I am reading a book on metaprogramming and there is secession on Trampolines:
struct generic_t
{
void* obj;
void(*del)(void*);
};
template <typename T> // outer template parameter
generic_t copy_to_generic(const T& value)
{
struct local_cast // local class
{
static void destroy(void* p) // void*-based interface
{
delete static_cast<T*>(p); // static type knowledge
}
};
generic_t p;
p.obj = new T(value); // information loss: copy T* to void*
p.del = &local_cast::destroy;
return p;
}
I totally understand how it works but I don't know what is the application of it! and where do you usually use this technique? dose anyone know about it? thanks :)
I use it in many places in my programs. One thing I like with this method is that you can hold a list of unrelated types. For example, I've seen a lot of code that looked like that:
struct Abstract { virtual ~Abstract() = default; };
template<typename P>
struct AbstractHandler : Abstract {
virtual void handle(P) = 0;
};
template<typename P, typename H>
struct Handler : AbstractHandler<P>, private H {
void handle(P p) override {
H::handle(p);
}
};
struct Test1 {};
struct Test1Handler {
void handle(Test1) {}
};
struct Test2 {};
struct Test2Handler {
void handle(Test2) {}
};
int main() {
std::vector<std::unique_ptr<Abstract>> handlers;
handlers.emplace_back(std::make_unique<Handler<Test1, Test1Handler>>());
handlers.emplace_back(std::make_unique<Handler<Test2, Test2Handler>>());
// some code later....
dynamic_cast<AbstractHandler<Test1>*>(handlers[0].get())->handle(Test1{});
dynamic_cast<AbstractHandler<Test2>*>(handlers[1].get())->handle(Test2{});
}
Dynamic casts add unnecessary overhead to the program. Instead, you could use type easure just like the one you've made to avoid this overhead.
Plus, there is no reason for Abstract to even exist. It's an interface that expose no useful function. The real need here is to hold a list of unrelated interfaces.
Let's say we ajust type easure to allow copy_to_generic to cast the instance to a parent class.
template <typename Parent, typename T>
generic_t to_generic(T&& value) // forward is better.
{
struct local_cast
{
static void destroy(void* p)
{
// we cast to the parent first, and then to the real type.
delete static_cast<std::decay_t<T>*>(static_cast<Parent*>(p));
}
};
generic_t p;
p.obj = static_cast<Parent*>(new std::decay_t<T>(std::forward<T>(value)));
p.del = &local_cast::destroy;
return p;
}
Look at this code with the type easure:
// No useless interface
template<typename P>
struct AbstractHandler {
// No virtual destructor needed, generic_t already has a virtual destructor via `del`
virtual void handle(P) = 0;
};
template<typename P, typename H>
struct Handler : private H {
void handle(P p) override {
H::handle(p);
}
};
struct Test1 {};
struct Test1Handler {
void handle(Test1) {}
};
struct Test2 {};
struct Test2Handler {
void handle(Test2) {}
};
int main() {
std::vector<generic_t> handlers;
handlers.emplace_back(
to_generic<AbstractHandler<Test1>>(Handler<Test1, Test1Handler>{})
);
handlers.emplace_back(
to_generic<AbstractHandler<Test2>>(Handler<Test2, Test2Handler>{})
);
// some code later....
static_cast<AbstractHandler<Test1>*>(handlers[0].obj)->handle(Test1{});
static_cast<AbstractHandler<Test2>*>(handlers[1].obj)->handle(Test2{});
}
No empty interface and no dynamic casts anymore! This code does the same thing as the other one, but faster.
Related
class A
{
friend void foo();
virtual void print_Var() const{};
};// does not contain variable Var;
template<class T>
class B : public A
{
T Var;
public:
B(T x):Var(x){}
void print_Var() const override
{
std::cout<<Var<<std::endl;
}
};
void foo()
{
std::array<std::unique_ptr<A>, 3> Arr = {
std::make_unique<B<int>>(100),
std::make_unique<B<int>>(20),
std::make_unique<B<std::string>>("Hello Stackoverflow")
};
std::shuffle(Arr.begin(), Arr.end(), std::mt19937(std::random_device()())); // 3rd parameter generated by Clang-Tidy
for (auto &i: Arr)
{
i->print_Var(); // OK
// auto z = i->Var // no member named Var in A
// obviously base class does not contain such variable
// if (i->Var==20) {/* do something*/}
// if (i->Var=="Hello Stackoverflow") {/* do something*/}
}
}
Explanation:
I want to iterate over array of pointers to A, which is filled with pointers to classes derived from A, and depending on what type is variable Var, do some if( ) statement.
