The system file cannot be specified - c++

I have been trying to output a code for a project, and have tried going through some of the other questions to try resolving the error I am getting which is listed in the title, however I am not getting anywhere with it. Please be as specific as possible, I'm a novice with coding and only know some C++
#include <iostream>
#include <ctime>
using namespace std;
int main()
{
//Initialize Variables for initial Lattice
int Size = 0;
float Density = 0.0;
//Input Desired Lattice Size
std::cout << "How large do you want the square lattice to be? "; cin << Size;
//Input Desired Density
std::cout << "What density would you like to test for Percolation? "; cin << Density;
//Construct Matrix
float Lattice[Size][Size];
for (int i = 0; i < Size; ++i)
{
for (int j=0; j<Size; ++j)
{
Lattice[i][j] = float((int rand() % Size) / (Size));
}
std::cout << endl;
}
std::cout << Lattice[Size][Size];
system("pause");
return 0;
}

This is because you haven't successfully built your application so it doesn't exist.
(The actual error message is "The system cannot find the file specified".)
There are several compilation errors:
cin << Size; should be cin >> Size;, and the same for the other input line.
(This is easier to spot if you write on separate lines.)
int rand() should be just rand().
And variable-length arrays are not standard C++.
There are also a couple of logical errors.
Since rand() % Size is less than Size, (rand() % Size) / Size will always be zero.
(This is an integer division.)
Use Lattice[i][j] = (rand() % Size) / static_cast<float>(Size); instead.
Also, I suspect you think that std::cout << Lattice[Size][Size]; will print the entire array.
It won't; it indexes outside of the array in order to access one float and is undefined.
You need to write a loop.

Related

How to find the greatest number among the numbers given input?

