OpenGL Render to Transparent Texture - opengl

I have a system to render different objects into different RGBA textures using OpenGL in C++. I'd like to layer these textures on top of eachother, but my problem is that each texture has the glClearColor rendered into it.
How to tell OpenGL to make the ClearColor parts of the texture transparent (0.0f alpha), so I can still see parts of layers behind other layers?

The fourth parameter of glClearColor allows you to specify an alpha value to set when you clear the render target, so you can just pass 0 to make it clear to transparent.
Your render target obviously needs to have an alpha channel. Also, the clearing of the alpha channel using the value specified using glClearColor can be enabled or disabled using glColorMask.

Related

How do I make my object transparent but still show the texture?

I'm trying to render a model in OpenGL. I'm on Day 4 of C++ and OpenGL (Yes, I have learned this quickly) and I'm at a bit of a stop with textures.
I'm having a bit of trouble making my texture alpha work. In this image, I have this character from Spiral Knights. As you can see on the top of his head, there's those white portions.
I've got Blending enabled and my blend function set to glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
What I'm assuming here, and this is why I ask this question, is that the texture transparency is working, but the triangles behind the texture are still showing.
How do I make those triangles invisible but still show my texture?
Thanks.
There are two important things to be done when using blending:
You must sort primitives back to front and render in that order (order independent transparency in depth buffer based renderers is still an ongoing research topic).
When using textures to control the alpha channel you must either write a shader that somehow gets the texture's alpha values passed down to the resulting fragment color, or – if you're using the fixed function pipeline – you have to use GL_MODULATE texture env mode, or GL_DECAL with the primitive color alpha value set to 0, or use GL_REPLACE.

OpenGL blending: texture on top overlaps its pixels which should be transparent (alpha = 0)

I am drawing a map texture and, on top of it, a colorbar texture. Both have alpha channel and I am using blending, set as
// Turn on blending
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
However, the following happens:
The texture on top (colorbar) with alpha channel imposes its black pixels, which I don't want to happen. The map texture should appear behind where the colorbar alpha = 0.
Is this related to the blending definitions? How should I change it?
Assuming the texture has an alpha channel and it's transparent in the right places, I suspect the issue is with the rendering order and depth testing.
Lets say you render the scale texture first. It blends correctly with a black background. Then you render the orange texture behind it, but the pixels from the scale texture have a higher depth value and cause the orange texture there to be discarded.
So, make sure you render all your transparent stuff in back to front order, or farthest to nearest.
Without getting into order independent transparency, a common approach to alpha transparency is as follows:
Enable the depth buffer
Render all your opaque geometry
Disable depth writes (glDepthMask)
Enable alpha blending (as in the OP's code)
Render your transparent geometry in farthest to nearest order
For particles you can sometimes get away without sorting and it'll still look OK. Another approach is using the alpha test or using alpha to coverage with a multisample framebuffer.

Background pixel in fragment shader

There is some method to access the background pixel in a fragment shader in order to change the alpha blending function?
I try to implement the fragment shader from page 5 of Weighted Blended Order-Independent Transparency but I don't know how to get Ci.
In standard OpenGL, you can't read the current value in the color buffer in your fragment shader. As far as I'm aware, the only place this functionality is available is as an extension in OpenGL ES (EXT_shader_framebuffer_fetch).
I didn't study the paper you linked, but there are two main options to blend your current rendering with previously rendered content:
Fixed function blending
If the blending functionality you need is covered by the blending functions/equations supported by OpenGL, this is the easiest and likely most efficient option. You set up the blending with glBlendFunc() and glBlendEquation() (or there more flexible variations glBlendFuncSeparate() and glBlendEquationSeparate()), enable blending with glEnable(GL_BLEND), and you're ready to draw.
There are also extensions that enable more variations, like KHR_blend_equation_advanced. Of course, like with all extensions, you can't count on them being supported on all platforms.
Multiple Passes
If you really do need programmable control over the blending, you can always do that with more rendering passes.
Say you render two passes that need to be blended together, and want the result in framebuffer C. The conventional sequence would be:
set current framebuffer to C
render pass 1
set up and enable blending
render pass 2
Now if this is not enough, you can render pass 1 and pass 2 into separate framebuffers, and then combine them:
set current framebuffer to A
render pass 1
set current framebuffer to B
render pass 2
set current framebuffer to C
bind color buffers from framebuffer A and B as textures
draw screen size quad, and sample/combine A and B in fragment shader
A and B in this sequence are FBOs with texture attachments. So you end up with the result of each rendering pass in a texture. You can then bind both of the textures for a final pass, sample them both in your fragment shader, and combine the colors in a fully programmable fashion to produce the final output.

OpenGL blend two FBOs

In a game I'm writing, I have a level, which is properly rendered to the on-screen render buffer provided to me by the OS. I can also render this to a framebuffer, then render this framebuffer onto the output render buffer.
To add a background, I want to render a different scene, an effect, or whatever to a second framebuffer, then have this "show through" wherever the framebuffer containing the level has no pixel set, i.e. the alpha value is 0. I think this is called alpha blending.
How would I go about doing this with OpenGL? I think glBlendFunc could be used to achieve this, but I am not sure how I can couple this with the framebuffer drawing routines to properly achieve the result I want.
glBlendFunc allows the application to blend (merge) the output of all your current draw operations (say, X) with the current "display" framebuffer (say, Y) that already exists.
ie,
New display output = X (blend) Y
You can control the blend function by gl as below snippet shows for example:
glEnable(GL_BLEND);
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
Full usage shown here
https://github.com/prabindh/sgxperf/blob/master/sgxperf_test4.cpp
Note that the concepts of "showing through" and "blending" are a little different, you might just want to stick with "per pixel alpha blending" terminology.
FBOs are just a containers and are not storage. What you need to do is attach a texture target for each FBO and render your output to that texture, once you have done this. You can use your output textures on a fullscreen quad and do whatever you want with your blending.

OpenGL primitives too dark when multitexturing?

I'm having a problem getting accurate primitive colours when I'm using multi-texturing elsewhere in the scene. Basically, I have some lines and polygons that I am trying render over a video texture (I'm using 3 stage multitexturing to create the video texture)... Anyhow, I know the problem is not alpha related... In fact, I know that in my texture update function if I just comment out the calls to glBindTexture() for texture levels 1 and 2, the primitive color is fine (so leaving texture level 0)... Is it trying to multitexture the primitives too (even though I'm obviously not setting texture coordinates for primitives)?
Make sure to disable multitexturing when not using it. OpenGL uses a state machine, so if you turn on a texture it will stay on until you explicitly turn it off.
Just because you're not setting coordinates, doesn't mean OpenGL will assume you're not using the texture.