I'm trying to read / write multiple Protocol Buffers messages from files, in both C++ and Java. Google suggests writing length prefixes before the messages, but there's no way to do that by default (that I could see).
However, the Java API in version 2.1.0 received a set of "Delimited" I/O functions which apparently do that job:
parseDelimitedFrom
mergeDelimitedFrom
writeDelimitedTo
Are there C++ equivalents? And if not, what's the wire format for the size prefixes the Java API attaches, so I can parse those messages in C++?
Update:
These now exist in google/protobuf/util/delimited_message_util.h as of v3.3.0.
I'm a bit late to the party here, but the below implementations include some optimizations missing from the other answers and will not fail after 64MB of input (though it still enforces the 64MB limit on each individual message, just not on the whole stream).
(I am the author of the C++ and Java protobuf libraries, but I no longer work for Google. Sorry that this code never made it into the official lib. This is what it would look like if it had.)
bool writeDelimitedTo(
const google::protobuf::MessageLite& message,
google::protobuf::io::ZeroCopyOutputStream* rawOutput) {
// We create a new coded stream for each message. Don't worry, this is fast.
google::protobuf::io::CodedOutputStream output(rawOutput);
// Write the size.
const int size = message.ByteSize();
output.WriteVarint32(size);
uint8_t* buffer = output.GetDirectBufferForNBytesAndAdvance(size);
if (buffer != NULL) {
// Optimization: The message fits in one buffer, so use the faster
// direct-to-array serialization path.
message.SerializeWithCachedSizesToArray(buffer);
} else {
// Slightly-slower path when the message is multiple buffers.
message.SerializeWithCachedSizes(&output);
if (output.HadError()) return false;
}
return true;
}
bool readDelimitedFrom(
google::protobuf::io::ZeroCopyInputStream* rawInput,
google::protobuf::MessageLite* message) {
// We create a new coded stream for each message. Don't worry, this is fast,
// and it makes sure the 64MB total size limit is imposed per-message rather
// than on the whole stream. (See the CodedInputStream interface for more
// info on this limit.)
google::protobuf::io::CodedInputStream input(rawInput);
// Read the size.
uint32_t size;
if (!input.ReadVarint32(&size)) return false;
// Tell the stream not to read beyond that size.
google::protobuf::io::CodedInputStream::Limit limit =
input.PushLimit(size);
// Parse the message.
if (!message->MergeFromCodedStream(&input)) return false;
if (!input.ConsumedEntireMessage()) return false;
// Release the limit.
input.PopLimit(limit);
return true;
}
Okay, so I haven't been able to find top-level C++ functions implementing what I need, but some spelunking through the Java API reference turned up the following, inside the MessageLite interface:
void writeDelimitedTo(OutputStream output)
/* Like writeTo(OutputStream), but writes the size of
the message as a varint before writing the data. */
So the Java size prefix is a (Protocol Buffers) varint!
Armed with that information, I went digging through the C++ API and found the CodedStream header, which has these:
bool CodedInputStream::ReadVarint32(uint32 * value)
void CodedOutputStream::WriteVarint32(uint32 value)
Using those, I should be able to roll my own C++ functions that do the job.
They should really add this to the main Message API though; it's missing functionality considering Java has it, and so does Marc Gravell's excellent protobuf-net C# port (via SerializeWithLengthPrefix and DeserializeWithLengthPrefix).
I solved the same problem using CodedOutputStream/ArrayOutputStream to write the message (with the size) and CodedInputStream/ArrayInputStream to read the message (with the size).
For example, the following pseudo-code writes the message size following by the message:
const unsigned bufLength = 256;
unsigned char buffer[bufLength];
Message protoMessage;
google::protobuf::io::ArrayOutputStream arrayOutput(buffer, bufLength);
google::protobuf::io::CodedOutputStream codedOutput(&arrayOutput);
codedOutput.WriteLittleEndian32(protoMessage.ByteSize());
protoMessage.SerializeToCodedStream(&codedOutput);
When writing you should also check that your buffer is large enough to fit the message (including the size). And when reading, you should check that your buffer contains a whole message (including the size).
It definitely would be handy if they added convenience methods to C++ API similar to those provided by the Java API.
IsteamInputStream is very fragile to eofs and other errors that easily occurs when used together with std::istream. After this the protobuf streams are permamently damaged and any already used buffer data is destroyed. There are proper support for reading from traditional streams in protobuf.
Implement google::protobuf::io::CopyingInputStream and use that together with CopyingInputStreamAdapter. Do the same for the output variants.
In practice a parsing call ends up in google::protobuf::io::CopyingInputStream::Read(void* buffer, int size) where a buffer is given. The only thing left to do is read into it somehow.