Problem is that i cannot access Var, cause its not member of base class. However, it's possible to cout those values by, for example, overloaded function returning void. Could i write function in A class that returns templated type? like:
class A
{
<class T> GetVar()
}
Besides, I feel like I'm dealing with this problem in totally improper way. Can i mix templates and inheritance like that? If not, how should it be designed?
You have a few choices. I'll explain my preferred solution first.
1. Use dynamic dispatch
If you have an array of a base class type, why do you even want to do stuff with Var? That variable is specific to the child class. If you have a A somewhere, you shouldn't even care what B has or hasn't at that place.
Operations on the typed variable should be encapsulated in virtual function in the base class. If you want to do condition and stuff, maybe you could encapsulate that condition into a virtual function that returns a boolean.
2a. Drop the base class and use variant
Sometimes, you know in advance the amount of types that will go into that list. Using a variant and drop the base class is a good solution that may apply to your case.
Let's say you only have int, double and std::string:
using poly = std::variant<B<int>, B<double>, B<std::string>>;
std::array<poly, 3> arr;
arr[0] = B<int>{};
arr[1] = B<double>{};
arr[2] = B<std::string>{};
// arr[2] = B<widget>{}; // error, not in the variant type
std::visit(
[](auto& b) {
using T = std::decay_t<decltype(b)>;
if constexpr (std::is_same_v<B<int>, T>) {
b.Var = 2; // yay!
}
},
arr[0]
);
2b. Drop the base class and use generic functions
Drop the base class entirely, and template your functions that do operation on them. You can move all your function into an interface or many std::function. Operate on that instead of the function directly.
Here's an example of what I meant:
template<typename T>
void useA(T const& a) {
a.Var = 34; // Yay, direct access!
}
struct B {
std::function<void()> useA;
};
void createBWithInt() {
A<int> a;
B b;
b.useA = [a]{
useA(a);
};
};
This is fine for cases where you only have few operations. But it can quickly lead to code bloat if you have a lot of operations or if you have many types of std::function.
3. Use a visitor
You could create a visitor that dispatch to the right type.
This solution would be much close to what you except, but is quite combersome and can break easily when adding cases.
Something like this:
struct B_Details {
protected:
struct Visitor {
virtual accept(int) = 0;
virtual void accept(double) = 0;
virtual void accept(std::string) = 0;
virtual void accept(some_type) = 0;
};
template<typename T>
struct VisitorImpl : T, Visitor {
void accept(int value) override {
T::operator()(value);
}
void accept(double) override {
T::operator()(value);
}
void accept(std::string) override {
T::operator()(value);
}
void accept(some_type) override {
T::operator()(value);
}
};
};
template<typename T>
struct B : private B_Details {
template<typename F>
void visit(F f) {
dispatch_visitor(VisitorImpl<F>{f});
}
private:
virtual void dispatch_visitor(Visitor const&) = 0;
};
// later
B* b = ...;
b->visit([](auto const& Var) {
// Var is the right type here
});
Then of course, you have to implement the dispatch_visitor for each child class.
4. Use std::any
This is litteraly returning the variable with type erasure. You cannot do any operation on it without casting it back:
class A {
std::any GetVar()
};
I personnaly don't like this solution because it can break easily and is not generic at all. I would not even use polymorphism in that case.
I think it will be the easiest way. Just move the comparison method to the interface and override it in derived classes. Add the following lines to yor example:
class A
{
/*..................................................*/
virtual bool comp(const int) const { return false; }
virtual bool comp(const std::string) const { return false; }
virtual bool comp(const double) const { return false; }
};
template<class T>
class B : public A
{
/*..................................................*/
virtual bool comp(const T othr) const override { return othr == Var; }
};
void foo()
{
/*..................................................*/
if (i->comp(20))
{
/* do something*/
}
if (i->comp("Hello Stackoverflow"))
{
/* do something*/
}
/*..................................................*/
}
Currently, I store pointers of different types in a vector. To archive this, I implemented a class template "Store" which derives from a non-class template "IStore". My vector finally stores pointers to "IStore".
