Suppose I have the following class definitions
struct base {
virtual int f() = 0;
};
struct A: public base {
int f() final { return 1; }
};
struct B: public base {
int f() final { return 2; }
};
Is it possible to turn A and B into templates that take a bool parameter that specifies whether to inherit from the base or not? I have usage cases that do or don't require a base class providing a common interface.
Assume that A and B have a lot of member functions, so duplicating implementation would be tedious. But sizeof(A) and sizeof(B) are small.
Sure:
template <bool> struct A
{
// ...
};
template <> struct A<true> : base
{
// ...
};
(Note that you could make A<true> derive from A<false> if that avoids redundancy.)
For example:
template <bool> struct A
{
void f() { std::cout << "A::f called\n"; }
};
template <> struct A<true> : A<false>, base
{
void f() override { A<false>::f(); }
};
int main()
{
A<false> a1;
A<true> a2;
a1.f();
a2.f();
static_cast<base&>(a2).f();
}
I came up with the more direct approach I was looking for, without code duplication.
struct base {
virtual int f() = 0;
};
struct empty_base { };
template <bool Inherit>
struct A final: public std::conditional_t<Inherit,base,empty_base> {
int f() { return 1; }
};
Since you are using a pure base class the distinction shouldn't be important as your optimizer will avoid the virtual function call when you call A::f() since there will never be a derived class that implements a different version of f().
Also you can instead do class A final : base if you don't plan on inheriting from A to avoid having to add final to each function.
Related
Suppose I have some class A:
// a.h:
class A {
virtual unsigned foo() {
return 0;
}
Then, I have many classes (let's call these intermediates) inheriting from A (class B, class C...etc). These classes will NEVER override foo().
// b.h:
class B : public A {
bool override_foo = true;
// ....
}
// c.h:
class C : public A {
bool override_foo = false;
}
Then, I have many classes inheriting from the intermediates. Class D, E, etc. Only one if these will ever inherit from a single intermediate, i.e, these is a 1 to 1 relationship between these classes and the intermediates. There is guaranteed to only (and always) be a single one of these classes inheriting from one of the intermediates.
Now, these classes MAY override foo. However, if they do, and the intermediate class they inherit from does not define override_foo as true, I need compilation to fail.
So, for example, if we have class D:
// d.h:
class D : public B {
unsigned foo() override();
}
Compilation would proceed fine, since B has override_foo defined as true.
However, we this should fail:
// e.h:
class E : public C {
unsigned foo() override();
}
Since C has override_foo as false.
Is this something that is achievable? Unfortunately there is very little flexibility in this problem. I work for a company where the intermediate classes, (B, C) can be changed very slightly. They are created from the compilation of a proprietary framework. I could add a member to them, or any sort of macro magic. Same for the base class A. However, the grandchildren classes, D,E, are defined by other engineers to override parts of the framework, and I need to prevent them from doing so unless the intermediate classes have some key attributes.
Thanks!
You can use final keyword to disallow inherited classes to override the method.
class A {
public:
virtual ~A() = default;
virtual void foo() {}
};
class B : public A {
public:
void foo() final { A::foo(); }
};
class C : public A {};
class D : public B {
public:
void foo() override; // <- compilation error here
};
class E : public C {
public:
void foo() override;
};
int main() {}
The other answers require your intermediate classes to override the base class version of foo() with final so the derived class can't override it instead of making a boolean member variable determine the result - and that would work. And maybe it is what you want, but it's not what you said you wanted. So I am going to answer the question you asked even though the other answers might be more what you were actually after.