Here's an example for use with Asio synchronized streams (SyncReadStream/SyncWriteStream):
#include <google/protobuf/io/zero_copy_stream_impl_lite.h>
using namespace google::protobuf::io;
template <typename SyncReadStream>
class AsioInputStream : public CopyingInputStream {
public:
AsioInputStream(SyncReadStream& sock);
int Read(void* buffer, int size);
private:
SyncReadStream& m_Socket;
};
template <typename SyncReadStream>
AsioInputStream<SyncReadStream>::AsioInputStream(SyncReadStream& sock) :
m_Socket(sock) {}
template <typename SyncReadStream>
int
AsioInputStream<SyncReadStream>::Read(void* buffer, int size)
{
std::size_t bytes_read;
boost::system::error_code ec;
bytes_read = m_Socket.read_some(boost::asio::buffer(buffer, size), ec);
if(!ec) {
return bytes_read;
} else if (ec == boost::asio::error::eof) {
return 0;
} else {
return -1;
}
}
template <typename SyncWriteStream>
class AsioOutputStream : public CopyingOutputStream {
public:
AsioOutputStream(SyncWriteStream& sock);
bool Write(const void* buffer, int size);
private:
SyncWriteStream& m_Socket;
};
template <typename SyncWriteStream>
AsioOutputStream<SyncWriteStream>::AsioOutputStream(SyncWriteStream& sock) :
m_Socket(sock) {}
template <typename SyncWriteStream>
bool
AsioOutputStream<SyncWriteStream>::Write(const void* buffer, int size)
{
boost::system::error_code ec;
m_Socket.write_some(boost::asio::buffer(buffer, size), ec);
return !ec;
}
Usage:
AsioInputStream<boost::asio::ip::tcp::socket> ais(m_Socket); // Where m_Socket is a instance of boost::asio::ip::tcp::socket
CopyingInputStreamAdaptor cis_adp(&ais);
CodedInputStream cis(&cis_adp);
Message protoMessage;
uint32_t msg_size;
/* Read message size */
if(!cis.ReadVarint32(&msg_size)) {
// Handle error
}
/* Make sure not to read beyond limit of message */
CodedInputStream::Limit msg_limit = cis.PushLimit(msg_size);
if(!msg.ParseFromCodedStream(&cis)) {
// Handle error
}
/* Remove limit */
cis.PopLimit(msg_limit);
Here you go:
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/io/coded_stream.h>
using namespace google::protobuf::io;
class FASWriter
{
std::ofstream mFs;
OstreamOutputStream *_OstreamOutputStream;
CodedOutputStream *_CodedOutputStream;
public:
FASWriter(const std::string &file) : mFs(file,std::ios::out | std::ios::binary)
{
assert(mFs.good());
_OstreamOutputStream = new OstreamOutputStream(&mFs);
_CodedOutputStream = new CodedOutputStream(_OstreamOutputStream);
}
inline void operator()(const ::google::protobuf::Message &msg)
{
_CodedOutputStream->WriteVarint32(msg.ByteSize());
if ( !msg.SerializeToCodedStream(_CodedOutputStream) )
std::cout << "SerializeToCodedStream error " << std::endl;
}
~FASWriter()
{
delete _CodedOutputStream;
delete _OstreamOutputStream;
mFs.close();
}
};
class FASReader
{
std::ifstream mFs;
IstreamInputStream *_IstreamInputStream;
CodedInputStream *_CodedInputStream;
public:
FASReader(const std::string &file), mFs(file,std::ios::in | std::ios::binary)
{
assert(mFs.good());
_IstreamInputStream = new IstreamInputStream(&mFs);
_CodedInputStream = new CodedInputStream(_IstreamInputStream);
}
template<class T>
bool ReadNext()
{
T msg;
unsigned __int32 size;
bool ret;
if ( ret = _CodedInputStream->ReadVarint32(&size) )
{
CodedInputStream::Limit msgLimit = _CodedInputStream->PushLimit(size);
if ( ret = msg.ParseFromCodedStream(_CodedInputStream) )
{
_CodedInputStream->PopLimit(msgLimit);
std::cout << mFeed << " FASReader ReadNext: " << msg.DebugString() << std::endl;
}
}
return ret;
}
~FASReader()
{
delete _CodedInputStream;
delete _IstreamInputStream;
mFs.close();
}
};
I ran into the same issue in both C++ and Python.
For the C++ version, I used a mix of the code Kenton Varda posted on this thread and the code from the pull request he sent to the protobuf team (because the version posted here doesn't handle EOF while the one he sent to github does).
#include <google/protobuf/message_lite.h>
#include <google/protobuf/io/zero_copy_stream.h>
#include <google/protobuf/io/coded_stream.h>
bool writeDelimitedTo(const google::protobuf::MessageLite& message,
google::protobuf::io::ZeroCopyOutputStream* rawOutput)
{
// We create a new coded stream for each message. Don't worry, this is fast.
google::protobuf::io::CodedOutputStream output(rawOutput);
// Write the size.
const int size = message.ByteSize();
output.WriteVarint32(size);
uint8_t* buffer = output.GetDirectBufferForNBytesAndAdvance(size);
if (buffer != NULL)
{
// Optimization: The message fits in one buffer, so use the faster
// direct-to-array serialization path.
message.SerializeWithCachedSizesToArray(buffer);
}
else
{
// Slightly-slower path when the message is multiple buffers.
message.SerializeWithCachedSizes(&output);
if (output.HadError())
return false;
}
return true;
}
bool readDelimitedFrom(google::protobuf::io::ZeroCopyInputStream* rawInput, google::protobuf::MessageLite* message, bool* clean_eof)
{
// We create a new coded stream for each message. Don't worry, this is fast,
// and it makes sure the 64MB total size limit is imposed per-message rather
// than on the whole stream. (See the CodedInputStream interface for more
// info on this limit.)
google::protobuf::io::CodedInputStream input(rawInput);
const int start = input.CurrentPosition();
if (clean_eof)
*clean_eof = false;
// Read the size.
uint32_t size;
if (!input.ReadVarint32(&size))
{
if (clean_eof)
*clean_eof = input.CurrentPosition() == start;
return false;
}
// Tell the stream not to read beyond that size.
google::protobuf::io::CodedInputStream::Limit limit = input.PushLimit(size);
// Parse the message.
if (!message->MergeFromCodedStream(&input)) return false;
if (!input.ConsumedEntireMessage()) return false;
// Release the limit.