In code:
class IStore
{
public:
IStore() = default;
virtual ~IStore() = default;
virtual void call() = 0;
// ... other virtual methods
};
template<typename T>
class Store : public IStore
{
public:
Store() = default;
virtual ~Store() = default;
virtual void call() override;
// ... other virtual methods
private:
T* m_object = nullptr;
}
And in my main class which holds the vector:
class Main
{
public:
template<typename T>
void registerObject(T* ptr);
template<typename T>
void callObjects();
// ... other methods
private:
std::vector<IStore*> m_storedObjects;
};
So far the current class structure. To describe the problem I need to introduce the following three example structs:
struct A {}
struct B : public A {}
struct C : {}
Other classes should call the Main::registerObject method with pointers to objects of A, B or C types. This method will then create a new Store<A>, Store<B> resp. Store<C> template class object and inserts this objects pointer to m_storedObjects.
Now the tricky part starts: The method Main::callObjects should be called by other classes with a template argument, such as Main::callObjects<B>(). This should iterate though m_storedObjects and call the IStore::call method for each object, which is of type B or which type B is derived from.
For example:
Main::registerObject<A>(obj1);
Main::registerObject<B>(obj2);
Main::registerObject<C>(obj3);
Main::callObjects<B>();
Should call obj1 and obj2 but not obj3, because C isn't B and B isn't derived from C.
My approaches in Main::callObjects were:
1. Perform dynamic_cast and check against nullptr like:
for(auto store : m_storedObjects)
{
Store<T>* base = dynamic_cast<Store<T>*>(store);
if(base)
{
// ...
}
}
which will only work for the same classes, not derived classes, because Store<B> isn't derived from Store<A>.
2. To overwrite the cast operator in IStore and Store, such that I can specify Store should be castable when the template argument is castable. For example in Store:
template<typename C>
operator Store<C>*()
{
if(std::is_convertible<T, C>::value)
{
return this;
}
else
{
return nullptr;
}
}
But this method is never called.
Does anyone have a solution to this problem?
Sorry for the long post, but I thought more code would be better to understand the problem.
Thanks for your help anyway :)
After some thought, I realized that your type erasure, from assigning Store<T> objects to IStore* pointers, makes it impossible to use any compile-time type checking like std::is_base_of and the like. The next best option you have is run-time type information (dynamic_cast<>(), typeid()). As you observed, dynamic_cast<>() can't determine if an object's type is an ancestor of another type, only if an object's type is a descendant of another type known at compile time.
EDIT: With C++17 support, I can think of another way to solve your problem, based on the std::visit example here. If you change your Main interface...
#include <iostream>
#include <vector>
#include <variant>
template <typename T>
class Store {
public:
using value_type = T;
Store(T* object): m_object(object) {}
void call() { std::cout << "Hello from " << typeid(T).name() << '\n'; }
// ... other methods
private:
T* m_object = nullptr;
};
template <typename... Ts>
class Main {
private:
std::vector<std::variant<Store<Ts>...>> m_storedObjects;
public:
// replacement for registerObjects, if you can take all objects in at once
Main(Ts*... args): m_storedObjects({std::variant<Store<Ts>...>(Store<Ts>{args})...}) {}
template <typename U>
void callObjects() {
for (auto& variant : m_storedObjects) {
std::visit([](auto&& arg) {
using T = typename std::decay_t<decltype(arg)>::value_type;
if constexpr (std::is_base_of<T, U>::value) {
arg.call();
}
}, variant);
}
}
};
struct A {};
struct B : public A {};
struct C {};
int main() {
A a;
B b;
C c;
auto m = Main{&a, &b, &c};
m.callObjects<B>();
// > Hello from 1A
// > Hello from 1B
return 0;
}
I'm trying to structure my program by using CRTP for certain parts to get rid of virtual function call overhead but I'm having trouble with cyclical references between classes.
The program basically has 2 major modes: Hello1 and Hello2 encapsulate this. I'm wondering if perhaps I should just make an enum class Hello { Hello1, Hello2 }; and use that to template everything EXCEPT for the Deriv template type where I need to use concrete classes? I tried searching for this but couldn't seem to find something matching my particular use case (or at least I didn't recognize).
template<typename T>
struct Processor
{
std::vector<T> v_; // holds HelloContainers
void usage1()
{
for (auto& v : v_)
v->doSomethingToHello();
}
void specialize() { /* ... */ }
};
template<> Container<Hello1>::specialize()
{
// something special for Hello1 only!