If you can modify B then this makes the derived classes pretty simple to write:
#include <stdio.h>
#include <type_traits>
struct B {
virtual int foo() {
puts("B");
};
template<typename X>
using baseFooType = typename std::enable_if<X::override_foo,decltype(((B*)nullptr)->foo())>::type;
};
struct C : public B {
constexpr static bool override_foo = true;
};
struct D : public B {
constexpr static bool override_foo = true;
};
struct E : public C {
baseFooType<C> foo() override {
puts("E");
}
};
struct F : public D {
baseFooType<D> foo() override {
puts("F");
}
};
int main()
{
E().foo();
F().foo();
}
Try it here: https://onlinegdb.com/rJe5jXQhHI
If you can't modiby B then you can use a helper class like this:
#include <stdio.h>
#include <type_traits>
struct B {
virtual int foo() {
puts("B");
};
};
template<typename X>
struct baseFooType {
using type = typename std::enable_if<X::override_foo,decltype(((B*)nullptr)->foo())>::type;
};
struct C : public B {
constexpr static bool override_foo = true;
};
struct D : public B {
constexpr static bool override_foo = true;
};
struct E : public C {
baseFooType<C>::type foo() override {
puts("E");
}
};
struct F : public D {
baseFooType<D>::type foo() override {
puts("F");
}
};
int main()
{
E().foo();
F().foo();
}
Try it here: https://onlinegdb.com/BJXg4QhB8
Note: I used constexpr in the example because I thought it would need that to be passed as a template parameter but it turns out it isn't needed - you can just use const instead.
You can do everything your asking with the final keyword (c++11).
Like in other languages the final keyword prevents a method being overloaded in a derived class, or can be used to prevent a class from being derived from altoghether!
For example
class A: public X {
void foo() final; // <-- Overrides foo() in X
};
class B: public A {
void foo() override; // <-- Compile error! foo() has been declared final!
};
This works at compile time and will throw you a nice compile error :) Final also implies virtual and override (if it overrides something).
The code below won't compile:
struct Base
{
std::vector<void(Base::*)(void)> x;
};
struct Derived : public Base
{
void foo() {}
};
// ...
Derived d;
d.x.push_back(&Derived::foo);
Is it possible to refer derived class in template member x? In the example above I specify exactly Base and derived classes cannot push their own member functions into vector x.
Casting is bad since your code have to assume that this will be called only for instance of Derived class. This means that you either have to assume that all items in x are instance of Derived (in such case declaration of x is to general and should be changed to std::vector<void(Derived::*)(void)> x;) or you have to maintain extra information what which class method is stored in specific position of x. Both approaches are bad.
In modern C++ it is much better do do it like this:
struct Base
{
std::vector<std::function<void()>> x;
};
struct Derived : public Base
{
void foo() {}
};
// ...
Derived d;
d.x.push_back([&d](){ d.foo(); });
Another good approach can be CRTP:
template<class T>
struct Base
{
std::vector<void(T::*)(void)> x;
};
struct Derived : public Base<Derived>
{
void foo() {}
};
// ...
Derived d;
d.x.push_back(&Derived::foo);
You may, but there is no implicit conversion; it requires a cast.
Derived d;
d.x.push_back(static_cast<void(Base::*)()>(&Derived::foo));
The caveat is the if you use that pointer to member with an object that isn't really a Derived, the behavior is undefined. Tread carefully.
As an addendum, if you want to get rid of the cast when taking the pointer, you can do that by encapsulating the push (with some static type checking to boot):
struct Base
{
std::vector<void(Base::*)(void)> x;
template<class D>
auto push_member(void (D::* p)()) ->
std::enable_if_t<std::is_base_of<Base, D>::value> {
x.push_back(static_cast<void(Base::*)()>(p));
}
};
I think I would express this by calling through a non-virtual member function on the base.
example:
#include <vector>
struct Base
{
std::vector<void(Base::*)(void)> x;
// public non-virtual interface
void perform_foo()
{
foo();
}
private:
// private virtual interface for the implementation
virtual void foo() = 0;
};
struct Derived : public Base
{
private:
// override private virtual interface
void foo() override {}
};
// ...
int main()
{
Derived d;
d.x.push_back(&Base::perform_foo);
auto call_them = [](Base& b)
{
for (auto&& item : b.x)
{
(b.*item)();
}
};
call_them(d);
}
I have a parent-class with a function. In this function I want to call a template method but the type of the template depends on the type of sub-class. So I want to save the information about T there. I can't call foo with a template because it's from another part of the Program wich i can't change
class A
{
//this will be called on an instance of B or C, A will never be
//instantiated
void foo()
{
ba<T>();
}
}
class B :public A
{
//T want to save here the Type of T so i won't have to call foo() with
//a template
}
class C :public A
{
//here comes another Type for T
}
What you need is a CRTP pattern, which is very common in C++ template programming.
template<class T>
void ba() {}
template<class Derived>
struct A
{
void foo() {
ba<typename Derived::MyT>();
}
};
struct B
: public A<B>
{
using MyT = int;
};
struct C
: public A<C>
{
using MyT = double;
};
int main() {
B b;
b.foo();
C c;
c.foo();
}
You will need to add a template parameter to the base class A and then specify the type in the declaration of B and C. See the example below:
template <typename T>
class A
{
public:
void foo()
{
ba<T>();
}
};
class B : public A<int>
{
};
class C : public A<bool>
{
};
int main()
{
B b;
C c;
b.foo(); // This calls ba<int>()
c.foo(); // This calls ba<bool>()
return 0;
}
It might be good to spend some time reviewing how templates and inheritance work.