input.PopLimit(limit);
return true;
}
And here is my python2 implementation:
from google.protobuf.internal import encoder
from google.protobuf.internal import decoder
#I had to implement this because the tools in google.protobuf.internal.decoder
#read from a buffer, not from a file-like objcet
def readRawVarint32(stream):
mask = 0x80 # (1 << 7)
raw_varint32 = []
while 1:
b = stream.read(1)
#eof
if b == "":
break
raw_varint32.append(b)
if not (ord(b) & mask):
#we found a byte starting with a 0, which means it's the last byte of this varint
break
return raw_varint32
def writeDelimitedTo(message, stream):
message_str = message.SerializeToString()
delimiter = encoder._VarintBytes(len(message_str))
stream.write(delimiter + message_str)
def readDelimitedFrom(MessageType, stream):
raw_varint32 = readRawVarint32(stream)
message = None
if raw_varint32:
size, _ = decoder._DecodeVarint32(raw_varint32, 0)
data = stream.read(size)
if len(data) < size:
raise Exception("Unexpected end of file")
message = MessageType()
message.ParseFromString(data)
return message
#In place version that takes an already built protobuf object
#In my tests, this is around 20% faster than the other version
#of readDelimitedFrom()
def readDelimitedFrom_inplace(message, stream):
raw_varint32 = readRawVarint32(stream)
if raw_varint32:
size, _ = decoder._DecodeVarint32(raw_varint32, 0)
data = stream.read(size)
if len(data) < size:
raise Exception("Unexpected end of file")
message.ParseFromString(data)
return message
else:
return None
It might not be the best looking code and I'm sure it can be refactored a fair bit, but at least that should show you one way to do it.
Now the big problem: It's SLOW.
Even when using the C++ implementation of python-protobuf, it's one order of magnitude slower than in pure C++. I have a benchmark where I read 10M protobuf messages of ~30 bytes each from a file. It takes ~0.9s in C++, and 35s in python.
One way to make it a bit faster would be to re-implement the varint decoder to make it read from a file and decode in one go, instead of reading from a file and then decoding as this code currently does. (profiling shows that a significant amount of time is spent in the varint encoder/decoder). But needless to say that alone is not enough to close the gap between the python version and the C++ version.
Any idea to make it faster is very welcome :)
Just for completeness, I post here an up-to-date version that works with the master version of protobuf and Python3
For the C++ version it is sufficient to use the utils in delimited_message_utils.h, here a MWE
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/util/delimited_message_util.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
template <typename T>
bool writeManyToFile(std::deque<T> messages, std::string filename) {
int outfd = open(filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC);
google::protobuf::io::FileOutputStream fout(outfd);
bool success;
for (auto msg: messages) {
success = google::protobuf::util::SerializeDelimitedToZeroCopyStream(
msg, &fout);
if (! success) {
std::cout << "Writing Failed" << std::endl;
break;
}
}
fout.Close();
close(outfd);
return success;
}
template <typename T>
std::deque<T> readManyFromFile(std::string filename) {
int infd = open(filename.c_str(), O_RDONLY);
google::protobuf::io::FileInputStream fin(infd);
bool keep = true;
bool clean_eof = true;
std::deque<T> out;
while (keep) {
T msg;
keep = google::protobuf::util::ParseDelimitedFromZeroCopyStream(
&msg, &fin, nullptr);
if (keep)
out.push_back(msg);
}
fin.Close();
close(infd);
return out;
}
For the Python3 version, building on #fireboot 's answer, the only thing thing that needed modification is the decoding of raw_varint32
def getSize(raw_varint32):
result = 0
shift = 0
b = six.indexbytes(raw_varint32, 0)
result |= ((ord(b) & 0x7f) << shift)
return result
def readDelimitedFrom(MessageType, stream):
raw_varint32 = readRawVarint32(stream)
message = None
if raw_varint32:
size = getSize(raw_varint32)
data = stream.read(size)
if len(data) < size:
raise Exception("Unexpected end of file")
message = MessageType()
message.ParseFromString(data)
return message
Was also looking for a solution for this. Here's the core of our solution, assuming some java code wrote many MyRecord messages with writeDelimitedTo into a file. Open the file and loop, doing:
if(someCodedInputStream->ReadVarint32(&bytes)) {
CodedInputStream::Limit msgLimit = someCodedInputStream->PushLimit(bytes);
if(myRecord->ParseFromCodedStream(someCodedInputStream)) {
//do your stuff with the parsed MyRecord instance
} else {
//handle parse error
}
someCodedInputStream->PopLimit(msgLimit);
} else {
//maybe end of file
}
Hope it helps.
Working with an objective-c version of protocol-buffers, I ran into this exact issue. On sending from the iOS client to a Java based server that uses parseDelimitedFrom, which expects the length as the first byte, I needed to call writeRawByte to the CodedOutputStream first. Posting here to hopegully help others that run into this issue. While working through this issue, one would think that Google proto-bufs would come with a simply flag which does this for you...