}
template<typename Deriv2>
struct HelloContainerBase
{
void needsAccessFromHello1And2();
// a whole bunch of other things that Hello{1,2} need access to
// ..
};
template<typename T>
struct HelloContainer : public HelloContainerBase<HelloContainer<T>>
{
void doSomethingToHello() { hello_->func2(); }
void callFunc1() { hello_->func1(); } // <--- slow?
void needsAccessFromHello()
T* hello_; // needs
};
struct HelloBase
{
virtual void func1() = 0;
};
template<typename Deriv>
struct HelloCRTP : public HelloBase
{
void func2()
{
static_cast<Deriv>(this)->func2impl();
}
HelloContainer<Deriv>* proc_;
};
struct Hello1 : public HelloCRTP<Hello1>
{
void func1(); // hopefully no virtual method overhead?
void func2impl(); // no virtual method overhead
// ...
};
struct Hello2 : public HelloCRTP<Hello1>
{
void func1(); // hopefully no virtual method overhead?
void func2impl(); // no virtual method overhead
// ...
};
int main()
{
auto hc1 = new HelloContainer<Hello1>();
auto proc = new Processor<Hello1>
proc.v_.push_back(hc1);
proc.usage();
proc.specialize();
hc1->doSomethingToHello();
}
Consider the below code, EventGeneratorBase is a helper class intended to provide the actual implementation for AddEventHandler() and I would like to use that implementation in the class RemoteControl instead of explicity defining it. I know it's not possible to instantiate RemoteControl without defining the method but is there a shortcut or an easy way to avoid manually defining the methods.
Note: The code in it's present form doesn't compile because RemoteControl can't be instantiated.
#include <iostream>
#include <vector>
#include <memory>
template<class TEventHandler> struct IEventGenerator {
virtual ~IEventGenerator() = default;
virtual void AddEventHandler(std::weak_ptr<TEventHandler> eventHandler) = 0;
};
template <class TEvents> struct EventGeneratorBase : IEventGenerator<TEvents> {
void AddEventHandler(std::weak_ptr<TEvents> target) {
_eventHandlers.push_back(target);
}
std::vector<std::weak_ptr<TEvents>> GetEventHandlers() {
return _eventHandlers;
}
private:
std::vector<std::weak_ptr<TEvents>> _eventHandlers;
};
struct IControlEvents {
virtual ~IControlEvents() = default;
virtual void PowerOn() = 0;
virtual void PowerOff() = 0;
};
struct IRemoteControl : IEventGenerator<IControlEvents> {
virtual ~IRemoteControl() = default;
virtual void Toggle() = 0;
};
struct RemoteControl : IRemoteControl, EventGeneratorBase<IControlEvents> {
// I don't want to define AddEventHandler() in this class and
// would like to inherit the implementation from EventGeneratorBase
void Toggle() {
for (auto tref : GetEventHandlers()) {
auto t = tref.lock();
if (t) {
t->PowerOn();
t->PowerOff();
}
}
}
};
struct Light : IControlEvents {
Light(std::string color) : _color(color) { }
void PowerOn() {
std::cout << _color << "::Light ON!" << std::endl;
}
void PowerOff() {
std::cout << _color << "::Light OFF!" << std::endl;
}
private:
std::string _color;
};
int main() {
std::shared_ptr<IRemoteControl> remote(new RemoteControl); // ERROR: Can't instantiate
std::shared_ptr<IControlEvents> light1(new Light("GREEN"));
std::shared_ptr<IControlEvents> light2(new Light("RED"));
remote->AddEventHandler(light1);
remote->AddEventHandler(light2);
remote->Toggle();
return 0;
}
Your problem is that you have two distinct sub-objects of type IEventGenerator<IControlEvents> within your RemoteControl object. One via EventGeneratorBase<IControlEvents> and one via IRemoteControl.
There are two ways to prevent you from having two distinct subobjects. The first is to inherit virtually from IEventGenerator<TEventHandler> in both spots. This has a modest run-time cost. Simply add virtual before every case of inheritance from IEventGenerator<?> and you are done.
