What is the proper location for an attribute specifier for a constructor? The standard doesn't seem to distinguish constructor in any special way but the normal locations lead to warnings from GCC and Clang.
struct test {
[[gnu::nonnull]] test (char * arg); // gcc-6.3 ok, clang error.
test [[gnu::nonnull]] (signed * arg); // gcc/clang error
test (unsigned * arg) [[gnu::nonnull]]; // gcc warning, clang error.
};
I use the second for other functions with no issues.
Is this a bug in gcc and clang?
Related
I happen to find that GCC and Clang differ in the compilation of the following code:
struct Foo
{
int mem = 42;
};
int main()
{
constexpr Foo foo;
static_assert(__builtin_constant_p(foo));
return 0;
}
I compile with g++ -std=c++17 and clang++ -std=c++17.
In particular,
g++ g++-9 (Homebrew GCC 9.3.0_1) 9.3.0 compiles, whereas
clang++ Apple clang version 11.0.3 (clang-1103.0.32.62) fails to compile, complaining that
error: static_assert failed due to requirement '__builtin_constant_p(foo)'
static_assert(__builtin_constant_p(foo));
^ ~~~~~~~~~~~~~~~~~~~~~~~~~
I didn't find any hint that there should be any difference regarding __builtin_constant_p.
For __builtin_constant_p
GCC says
You can use the built-in function __builtin_constant_p to determine if a value is known to be constant at compile time ...
Clang
says
Clang supports a number of builtin library functions with the same syntax as GCC, including things like __builtin_nan, __builtin_constant_p, __builtin_choose_expr, __builtin_types_compatible_p, __builtin_assume_aligned, __sync_fetch_and_add, etc.
Question: While I know __builtin_constant_p is a compiler extension, which one should be the correct one?
Both are poorly documented so I doubt there is a proper answer to your question.
If you need a workaround: it seems that clang gives up if the argument is not an int.
So this works:
struct Foo
{
int mem = 42;
};
int main()
{
constexpr Foo foo;
static_assert(__builtin_constant_p(foo.mem));
return 0;
}
Is there a way to treat exception mismatch error as warning in clang?
source_file.cpp:12:18: error: exception specification of overriding function is more lax than base version
virtual void Func(){}
I am getting error with google mock for functions that specify exception specifier. Looking at https://github.com/google/googletest/pull/681 and other reported issue, not sure if this will get fixed in google mock, so at least for test code if possible I would like to disable this.
//clang 3.8.0
#include <iostream>
struct A
{
virtual void Func() throw() {}
};
struct B : public A
{
virtual void Func(){}
};
int main()
{
B b;
return 0;
}
Yes, using the -fms-extensions command line option.
MSVC only warns about this, so with clang MSVC compatibility mode, the code will compile, and the error will be replaced with an equivalent warning.
More about MSVC compatibility mode in clang documentation,
here.
Our project uses C++11/14, and we want to use nullptr instead of 0 or NULL with pointers, even when 0 (as an integer literal) is allowed.
I have the following code:
int main()
{
int *ptr1 = nullptr; // #1
int *ptr2 = 0; // #2
}
If I compile with GCC (5.3.0) and the flag -Wzero-as-null-pointer-constant it warnings in #2, but I can't find a similar flag in Clang. If I compile the code with Clang (3.7.1) and the flag -Weverything, I don't get any warning about #2.
So, is there any way to get a similar warning for this in Clang?
clang has this warning as of 5.0; I added it here.
Clang doesn't support these kind of warnings (i.e., there's no -Wzero-as-null-pointer-constant equivalent in Clang). You can see it your self if you add -Weverything option (mind do it only for testing), which enables all Clang's warnings.