Request* request = [rBuild build];
[self sendMessage:request];
}
- (void) sendMessage:(Request *) request {
//** get length
NSData* n = [request data];
uint8_t len = [n length];
PBCodedOutputStream* os = [PBCodedOutputStream streamWithOutputStream:outputStream];
//** prepend it to message, such that Request.parseDelimitedFrom(in) can parse it properly
[os writeRawByte:len];
[request writeToCodedOutputStream:os];
[os flush];
}
Since I'm not allowed to write this as a comment to Kenton Varda's answer above; I believe there is a bug in the code he posted (as well as in other answers which have been provided). The following code:
...
google::protobuf::io::CodedInputStream input(rawInput);
// Read the size.
uint32_t size;
if (!input.ReadVarint32(&size)) return false;
// Tell the stream not to read beyond that size.
google::protobuf::io::CodedInputStream::Limit limit =
input.PushLimit(size);
...
sets an incorrect limit because it does not take into account the size of the varint32 which has already been read from input. This can result in data loss/corruption as additional bytes are read from the stream which may be part of the next message. The usual way of handling this correctly is to delete the CodedInputStream used to read the size and create a new one for reading the payload:
...
uint32_t size;
{
google::protobuf::io::CodedInputStream input(rawInput);
// Read the size.
if (!input.ReadVarint32(&size)) return false;
}
google::protobuf::io::CodedInputStream input(rawInput);
// Tell the stream not to read beyond that size.
google::protobuf::io::CodedInputStream::Limit limit =
input.PushLimit(size);
...
You can use getline for reading a string from a stream, using the specified delimiter:
istream& getline ( istream& is, string& str, char delim );
(defined in the header)
Related
From a source I am getting stream data which size will not be known before the final processing, but the minimum is 10 GB. I have to send this large amount of data using gRPC.
Need to mention here, this large amount data will be passed through the gRPC while the processing of the streaming is done. In this step, I have thought to store all the value in a vector.
Regarding sending large amount of data I have tried to get idea and found:
This where it is mentioned not to pass large data using gRPC. Here, mentioned to use any other message protocol where I have limitation to use something else rather than gRPC(at least till today).
From this post I have tried to know how chunk message can be sent but I am not sure is it related to my problem or not.
First post where I have found a blog to stream data using go language.
This one the presentation using python language of this post. But it is also incomplete.
gRPC example could be a good start bt cannot decode due to lack of C++ knowledge
From there, a huge Update I have done in the question. But the main theme of the question is not changed
What I have done so far and some points about my project. The github repo is available here.
A Unary rpc is present in the project
I know that my new Bi directional rpc will take some time. I want that the Unary rpc will not wait for the completion of the Bi directional rpc. Right now I am thinking in a synchronous way where Unary rpc is waiting to pass it's status for the streaming one completion.
I am avoiding the unnecessary lines in C++ code. But giving whole proto files
big_data.proto
syntax = "proto3";
package demo_grpc;
message Large_Data {
repeated int32 large_data_collection = 1 [packed=true];
int32 data_chunk_number = 2;
}
addressbook.proto
syntax = "proto3";
package demo_grpc;
import "myproto/big_data.proto";
message S_Response {
string name = 1;
string street = 2;
string zip = 3;
string city = 4;
string country = 5;
int32 double_init_val = 6;
}
message C_Request {
uint32 choose_area = 1;
string name = 2;
int32 init_val = 3;
}
service AddressBook {
rpc GetAddress(C_Request) returns (S_Response) {}
rpc Stream_Chunk_Service(stream Large_Data) returns (stream Large_Data) {}
}
client.cpp
#include <big_data.pb.h>
#include <addressbook.grpc.pb.h>
#include <grpcpp/grpcpp.h>
#include <grpcpp/create_channel.h>
#include <iostream>
#include <numeric>
using namespace std;
// This function prompts the user to set value for the required area
void Client_Request(demo_grpc::C_Request &request_)
{
// do processing for unary rpc. Intentionally avoided here
}
// According to Client Request this function display the value of protobuf message
void Server_Response(demo_grpc::C_Request &request_, const demo_grpc::S_Response &response_)
{
// do processing for unary rpc. Intentionally avoided here
}
// following function make large vector and then chunk to send via stream from client to server
void Stream_Data_Chunk_Request(demo_grpc::Large_Data &request_,
demo_grpc::Large_Data &response_,
uint64_t preferred_chunk_size_in_kibyte)
{
// A dummy vector which in real case will be the large data set's container
std::vector<int32_t> large_vector;
// irerate it now for 1024*10 times
for(int64_t i = 0; i < 1024 * 10; i++)
{
large_vector.push_back(1);
}
uint64_t preferred_chunk_size_in_kibyte_holds_integer_num = 0; // 1 chunk how many intger will contain that num will come here
// total chunk number will be updated here
uint32_t total_chunk = total_chunk_counter(large_vector.size(), preferred_chunk_size_in_kibyte, preferred_chunk_size_in_kibyte_holds_integer_num);
// A temp counter to trace the index of the large_vector
int32_t temp_count = 0;
// loop will start if the total num of chunk is greater than 0. After each iteration total_chunk will be decremented
while(total_chunk > 0)
{
for (int64_t i = temp_count * preferred_chunk_size_in_kibyte_holds_integer_num; i < preferred_chunk_size_in_kibyte_holds_integer_num + temp_count * preferred_chunk_size_in_kibyte_holds_integer_num; i++)
{
// the repeated field large_data_collection is taking value from the large_vector
request_.add_large_data_collection(large_vector[i]);
}
temp_count++;
total_chunk--;
std::string ip_address = "localhost:50051";
auto channel = grpc::CreateChannel(ip_address, grpc::InsecureChannelCredentials());
std::unique_ptr<demo_grpc::AddressBook::Stub> stub = demo_grpc::AddressBook::NewStub(channel);
grpc::ClientContext context;
