
put(task)
UnpickleableError: Cannot pickle <type 'tkapp'> objects
I do not even know what a pickle does? Help?
Here is the complete code:
from Tkinter import *
from ttk import *
from tkMessageBox import showinfo
from multiprocessing import Pool
import random
emails = set()
import urllib2
import urllib2 as urllib
########
CONSTANT_PAGECOUNT = 20
######
def f(x):
global doom,emails,info
doom = doom + 1
if check(x) == True:
print "",
emails.add(x)
info.append(get_column_number(x))
j.step(1)
texx = "Sk1nn1n "+str(doom)+'/'+str(CONSTANT_PAGECOUNT)+""
s.configure(text=texx)
root.update()
return 0
def f(x):
print ""
def showFile(site,info):
top = Toplevel()
top.title('Sites')
x = Text(top)
x.pack()
i=0
for site_url in site:
x.insert(END,site_url)
i=i+1
def get_column_number(url):
return True
def check(url):
return True
def getgoogleurl(search,siteurl=False,startr=0):
if siteurl==False:
return 'http://www.google.com/search?q='+urllib2.quote(search)+'&start='+str(startr)+'&oq='+urllib2.quote(search)
else:
return 'http://www.google.com/search?q=site:'+urllib2.quote(siteurl)+'%20'+urllib2.quote(search)+'&oq=site:'+urllib2.quote(siteurl)+'%20'+urllib2.quote(search)
def getgooglelinks(search,siteurl=False,startr=0):
#google returns 403 without user agent
headers = {'User-agent':'Mozilla/11.0'}
req = urllib2.Request(getgoogleurl(search,siteurl,startr),None,headers)
site = urllib2.urlopen(req)
data = site.read()
site.close()
#no beatifulsoup because google html is generated with javascript
start = data.find('<div id="res">')
end = data.find('<div id="foot">')
if data[start:end]=='':
#error, no links to find
return False
else:
links =[]
data = data[start:end]
start = 0
end = 0
while start>-1 and end>-1:
#get only results of the provided site
if siteurl==False:
start = data.find('<a href="/url?q=')
else:
start = data.find('<a href="/url?q='+str(siteurl))
data = data[start+len('<a href="/url?q='):]
end = data.find('&sa=U&ei=')
if start>-1 and end>-1:
link = urllib2.unquote(data[0:end])
data = data[end:len(data)]
if link.find('http')==0:
links.append(link)
return links
def rip(results=15,accuracy=16):
global e
keyword = ''+str(e.get())
if keyword.strip()=="":
s.configure(text="Please enter a keyword")
root.update()
return 0
linklist = []
counter = 0
doom = 0
while counter < results:
links = getgooglelinks(keyword,startr=counter)
for link in links:
if len(linklist) > CONSTANT_PAGECOUNT:
s.configure(text="Proccessing..")
root.update()
return linklist
else:
doom = doom + 1
linklist.append(link)
texx = str(doom)+"/"+str(CONSTANT_PAGECOUNT)
s.configure(text=texx)
root.update()
root.update()
counter = counter+accuracy
return linklist
def flip():
global e
emails = set()
info = []
keyword = ''+str(e.get())
if keyword.strip()=="":
s.configure(text="Please enter a keyword")
root.update()
return 0
s.configure(text="Generating index..")
root.update()
doom = -1
index = rip(CONSTANT_PAGECOUNT,10)
if 1:
try:
pool = Pool(processes=4)
#s.configure(text="Shifting Workload to cores..")
#root.update()
pool.map(f, index)
pool.close()
except:
print "The errors there.."
j.config(value=CONSTANT_PAGECOUNT)
if len(emails) > 0:
filepath='relavant_list_'+str(random.randint(1,9999))+'.emList.txt'
#print len(emails),
#print "emails found."
ggg = open(filepath,'a+')
for x in emails:
ggg.write(x+"\n")
showinfo(
str(len(emails))+" key word related sites found!",
" sites are saved in "+str(filepath)
)
showFile(emails,info)
s.configure(text=filepath)
else:
s.configure(text='No related sites found : (')
if __name__ == '__main__':
### CONSTANTS
version = '1.0'
### END CONSTANTS
root = Tk()
root.title('Program v'+version)
s = Style()
s.theme_use('default')
#print s.theme_names()
s.configure("black.Horizontal.TProgressbar", foreground='blue', background='blue')
j = Progressbar(root, style="black.Horizontal.TProgressbar", orient="vertical", length=200, mode="determinate", maximum=CONSTANT_PAGECOUNT, value=0)
j.pack(side='right',fill='y')
f = Frame(root)
x = Frame(f)
e = Entry(x,width=51)
s = Label(x,width=50,anchor='center',text='Waiting for task..')
Button(f,text='Generate List!',width=50,command=flip).pack(fill='both',expand=True)
s.pack(side='bottom',fill='y',expand=True)
e.pack(side='top',fill='both',expand=True)
x.pack(side='top',fill='y',expand=True)
f.pack(side='left',expand=True,fill="both")
root.mainloop()
You are leaking a tkinter object. Most likely because you are trying to update the interface from another process with the last line of f()
Update based on code
You have a name collision between your function f() and a variable f in your __main__ which gets assigned to your main window and causes the tkapp pickle error. Rename the function to def myfunc() or something. Also need to call pool.join() after pool.close()
I am Trying to call a another method within my class, for some reason I am getting the AttributeError: portfinder instance has no attribute 'generatePortNumber' See my code below:
when I tried to call the generatePortNumber I'm getting the same error. I have never come across this issue.
#!/usr/bin/python
# -*- coding: utf-8 -*-
import sqlite3 as lite
import sys
import random
class portfinder:
"""docstring for ClassName"""
def __init__(self):
self.portsToCheck = ['agentport','BatchProcessingAgentPort','databaseport','indexserviceport','monitorport','servicefacadeport','webdriverport']
self.dataBasePort = (u'60025',)
self.portInUse = False
self.x = 0
def generatePortNumber(self):
self.newPortNumber = random.randrange(8000, 9000)
print self.newPortNumber
return self.newPortNumber
def findUsedPortsinDB(self):
con = lite.connect('D:\play\Opes\db.sqlite3')
with con:
cur = con.cursor()
sqlStatement = "Select " + self.portsToCheck[2] +' From Jobs_jobs'
print sqlStatement
cur.execute(sqlStatement)
rows = cur.fetchall()
for row in rows:
print row
if row == self.dataBasePort:
self.portInUse = "true"
self.generatePortNumber()
if __name__ == "__main__":
m = portfinder()
m.findUsedPortsinDB()
Found what was wrong I had a extra indentation in my method