A second method is to note that EventGeneratorBase is intended to help with implementing IEventGenerator.
template<class T> struct tag{using type=T;};
template<class Tag> using type_t=typename Tag::type;
template<class TEventHandler>
tag<TEventHandler> get_event_handler_type(
IEventGenerator<TEventHandler> const*
) { return {}; }
template<class X>
using event_handler_type = type_t< decltype( get_event_handler_type( (X*)nullptr ) ) >;
template <class Base, class TEvents = event_handler_type<Base>>
struct EventGeneratorHelper :
Base
{
void AddEventHandler(std::weak_ptr<TEvents> target) override {
_eventHandlers.push_back(target);
}
std::vector<std::weak_ptr<TEvents>> GetEventHandlers() {
return _eventHandlers;
}
private:
std::vector<std::weak_ptr<TEvents>> _eventHandlers;
};
now, go down to here:
struct RemoteControl :
EventGeneratorHelper<IRemoteControl>
{
and change how we inherit. We now interpose EventGeneratorHelper between us and IRemoteControl, so they now share the same common IEventGenerator.
This removes the need for virtual inheritance, but does up your compile time, and can cause some executable code bloat.
We can go a step further. Add this to EventGeneratorHelper:
template<class Action>
void FireEvents( Action&& action ) const {
for (auto tref : GetEventHandlers()) {
auto t = tref.lock();
if (t) {
action(t);
}
}
}
which reduces RemoteControl to:
struct RemoteControl :
EventGeneratorHelper<IRemoteControl>
{
void Toggle() {
this->FireEvents([](std::shared_ptr<IRemoteControl> const& ptr){
t->PowerOn();
t->PowerOff();
});
}
};
which I think is nice -- requiring clients to know the right way of iterating seems silly.
You have a problem in your inheritance hierarchy.
template <class TEvents> struct EventGeneratorBase :IEventGenerator<TEvents> {
[...]
};
struct IRemoteControl : IEventGenerator<IControlEvents> {
[...]
};
struct RemoteControl : IRemoteControl, EventGeneratorBase<IControlEvents> {
[...]
};
This is not doing what you might expect. Instead, your class RemoteControl inherits twice from IEventGenerator, once from IRemoteControl and once from EventGeneratorBase.
I'm trying to figure out a way to dynamically cast an instance of a child class to its parent in a somewhat difficult set of conditions.
Specifically, I have a an object hierarchy that looks something like (I've simplified a lot, so if something doesn't make sense, it might be due to the simplification):
class Object {
public:
virtual ~Object() {}
};
// shown just to give an idea of how Object is used
class IntObject: public Object {
protected:
int value;
public:
IntObject(int v) { value = v; }
int getValue() { return value; }
};
template <class T>
class ObjectProxy: public Object {
protected:
T *instance;
public:
ObjectProxy(T *instance): instance(instance) {}
T *getInstance() { return instance; }
};
The ObjectProxy class essentially acts as a wrapper to allow other types to be used in the Object hierarchy. Specifically, it allows pointers to class instances to be kept, and used later when invoking the instance's methods. For example, suppose I have:
class Parent {
protected:
int a;
public:
Parent(int v) { a = v; }
virtual ~Parent() {}
void setA(int v) { a = v; }
int getA() { return a; }
};
class Child: public Parent {
protected:
int b;
public:
Child(int v1, int v2): Parent(v1) { b = v2; }
void setA(int v) { b = v; }
int getB() { return b; }
};
I might use them in the following situation:
template <typename C>
void callFn(std::list<Object *> &stack, std::function<void (C*)> fn) {
Object *value = stack.front();
stack.pop_front();
ObjectProxy<C> *proxy = dynamic_cast<ObjectProxy<C> *>(value);
if (proxy == nullptr) {
throw std::runtime_error("dynamic cast failed");
}
fn(proxy->getInstance());
}
void doSomething(Parent *parent) {
std::cout << "got: " << parent->getA() << std::endl;
}
int main() {
std::list<Object *> stack;
// this works
stack.push_back(new ObjectProxy<Child>(new Child(1, 2)));
callFn<Child>(stack, doSomething);
// this will fail (can't dynamically cast ObjectProxy<Child> to ObjectProxy<Parent>)
stack.push_back(new ObjectProxy<Child>(new Child(1, 2)));
callFn<Parent>(stack, doSomething);
}
As noted in the above comments, this code fails for a known reason. In the sample code, it's easy to avoid invoking callFn<Parent>(stack, doSomething). However, in my real code, I am using the signature of the function to determine type, and if its a method for the parent class, that will automatically be used for the template parameter.