std::shared_ptr<::grpc::ClientReaderWriter< ::demo_grpc::Large_Data, ::demo_grpc::Large_Data> > stream(stub->Stream_Chunk_Service(&context));
// While the size of each chunk is eached then this repeated field is cleared. I am not sure before this
// value can be transfered to server or not. But my assumption is saying that it should be done
request_.clear_large_data_collection();
}
}
int main(int argc, char* argv[])
{
std::string client_address = "localhost:50051";
std::cout << "Address of client: " << client_address << std::endl;
// The following part for the Unary RPC
demo_grpc::C_Request query;
demo_grpc::S_Response result;
Client_Request(query);
// This part for the streaming chunk data (Bi directional Stream RPC)
demo_grpc::Large_Data stream_chunk_request_;
demo_grpc::Large_Data stream_chunk_response_;
uint64_t preferred_chunk_size_in_kibyte = 64;
Stream_Data_Chunk_Request(stream_chunk_request_, stream_chunk_response_, preferred_chunk_size_in_kibyte);
// Call
auto channel = grpc::CreateChannel(client_address, grpc::InsecureChannelCredentials());
std::unique_ptr<demo_grpc::AddressBook::Stub> stub = demo_grpc::AddressBook::NewStub(channel);
grpc::ClientContext context;
grpc::Status status = stub->GetAddress(&context, query, &result);
// the following status is for unary rpc as far I have understood the structure
if (status.ok())
{
Server_Response(query, result);
}
else
{
std::cout << status.error_message() << std::endl;
}
return 0;
}
heper function total_chunk_counter
#include <cmath>
uint32_t total_chunk_counter(uint64_t num_of_container_content,
uint64_t preferred_chunk_size_in_kibyte,
uint64_t &preferred_chunk_size_in_kibyte_holds_integer_num)
{
uint64_t cotainer_size_in_kibyte = (32ULL * num_of_container_content) / 1024;
preferred_chunk_size_in_kibyte_holds_integer_num = (num_of_container_content * preferred_chunk_size_in_kibyte) / cotainer_size_in_kibyte;
float total_chunk = static_cast<float>(num_of_container_content) / preferred_chunk_size_in_kibyte_holds_integer_num;
return std::ceil(total_chunk);
}
server.cpp which is totally incomplete
#include <myproto/big_data.pb.h>
#include <myproto/addressbook.grpc.pb.h>
#include <grpcpp/grpcpp.h>
#include <grpcpp/server_builder.h>
#include <iostream>
class AddressBookService final : public demo_grpc::AddressBook::Service {
public:
virtual ::grpc::Status GetAddress(::grpc::ServerContext* context, const ::demo_grpc::C_Request* request, ::demo_grpc::S_Response* response)
{
switch (request->choose_area())
{
// do processing for unary rpc. Intentionally avoided here
std::cout << "Information of " << request->choose_area() << " is sent to Client" << std::endl;
return grpc::Status::OK;
}
// Bi-directional streaming chunk data
virtual ::grpc::Status Stream_Chunk_Service(::grpc::ServerContext* context, ::grpc::ServerReaderWriter< ::demo_grpc::Large_Data, ::demo_grpc::Large_Data>* stream)
{
// stream->Large_Data;
return grpc::Status::OK;
}
};
void RunServer()
{
std::cout << "grpc Version: " << grpc::Version() << std::endl;
std::string server_address = "localhost:50051";
std::cout << "Address of server: " << server_address << std::endl;
grpc::ServerBuilder builder;
builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
AddressBookService my_service;
builder.RegisterService(&my_service);
std::unique_ptr<grpc::Server> server(builder.BuildAndStart());
server->Wait();
}
int main(int argc, char* argv[])
{
RunServer();
return 0;
}
In summary my desire
I need to pass the content of large_vector with the repeated field large_data_collection of message Large_Data. I should chunk the size of the large_vector and populate the repeated field large_data_collection with that chunk size
In server side all chunk will be concatenate by keeping the exact order of the large_vector. Some processing will be done on them (eg: double the value of each index). Then again whole data will be sent to the client as a chunk stream
Would be great if the present unary rpc don't wait for the completion of the bi-directional rpc
Solution with example would be really helpful. Advance thanks. The github repo is available here.
I have slightly modified version of this https://www.boost.org/doc/libs/develop/libs/beast/example/http/server/async/http_server_async.cpp.
What it does:
According to the correctness of the request it returns the required image or an error.
What I'm going to do:
I want to keep frequently requesting images in local cache like an LRU cache to decrease response time
What I've tried:
I wanted to use buffer_body instead of file_body but some difficulties occurred with respond part, so I discarded this idea.
I tried to decode an png image to std::string, I thought this way I could keep it in std::unordered_map easier, but again problems arose with response part of the code
Here is the response part:
http::response<http::file_body> res {
std::piecewise_construct,
std::make_tuple(std::move(body)),
std::make_tuple(http::status::ok, req.version()) };
res.set(http::field::content_type, "image/png");
res.content_length(size);
res.keep_alive(req.keep_alive());
return send(std::move(res));
If doing it by encoding and decoding the image as string is ok I provide below the code where I read it to a string:
std::unordered_map<std::string, std::string> cache;
std::string load_file_contents(const std::string& filepath)
{
static const size_t MAX_LOAD_DATA_SIZE = 1024 * 1024 * 8 ; // 8 Mbytes.
std::string result;
static const size_t BUFF_SIZE = 8192; // 8 Kbytes
char buf[BUFF_SIZE];
FILE* file = fopen( filepath.c_str(), "rb" ) ;
if ( file != NULL )
{
size_t n;
while( result.size() < MAX_LOAD_DATA_SIZE )
{
n = fread( buf, sizeof(char), BUFF_SIZE, file);
if (n == 0)
break;
result.append(buf, n);
}
fclose(file);
}
return result;
}
template<class Body, class Allocator, class Send>
void handle_request(
beast::string_view doc_root,
http::request<Body, http::basic_fields<Allocator>>&& req,
Send&& send)
{
.... // skipping this part not to paste all the code
if(cache.find(path) == cache.end())
{
// if not in cache
std::ifstream image(path.c_str(), std::ios::binary);
// not in the cache and could open, so get it and decode it as a binary file
cache.emplace(path, load_file_contents(path));
}
.... // repsonse part (provided above) response should take from cache
}
ANY HELP WILL BE APPRECIATED! THANK YOU!