Live Demo
Using gcc (4.7.2 here) I get warnings about unused auto variables, but not about other variables:
// cvars.h
#ifndef CVARS_H_
#define CVARS_H_
const auto const_auto = "const_auto";
const char const_char_array[] = "const_char_array";
const char * const_char_star = "const_char_star";
const char use_me = 'u';
#endif // CVARS_H_
//---
//comp_unit.cpp
#include "cvars.h"
void somef()
{
//const_auto // commented out - unused
use_me; // not using any of the others either
}
// compile with $ g++ -std=c++11 -Wunused-variable -c comp_unit.cpp
// gcc outputs warning: ‘cvars::const_auto’ defined but not used [-Wunused-variable]
// but does not complain about the other variables
Is this an inconsistency in GCC?
1.1 If so, what should happen in all cases, warning or no warning?
1.2 If not, what is the reason for the difference in behavior?
Note: Concerning 1.1, I imagine no warning should be printed in this case (this is what clang does). Otherwise, any compilation unit including a constant-defining header but not using all the constants within would contain lots of warnings.
These warnings are entirely up to the implementation, so there is no "should". But, yes, I agree: constants would ideally not generate these warnings even when declared using auto.
Since I can reproduce your observation in GCC 4.7 and GCC 4.8.0, but not in GCC 4.8.1 or 4.9, I'd say the guys over at GNU would agree too. In fact, I believe you're seeing bug 57183.
This question already has answers here:
What is the strict aliasing rule?
(11 answers)
Closed 9 years ago.
In file included from /usr/local/Qt/linux-g++/include/QtCore/QLinkedList:2,
from /home/bamboo/Packages/Parser.h:17,
from /home/bamboo/Packages/Module.cpp:6:
/usr/local/Qt/linux-g++/include/QtCore/qlinkedlist.h: In member function 'void QLinkedList<T>::clear() [with T = int]':
/usr/local/Qt/linux-g++/include/QtCore/qlinkedlist.h:294: error: dereferencing pointer 'y' does break strict-aliasing rules
/usr/local/Qt/linux-g++/include/QtCore/qlinkedlist.h:293: note: initialized from here
/usr/local/Qt/linux-g++/include/QtCore/qlinkedlist.h:294: error: dereferencing pointer 'y' does break strict-aliasing rules
/usr/local/Qt/linux-g++/include/QtCore/qlinkedlist.h:293: note: initialized from here
where in big lines class Module contains a member template like: Parser<int> and the class parser is defined:
template <typename T> class Parser
{
// some stuff
QLinkedList<T> stuff;
};
and this piece of code compiles nicely with gcc (Ubuntu 4.4.3-4ubuntu5.1) 4.4.3 and nicely with g++ (Ubuntu/Linaro 4.7.2-2ubuntu1) 4.7.2 and fails with g++ (Debian 4.4.5-8) 4.4.5 ... and I have no idea why? Anyone has seen this error message and anyone know what this might mean?... and more importantly how to solve it?
Aliasing means that a pointer int *i points to the same address as double *d.
So if
int i = 5;
int *pi = &i:
double *d = pi;
here d is aliasing pi.
this is in c99 >illegal<
I don't know how exactly c++ treats it, but I can't imagine it is welcome.
If you want to test a code where it will be getting funny, try this code in different optimisation levels.
You will get differen results with gcc 4.2
uint32_t anint;
int main(int arg, char** argv)
{
foo ((uint64_t *)&anint);
return 0;
}
void foo (uint64_t *dblptr)
{
anint = 88;
*dblptr = 86;
dosmthng (anint);
}
void dosmthng (uint32_t val)
{
printf ("%d\r\n", val);
}
if you do -O2 or higher the output will be 88. because the compiler expects you to respect the strict-aliasing rule and expects *dblptr as never been used in this code, and jsut takes the line out.
If you any way see no way of working wihtout aliasing, you can give the compiler the param -fno-strict-aliasing. This forces GCC to do not any optimisation based on this expection.
But anyway in C it is not strict ISO C code if you do wrong type punning.
(So if it may ease you, a lot of C code on famous programms gets compiled with -fno-strict-aliasing)