My question is if there is any way to achieve the dynamic cast from ObjectProxy from an object of type of ObjectProxy. Part of the complication comes from the fact that in the function callFn, you only have the Parent type and not the child type.
I looked into using type-erasure via boost::any (i.e. ObjectProxy stops being templated, and instead has boost::any instance), but still ran into problems when it came to dynamic-casting (boost::any_cast is static). I did find mention to a dynamic_any on SO, but have not gotten it to work properly yet.
Any help or insight into the problem is greatly appreciated.
The dynamic cast is failing because the classes that are instantiations of ObjectProxy do not share the same hierarchy as the types given in the parameterisation of ObjectProxy. I see two approaches that may help. One, you make the types given to ObjectProxy share a single common base class and move the dynamic cast away from ObjectProxy and onto the instances.
namespace approach2 {
struct object_t {
virtual ~object_t() { }
};
struct required_base_t {
virtual ~required_base_t() { }
};
class object_proxy_base_t : public object_t {
required_base_t* instance_;
public:
object_proxy_base_t(required_base_t* i) : instance_ (i) { }
template <class T>
T* cast_to() const
{
return dynamic_cast<T*>(instance_);
}
};
template <class value_t>
class object_proxy_t : public object_proxy_base_t {
value_t* instance_;
public:
object_proxy_t(value_t* i)
: object_proxy_base_t (i),
instance_ (i)
{
}
};
template <class value_t>
object_t* new_with_proxy(value_t const& value)
{
return new object_proxy_t<value_t>(new value_t(value));
}
struct parent_t : required_base_t {
virtual ~parent_t() { }
};
struct child_t : parent_t {
virtual ~child_t() { }
};
void f()
{
object_t* a = new_with_proxy(parent_t());
object_t* b = new_with_proxy(child_t());
std::cout
<< dynamic_cast<object_proxy_base_t*>(a)->cast_to<parent_t>() << '\n' // works
<< dynamic_cast<object_proxy_base_t*>(b)->cast_to<parent_t>() << '\n' // works
;
}
}
This approach is not possible if you cannot change the base classes of all types used by ObjectProxy. Which leads to the second solution where you make ObjectProxy instantiations have the same hierarchy as the types used to parameterise it.
namespace approach3 {
struct object_t {
virtual ~object_t() { }
};
struct empty_t {
template <class T>
empty_t(T*) { }
};
template <class value_t>
class object_proxy_t : public virtual object_t {
value_t* instance_;
public:
object_proxy_t(value_t* i) : instance_ (i) { }
};
template <class value_t, class base_t>
class object_proxy_sub_t :
public object_proxy_t<value_t>,
public base_t {
public:
object_proxy_sub_t(value_t* i)
: object_proxy_t<value_t>(i),
base_t (i)
{
}
};
template <class base_t, class value_t>
object_t* new_with_proxy(value_t const& value)
{
return new object_proxy_sub_t<value_t, base_t>(new value_t(value));
}
struct parent_t {
virtual ~parent_t() { }
};
struct child_t : parent_t {
virtual ~child_t() { }
};
void f()
{
object_t* a = new_with_proxy<empty_t>(parent_t());
object_t* b = new_with_proxy<object_proxy_t<parent_t> >(child_t());
std::cout
<< dynamic_cast<object_proxy_t<parent_t>*>(a) << '\n' // works
<< dynamic_cast<object_proxy_t<parent_t>*>(b) << '\n' // works
;
}
}
This approach places fewer requirements on the types involved but means more work to keep the hierarchies in sync.
Building off of Bowie Owen's first answer, I realized that while the types given would likely not be derived from the same class (it's a library), I could force that to occur:
struct ObjectProxyBaseType {
virtual ~ObjectProxyBaseType() {}
};
template <class T>
class ObjectProxyType: public ObjectProxyBaseType, public T {
public:
// allow construction via parameters
template <typename... Args>
ObjectProxyType(Args &&... args): T(std::move(args)...) {}
// or construction via copy constructor
ObjectProxyType(T *t): T(*t) {}
virtual ~ObjectProxyType() {}
};
Thus, if I have class Child, I can create an instance of ObjectProxyType<Child>, which causes it to also inherit ObjectProxyBaseType. The rest of the code follows Bowie's suggestion:
class ObjectProxy: public Object {
protected:
ObjectProxyBaseType *instance;
public:
template <typename T>
ObjectProxy(ObjectProxyType<T> *i) {
instance = i;
}
template <typename T>
ObjectProxy(T *value) {
instance = new ObjectProxyType<T>(value);
}
template <typename T>
T *castTo() const {
return dynamic_cast<T *>(instance);
}
};
And an example of code that works:
int main() {
std::list<Object *> stack;
stack.push_back(new ObjectProxy(new Child(1, 2)));
callFn<Child>(stack, doSomething);
stack.push_back(new ObjectProxy(new Child(5, 6)));
callFn<Parent>(stack, doSomething);
}
I've had to do something somewhat similar recently. I've used an approach which worked for me, but might not be appropriate in this case; use your discretion. This hinges on the fact that you (or the person extending this code, if any) have full knowledge of what hierarchies will be used as template parameters.