Sometimes there is no need to cache theseĀ files, for example, in my case changing file_body to vector_body or string_body were enough to speed up respond time almost twice
I am trying to build a NDK based c++ low latancy audio player which will encounter three operations for multiple audios.
Play from assets.
Stream from an online source.
Play from local device storage.
From one of the Oboe samples provided by Google, I added another function to the class NDKExtractor.cpp to extract a URL based audio and render it to audio device while reading from source at the same time.
int32_t NDKExtractor::decode(char *file, uint8_t *targetData, AudioProperties targetProperties) {
LOGD("Using NDK decoder: %s",file);
// Extract the audio frames
AMediaExtractor *extractor = AMediaExtractor_new();
//using this method instead of AMediaExtractor_setDataSourceFd() as used for asset files in the rythem game example
media_status_t amresult = AMediaExtractor_setDataSource(extractor, file);
if (amresult != AMEDIA_OK) {
LOGE("Error setting extractor data source, err %d", amresult);
return 0;
}
// Specify our desired output format by creating it from our source
AMediaFormat *format = AMediaExtractor_getTrackFormat(extractor, 0);
int32_t sampleRate;
if (AMediaFormat_getInt32(format, AMEDIAFORMAT_KEY_SAMPLE_RATE, &sampleRate)) {
LOGD("Source sample rate %d", sampleRate);
if (sampleRate != targetProperties.sampleRate) {
LOGE("Input (%d) and output (%d) sample rates do not match. "
"NDK decoder does not support resampling.",
sampleRate,
targetProperties.sampleRate);
return 0;
}
} else {
LOGE("Failed to get sample rate");
return 0;
};
int32_t channelCount;
if (AMediaFormat_getInt32(format, AMEDIAFORMAT_KEY_CHANNEL_COUNT, &channelCount)) {
LOGD("Got channel count %d", channelCount);
if (channelCount != targetProperties.channelCount) {
LOGE("NDK decoder does not support different "
"input (%d) and output (%d) channel counts",
channelCount,
targetProperties.channelCount);
}
} else {
LOGE("Failed to get channel count");
return 0;
}
const char *formatStr = AMediaFormat_toString(format);
LOGD("Output format %s", formatStr);
const char *mimeType;
if (AMediaFormat_getString(format, AMEDIAFORMAT_KEY_MIME, &mimeType)) {
LOGD("Got mime type %s", mimeType);
} else {
LOGE("Failed to get mime type");
return 0;
}
// Obtain the correct decoder
AMediaCodec *codec = nullptr;
AMediaExtractor_selectTrack(extractor, 0);
codec = AMediaCodec_createDecoderByType(mimeType);
AMediaCodec_configure(codec, format, nullptr, nullptr, 0);
AMediaCodec_start(codec);
// DECODE
bool isExtracting = true;
bool isDecoding = true;
int32_t bytesWritten = 0;
while (isExtracting || isDecoding) {
if (isExtracting) {
// Obtain the index of the next available input buffer
ssize_t inputIndex = AMediaCodec_dequeueInputBuffer(codec, 2000);
//LOGV("Got input buffer %d", inputIndex);
// The input index acts as a status if its negative
if (inputIndex < 0) {
if (inputIndex == AMEDIACODEC_INFO_TRY_AGAIN_LATER) {
// LOGV("Codec.dequeueInputBuffer try again later");
} else {
LOGE("Codec.dequeueInputBuffer unknown error status");
}
} else {
// Obtain the actual buffer and read the encoded data into it
size_t inputSize;
uint8_t *inputBuffer = AMediaCodec_getInputBuffer(codec, inputIndex,
&inputSize);
//LOGV("Sample size is: %d", inputSize);
ssize_t sampleSize = AMediaExtractor_readSampleData(extractor, inputBuffer,
inputSize);
auto presentationTimeUs = AMediaExtractor_getSampleTime(extractor);
if (sampleSize > 0) {
// Enqueue the encoded data
AMediaCodec_queueInputBuffer(codec, inputIndex, 0, sampleSize,
presentationTimeUs,
0);
AMediaExtractor_advance(extractor);
} else {
LOGD("End of extractor data stream");
isExtracting = false;
// We need to tell the codec that we've reached the end of the stream
AMediaCodec_queueInputBuffer(codec, inputIndex, 0, 0,
presentationTimeUs,
AMEDIACODEC_BUFFER_FLAG_END_OF_STREAM);
}
}
}
if (isDecoding) {
// Dequeue the decoded data
AMediaCodecBufferInfo info;
ssize_t outputIndex = AMediaCodec_dequeueOutputBuffer(codec, &info, 0);
if (outputIndex >= 0) {
// Check whether this is set earlier
if (info.flags & AMEDIACODEC_BUFFER_FLAG_END_OF_STREAM) {
LOGD("Reached end of decoding stream");
isDecoding = false;
} else {
// Valid index, acquire buffer
size_t outputSize;
uint8_t *outputBuffer = AMediaCodec_getOutputBuffer(codec, outputIndex,
&outputSize);
/*LOGV("Got output buffer index %d, buffer size: %d, info size: %d writing to pcm index %d",
outputIndex,
outputSize,
info.size,
m_writeIndex);*/
// copy the data out of the buffer
memcpy(targetData + bytesWritten, outputBuffer, info.size);
bytesWritten += info.size;
AMediaCodec_releaseOutputBuffer(codec, outputIndex, false);
}
} else {
// The outputIndex doubles as a status return if its value is < 0
switch (outputIndex) {
case AMEDIACODEC_INFO_TRY_AGAIN_LATER:
LOGD("dequeueOutputBuffer: try again later");
break;
case AMEDIACODEC_INFO_OUTPUT_BUFFERS_CHANGED:
LOGD("dequeueOutputBuffer: output buffers changed");
break;
case AMEDIACODEC_INFO_OUTPUT_FORMAT_CHANGED:
LOGD("dequeueOutputBuffer: output outputFormat changed");
format = AMediaCodec_getOutputFormat(codec);
LOGD("outputFormat changed to: %s", AMediaFormat_toString(format));
break;
}
}
}
}
// Clean up
AMediaFormat_delete(format);
AMediaCodec_delete(codec);
AMediaExtractor_delete(extractor);
return bytesWritten;
}
Now the problem i am facing is that this code it first extracts all the audio data saves it into a buffer which then becomes part of AFileDataSource which i derived from DataSource class in the same sample.