Inheritance
Templates
I'm not sure if the following code is going to do what I expect it to:
struct Foo
{
// Some variables
};
struct Bar : public Foo
{
// Some more variables
};
struct Baz : public Foo
{
// Some more variables
};
class ExampleBase
{
Foo* A;
int B;
double C;
};
class ExampleBar : public ExampleBase
{
Bar* A;
}
class ExampleBaz : public ExampleBase
{
Baz* A;
}
void DoStuff(ExampleBase& example)
{
// Does things with the Foo*, doesn't need to know what inherited type it is
}
What happens when I have the same name for a pointer (A), which is derived from the same class, but is redefined in the derived Example classes?
I've tried templating the example class like this in order to avoid any ambiguity:
template <typename T>
class ExampleBase
{
T* A;
int B;
double C;
}
And then not deriving any classes from it. When I did this however, I can't get the DoStuff() function to compile. since I want it to accept any of the possible derived types.
Edit: The answers from the possible duplicate explain what happens, but don't solve the issue of a function using the base version
You may want to use a template for to implement DoStuff:
template<typename T>
void DoStuff(ExampleBase<T>& example)
{
// Does things with the T*
}
Alternatively, you can expose both the template and the polymorphic interface separately:
struct ExampleBase
{
int B;
double C;
virtual Foo* getA();
};
template<typename T>
struct ExampleTBase : ExampleBase
{
T* A;
Foo* getA() override { return A; }
};
void DoStuff(ExampleBase& example)
{
// Does things with the getA(), that returns a Foo*
}
I am trying to use template meta-programming to determine the base class. Is there a way to get the base class automatically without explicitly specializing for each derived class?
class foo { public: char * Name() { return "foo"; }; };
class bar : public foo { public: char * Name() { return "bar"; }; };
template< typename T > struct ClassInfo { typedef T Base; };
template<> struct ClassInfo<bar> { typedef foo Base; };
int main()
{
ClassInfo<foo>::Base A;
ClassInfo<bar>::Base B;
std::cout << A.Name(); //foo
std::cout << B.Name(); //foo
}
for right now any automatic method would need to select the first declared base and would fail for private bases.
It's possible with C++11 and decltype. For that, we'll exploit that a pointer-to-member is not a pointer into the derived class when the member is inherited from a base class.
For example:
struct base{
void f(){}
};
struct derived : base{};
The type of &derived::f will be void (base::*)(), not void (derived::*)(). This was already true in C++03, but it was impossible to get the base class type without actually specifying it. With decltype, it's easy and only needs this little function:
// unimplemented to make sure it's only used
// in unevaluated contexts (sizeof, decltype, alignof)
template<class T, class U>
T base_of(U T::*);
Usage:
#include <iostream>
// unimplemented to make sure it's only used
// in unevaluated contexts (sizeof, decltype, alignof)
template<class T, class R>
T base_of(R T::*);
struct base{
void f(){}
void name(){ std::cout << "base::name()\n"; }
};
struct derived : base{
void name(){ std::cout << "derived::name()\n"; }
};
struct not_deducible : base{
void f(){}
void name(){ std::cout << "not_deducible::name()\n"; }
};
int main(){
decltype(base_of(&derived::f)) a;
decltype(base_of(&base::f)) b;
decltype(base_of(¬_deducible::f)) c;
a.name();
b.name();
c.name();
}
Output:
base::name()
base::name()
not_deducible::name()
As the last example shows, you need to use a member that is actually an inherited member of the base class you're interested in.
There are more flaws, however: The member must also be unambiguously identify a base class member:
struct base2{ void f(){} };
struct not_deducible2 : base, base2{};
int main(){
decltype(base_of(¬_deducible2::f)) x; // error: 'f' is ambiguous
}
That's the best you can get though, without compiler support.