So let's say these hierarchies are the following:
class Parent1
class Child1: public Parent1
class Child11: public Child1
...
class Parent2
class Child2: public Parent2
...
Then you build a holder class. It is a bit complicated for a simple reason - my compiler doesn't support default template parameters on functions, so I am using helper structs to enable SFINAE.
This class needs to be able to hold objects belonging to all hierarchies (through a base class pointer).
class TypeHolder
{
template<class T, class E=void>
struct GetHelper
{
static T* Get(const TypeHolder* th) { return nullptr; }
//you can actually add code here to deal with non-polymorphic types through this class as well, if desirable
};
template<class T>
struct GetHelper<T, typename std::enable_if<std::is_polymorphic<T>::value, void>::type>
{
static T* Get(const TypeHolder* th)
{
switch(th->type)
{
case P1: return dynamic_cast<T*>(th->data.p1);
case P2: return dynamic_cast<T*>(th->data.p2);
//and so on...
default: return nullptr;
}
}
};
template<class T, class E=void>
struct SetHelper
{
static void Set(T*, TypeHolder* th) { th->type = EMPTY; }
};
template<class T>
struct SetHelper<T, typename std::enable_if<std::is_polymorphic<T>::value, void>::type>
{
static void Set(T* t, TypeHolder* th)
{
th->data.p1 = dynamic_cast<Parent1*>(t);
if(th->data.p1) { th->type = P1; return; }
th->data.p2 = dynamic_cast<Parent2*>(t);
if(th->data.p2) { th->type = P2; return; }
//...and so on
th->type = EMPTY;
}
};
public:
TypeHolder(): type(EMPTY) { }
template<class T>
T* GetInstance() const
{
return GetHelper<T>::Get(this);
}
template<class T>
void SetInstance(T* t)
{
SetHelper<T>::Set(t, this);
}
private:
union
{
Parent1* p1;
Parent2* p2;
//...and so on
} data;
enum
{
EMPTY,
P1,
P2
//...and so on
} type;
};
By the way, the reason we need the SFINAE trick is because of the dynamic_casts, which will not compile on non-polymorphic types.
Now all you need to do is modify your classes just a little bit :)
class ObjectProxyBase
{
public:
virtual const TypeHolder& GetTypeHolder() const = 0;
};
template<class T>
class ObjectProxy: public Object, public ObjectProxyBase
{
T* instance;
static TypeHolder th; //or you can store this somewhere else, or make it a normal (but probably mutable) member
public:
ObjectProxy(T* t): instance(t) { }
T* getInstance() const { return instance; }
const TypeHolder& GetTypeHolder() const { th.SetInstance(instance); return th; }
//... and the rest of the class
};
template<class T>
TypeHolder ObjectProxy<T>::th;
I hope this code is actually correct, since I mostly typed it into the browser window (mine used different names).
And now for the final piece: the function.
template <typename C>
void callFn(std::list<Object *> &stack, std::function<void (C*)> fn) {
Object *value = stack.front();
stack.pop_front();
ObjectProxyBase *proxy = dynamic_cast<ObjectProxyBase *>(value);
if (proxy == nullptr) {
throw std::runtime_error("dynamic cast failed");
}
C* heldobj = proxy->GetTypeHolder().GetInstance<C>(); //I used to have a dynamic_cast here but it was unnecessary
if (heldobj == nullptr) {
throw std::runtime_error("object type mismatch");
}
fn(heldobj);
}
You only need to use this approach for hierarchies, and can still use the dynamic_cast directly to ObjectProxy<C>* in other cases (essentially, you'll want to try both and see if one succeeds).
I hope this is at least a little bit helpful.