And after its done extracting the whole file it plays by calling the onAudioReady() for Oboe AudioStreamBuilder.
What I need is to play as it streams the chunk of audio buffer.
Optional Query: Also aside from the question it blocks the UI even though i created a foreground service to communicate with the NDK functions to execute this code. Any thoughts on this?
You probably solved this already, but for future readers...
You need a FIFO buffer to store the decoded audio. You can use the Oboe's FIFO buffer e.g. oboe::FifoBuffer.
You can have a low/high watermark for the buffer and a state machine, so you start decoding when the buffer is almost empty and you stop decoding when it's full (you'll figure out the other states that you need).
As a side note, I implemented such player only to find at some later time, that the AAC codec is broken on some devices (Xiaomi and Amazon come to mind), so I had to throw away the AMediaCodec/AMediaExtractor parts and use an AAC library instead.
You have to implement a ringBuffer (or use the one implemented in the oboe example LockFreeQueue.h) and copy the data on buffers that you send on the ringbuffer from the extracting thread. On the other end of the RingBuffer, the audio thread will get that data from the queue and copy it to the audio buffer. This will happen on onAudioReady(oboe::AudioStream *oboeStream, void *audioData, int32_t numFrames) callback that you have to implement in your class (look oboe docs). Be sure to follow all the good practices on the Audio thread (don't allocate/deallocate memory there, no mutexes and no file I/O etc.)
Optional query: A service doesn't run in a separate thread, so obviously if you call it from UI thread it blocks the UI. Look at other types of services, there you can have IntentService or a service with a Messenger that will launch a separate thread on Java, or you can create threads in C++ side using std::thread
I using libzip to work with zip files and everything goes fine, until i need to read file from zip
I need to read just a whole text files, so it will be great to achieve something like PHP "file_get_contents" function.
To read file from zip there is a function "int
zip_fread(struct zip_file *file, void *buf, zip_uint64_t nbytes)".
Main problem what i don't know what size of buf must be and how many nbytes i must read (well i need to read whole file, but files have different size). I can just do a big buffer to fit them all and read all it's size, or do a while loop until fread return -1 but i don't think it's rational option.
You can try using zip_stat to get file size.
http://linux.die.net/man/3/zip_stat
I haven't used the libzip interface but from what you write it seems to look very similar to a file interface: once you got a handle to the stream you keep calling zip_fread() until this function return an error (ir, possibly, less than requested bytes). The buffer you pass in us just a reasonably size temporary buffer where the data is communicated.
Personally I would probably create a stream buffer for this so once the file in the zip archive is set up it can be read using the conventional I/O stream methods. This would look something like this:
struct zipbuf: std::streambuf {
zipbuf(???): file_(???) {}
private:
zip_file* file_;
enum { s_size = 8196 };
char buffer_[s_size];
int underflow() {
int rc(zip_fread(this->file_, this->buffer_, s_size));
this->setg(this->buffer_, this->buffer_,
this->buffer_ + std::max(0, rc));
return this->gptr() == this->egptr()
? traits_type::eof()
: traits_type::to_int_type(*this->gptr());
}
};
With this stream buffer you should be able to create an std::istream and read the file into whatever structure you need:
zipbuf buf(???);
std::istream in(&buf);
...
Obviously, this code isn't tested or compiled. However, when you replace the ??? with whatever is needed to open the zip file, I'd think this should pretty much work.