My solutions are not really automatic, but the best I can think of.
Intrusive C++03 solution:
class B {};
class A : public B
{
public:
typedef B Base;
};
Non-intrusive C++03 solution:
class B {};
class A : public B {};
template<class T>
struct TypeInfo;
template<>
struct TypeInfo<A>
{
typedef B Base;
};
I am not aware of any base-class-selecting template, and I'm not sure one exists or is even a good idea. There are many ways in which this breaks extensibility and goes against the spirit of inheritance. When bar publicly inherits foo, bar is a foo for all practical purposes, and client code shouldn't need to distinguish base class and derived class.
A public typedef in the base class often scratches the itches you might need to have scratched and is clearer:
class foo { public: typedef foo name_making_type; ... };
int main() {
Foo::name_making_type a;
Bar::name_making_type b;
}
What's with the base class? Are you a .NET or Java programmer?
C++ supports multiple inheritance, and also does not have a global common base class. So a C++ type may have zero, one, or many base classes. Use of the definite article is therefore contraindicated.
Since the base class makes no sense, there's no way to find it.
I am looking for a portable resolution for similar problems for months. But I don't find it yet.
G++ has __bases and __direct_bases. You can wrap them in a type list and then access any one of its elements, e.g. a std::tuple with std::tuple_element. See libstdc++'s <tr2/type_traits> for usage.
However, this is not portable. Clang++ currently has no such intrinsics.
With C++11, you can create a intrusive method to always have a base_t member, when your class only inherits from one parent:
template<class base_type>
struct labeled_base : public base_type
{
using base_t = base_type; // The original parent type
using base::base; // Inherit constructors
protected:
using base = labeled_base; // The real parent type
};
struct A { virtual void f() {} };
struct my_class : labeled_base<A>
{
my_class() : parent_t(required_params) {}
void f() override
{
// do_something_prefix();
base_t::f();
// do_something_postfix();
}
};
With that class, you will always have a parent_t alias, to call the parent constructors as if it were the base constructors with a (probably) shorter name, and a base_t alias, to make your class non-aware of the base class type name if it's long or heavily templated.
The parent_t alias is protected to don't expose it to the public. If you don't want the base_t alias is public, you can always inherit labeled_base as protected or private, no need of changing the labeled_base class definition.
That base should have 0 runtime or space overhead since its methods are inline, do nothing, and has no own attributes.
Recently when I reading Unreal Engine source code, I found a piece of code meet your requirement.
Simplified code is below:
#include <iostream>
#include <type_traits>
template<typename T>
struct TGetBaseTypeHelper
{
template<typename InternalType> static typename InternalType::DerivedType Test(const typename InternalType::DerivedType*);
template<typename InternalType> static void Test(...);
using Type = decltype(Test<T>(nullptr));
};
struct Base
{
using DerivedType = Base;
static void Print()
{
std::cout << "Base Logger" << std::endl;
}
};
struct Derived1 : Base
{
using BaseType = typename TGetBaseTypeHelper<Derived1>::Type;
using DerivedType = Derived1;
static void Print()
{
std::cout << "Derived1 Logger" << std::endl;
}
};
struct Derived2 : Derived1
{
using BaseType = typename TGetBaseTypeHelper<Derived2>::Type;
using DerivedType = Derived2;
static void Print()
{
std::cout << "Derived2 Logger" << std::endl;
}
};
int main()
{
Derived1::BaseType::Print();
Derived2::BaseType::Print();
}
Using a macro below to wrap those code make it simple:
#define DECLARE_BASE(T) \
public: \
using BaseType = typename TGetBaseTypeHelper<T>::Type; \
using DerivedType = T;
I got confused when first seeing these code. After I read #Xeo 's answer and #juanchopanza 's answer, I got the point.
Here's the keypoint why it works:
The decltype expression is part of the member declaration, which does
not have access to data members or member functions declared after
it.
For example:
In the declaration of class Derived1, when declaring Derived1::BaseType, Derived1::BaseType doesn't know the existence of Derived1::DerivedType. Because Derived1::BaseType is declared before Derived1::DerivedType. So the value of Derived1::BaseType is Base not Derived1.