Here is a routine I wrote that extracts data from a zip-stream and prints out a line at a time. This uses zlib, not libzip, but if this code is useful to you, feel free to use it:
#
# compile with -lz option in order to link in the zlib library
#
#include <zlib.h>
#define Z_CHUNK 2097152
int unzipFile(const char *fName)
{
z_stream zStream;
char *zRemainderBuf = malloc(1);
unsigned char zInBuf[Z_CHUNK];
unsigned char zOutBuf[Z_CHUNK];
char zLineBuf[Z_CHUNK];
unsigned int zHave, zBufIdx, zBufOffset, zOutBufIdx;
int zError;
FILE *inFp = fopen(fName, "rbR");
if (!inFp) { fprintf(stderr, "could not open file: %s\n", fName); return EXIT_FAILURE; }
zStream.zalloc = Z_NULL;
zStream.zfree = Z_NULL;
zStream.opaque = Z_NULL;
zStream.avail_in = 0;
zStream.next_in = Z_NULL;
zError = inflateInit2(&zStream, (15+32)); /* cf. http://www.zlib.net/manual.html */
if (zError != Z_OK) { fprintf(stderr, "could not initialize z-stream\n"); return EXIT_FAILURE; }
*zRemainderBuf = '\0';
do {
zStream.avail_in = fread(zInBuf, 1, Z_CHUNK, inFp);
if (zStream.avail_in == 0)
break;
zStream.next_in = zInBuf;
do {
zStream.avail_out = Z_CHUNK;
zStream.next_out = zOutBuf;
zError = inflate(&zStream, Z_NO_FLUSH);
switch (zError) {
case Z_NEED_DICT: { fprintf(stderr, "Z-stream needs dictionary!\n"); return EXIT_FAILURE; }
case Z_DATA_ERROR: { fprintf(stderr, "Z-stream suffered data error!\n"); return EXIT_FAILURE; }
case Z_MEM_ERROR: { fprintf(stderr, "Z-stream suffered memory error!\n"); return EXIT_FAILURE; }
}
zHave = Z_CHUNK - zStream.avail_out;
zOutBuf[zHave] = '\0';
/* copy remainder buffer onto line buffer, if not NULL */
if (zRemainderBuf) {
strncpy(zLineBuf, zRemainderBuf, strlen(zRemainderBuf));
zBufOffset = strlen(zRemainderBuf);
}
else
zBufOffset = 0;
/* read through zOutBuf for newlines */
for (zBufIdx = zBufOffset, zOutBufIdx = 0; zOutBufIdx < zHave; zBufIdx++, zOutBufIdx++) {
zLineBuf[zBufIdx] = zOutBuf[zOutBufIdx];
if (zLineBuf[zBufIdx] == '\n') {
zLineBuf[zBufIdx] = '\0';
zBufIdx = -1;
fprintf(stdout, "%s\n", zLineBuf);
}
}
/* copy some of line buffer onto the remainder buffer, if there are remnants from the z-stream */
if (strlen(zLineBuf) > 0) {
if (strlen(zLineBuf) > strlen(zRemainderBuf)) {
/* to minimize the chance of doing another (expensive) malloc, we double the length of zRemainderBuf */
free(zRemainderBuf);
zRemainderBuf = malloc(strlen(zLineBuf) * 2);
}
strncpy(zRemainderBuf, zLineBuf, zBufIdx);
zRemainderBuf[zBufIdx] = '\0';
}
} while (zStream.avail_out == 0);
} while (zError != Z_STREAM_END);
/* close gzip stream */
zError = inflateEnd(&zStream);
if (zError != Z_OK) {
fprintf(stderr, "could not close z-stream!\n");
return EXIT_FAILURE;
}
if (zRemainderBuf)
free(zRemainderBuf);
fclose(inFp);
return EXIT_SUCCESS;
}
With any streaming you should consider the memory requirements of your app.
A good buffer size is large, but you do not want to have too much memory in use depending on your RAM usage requirements. A small buffer size will require you call your read and write operations more times which are expensive in terms of time performance. So, you need to find a buffer in the middle of those two extremes.
Typically I use a size of 4096 (4KB) which is sufficiently large for many purposes. If you want, you can go larger. But at the worst case size of 1 byte, you will be waiting a long time for you read to complete.
So to answer your question, there is no "right" size to pick. It is a choice you should make so that the speed of your app and the memory it requires are what you need.
So I am trying to implement timed http connection Keep-Alive. And I need to be capable of killing it on some time-out. So currently I have (or at least I would like to have):
void http_request::timed_receive_base(boost::asio::ip::tcp::socket& socket, int buffer_size, int seconds_to_wait, int seconds_to_parse)
{
this->clear();
http_request_parser_state parser_state = METHOD;
char* buffer = new char[buffer_size];
std::string key = "";
std::string value = "";
boost::asio::ip::tcp::iostream stream;
stream.rdbuf()->assign( boost::asio::ip::tcp::v4(), socket.native() );
try
{
do
{
stream.expires_from_now(boost::posix_time::seconds(seconds_to_wait));
int bytes_read = stream.read_some(boost::asio::buffer(buffer, buffer_size));
stream.expires_from_now(boost::posix_time::seconds(seconds_to_parse));
if (stream) // false if read timed out or other error
{
parse_buffer(buffer, parser_state, key, value, bytes_read);
}
else
{
throw std::runtime_error("Waiting for 2 long...");
}
} while (parser_state != OK);
}
catch (...)
{
delete buffer;
throw;
}
delete buffer;
}
But there is no read_some in tcp::iostream, so compiler gives me an error:
Error 1 error C2039: 'read_some' : is not a member of 'boost::asio::basic_socket_iostream<Protocol>'
That is why I wonder - how to read 1 byte via stream.read (like stream.read(buffer, 1);) and than read_some to that very buffer via socket API ( it would look like int bytes_read = socket.read_some(boost::asio::buffer(buffer, buffer_size)); and than call my parse_buffer function with real bytes_read value)
BTW it seems like there will be a really sad problem of 1 last byte..(
Sorry to be a bit rough, but did you read the documentation? The socket iostream is supposed to work like the normal iostream, like cin and cout. Just do stream >> var. Maybe you want basic_stream_socket::read_some instead?