I'm a beginner in programming and as you can see, I created a program where the user is asked to input three numbers. It will display the greatest among the numbers given. But after I finished the code, a question came into my mind, what if the user was asked to input a hundreds of numbers and should display the greatest among the numbers given. So the question is, is it possible to do that? what are the things I need to learn to produce that result? is there any hints you can give me?
#include <iostream>
#include <string>
using std::cout, std::cin, std::endl, std::string;
int main() {
string result = " is the greatest among the numbers given";
double x, y, z;
cout<<"Enter three numbers to decide which is the largest: "<<endl;
cin >>x;
cin >>y;
cin >>z;
system("clear");
if(x>y && x>z){
cout<< x << result;
} else if (y>z && y>x){
cout << y << result;
} else
cout<< z << result;
return 0;
}
With the program below, you can get as many numbers as you want from the user and find the largest of them.
#include <iostream>
int main()
{
int size=0, largestValue=0, value=0;
std::cout << "Enter total numbers you want to add :" << "\n";
std::cin >> size;
for (int i{ 0 }; i < size; ++i)
{
std::cout << "Enter value to add : ";
std::cin >> value;
if (i == 0 || value > largestValue)
{
largestValue = value;
}
}
std::cout << "Largest value = " << largestValue << "\n";
return 0;
}
One solution would be to store your inputs in a list and sort them afterwards. Just google "sorting alorithms". Also there are nice youtube visualizations.
Another one would be to not save the inputs into dedicated variables - in your case x, y, z - but to always save the largest given input:
int largestInput = std::numeric_limits<int>::min();
int input;
for (int i = 0; i < 10000; i++)
{
std::cin >> input;
largestInput = input > largestInput ? input : largestInput;
}
If you know the inputs are large, you can use vectors.
#include <bits/stdc++.h>
using namespace std;
int main(){
int total_num=0;
cout << "Enter total numbers:" << "\n";
cin>>total_num;
int max_number = INT_MIN;
vector<int> v;
for(int i=0;i<total_num;i++){
int x;
cin>>x;
v.push_back(x);
max_number = max(max_number,x);
}
cout<<"Maximum number present: "<< max_number<<endl;
return 0;
}
Although there is no need to store numbers. But it's your choice if you need it later you can use it in that program.
> what are the things I need to learn
what if the user was asked to input a hundreds of numbers
For this, you'll need to learn about arrays. I suggest you first learn about C-style arrays (int x[3]{};), and then std::array (std::array<int, 3> x{};). You also need to learn about loops.
and should display the greatest among the numbers given
Having to find the largest number in an array is very common. If you want to learn how to do so manually, the other answers here should answer your question. Otherwise, look towards the standard library algorithms std::ranges::max() (C++20) and std::max_element.
Examples
Example 1
Here's a program that uses a C-style array and a simple algorithm to get the largest number:
#include <iostream>
int main(){
// Amount of numbers user should input
constexpr int count{ 3 };
std::cout << "Enter " << count
<< " numbers to decide which is the largest:\n";
// The numbers entered by the user
double numbers[count]{}; // Declare and zero-initialize a C-style array of 3 ints
// Get each number from the user and put it in the array
for (int i{ 0 }; i < count; ++i) {
std::cin >> numbers[i];
}
// The biggest number found so far
int max{ numbers[0] }; // Initialize it with the first number
for (int i{ 1 }; i < count; ++i) { // Start at the second element (element 1)
if (numbers[i] > max) { // If the current number is larger than max...
max = numbers[i]; // ...assign it to max
}
}
std::cout << max << " is the greatest among the numbers given\n";
return 0;
}
Note:
int numbers[count]{};
This creates a C-style array called numbers which has count (3) elements. The first element's "index" is 0 and the last element's is 2. The {} initializes the values of all of the numbers to 0 (good practice).
for (int i{ 0 }; i < count; ++i)
std::cin >> numbers[i];
This loops until i isn't less than count (3) and increments i (++i) each time. It starts at 0, so it loops 3 (0 1 2) times. On each iteration, it gets a number from the console and stores it in numbers[i].
Example 2
Here's a shorter program that uses the standard library:
#include <algorithm> // ranges::max()
#include <array> // array<>
#include <iostream> // cin, cout
int main() {
// Amount of numbers user should input
constexpr int count{ 3 };
std::cout << "Enter "
<< count
<< " numbers to decide which is the largest:\n";
std::array<double, count> numbers{}; // Declare an array of 3 ints
for (int i{ 0 }; i < count; ++i) {
std::cin >> numbers[i];
}
// Return the largest number in array "numbers"
std::cout << std::ranges::max(numbers)
<< " is the greatest among the numbers given\n";
return 0;
}
Note:
std::array<int, count> numbers{};
Declares an array of count (3) ints and zero-initializes it.
std::ranges::max(numbers)
This neat function finds the largest number in numbers. It was added in C++20 -- if you're using an older compiler, you should use *std::max_element(numbers.begin(), numbers.end()). If you want to learn how the latter works, you need to learn about iterators and pointers.
Here are some good practices that your tutorial hasn't taught you yet (if it ever will):
DON'T use using namespace std. It's unsafe because it brings everything in the standard library into global scope. The standard library contains a lot of commonly used identifiers like count and list. Bringing these into global scope is dangerous because it can cause naming conflicts.
Don't use copy initialization (int x = 3). Use uniform/brace/list initialization instead (int x{ 3 }). The former sometimes makes an unnecessary copy, whereas the latter doesn't. The latter also refuses to do narrowing conversions (e.g. initializing a short with a long).
Always initialize variables (do: int x{}, don't: int x), even when it seems redundant. If you don't, then the value stored is undefined - it could be anything. Undefined behaviour is hard to debug but luckily easy to avoid.
Use \n instead of std::endl. Both do the same, except std::endl does an extra buffer flush which is slow and unnecessary. \n is shorter anyways.
DRY -- Don't Repeat Yourself. You have the string " is the greatest among the numbers given" three times in your code. You could have stored it in a std::string instead -- then it wouldn't have repeated.
Repeating code is bad, because:
It's harder to read
It's harder to maintain (you would have to modify it everywhere it's repeated)
Maintenance is more error-prone
If I were you, I'd immediately find a different tutorial/book. See this thread.
#include <stdio.h>
int main()
{
int num1, num2, num3, num4;
printf("Enter num1\n");
scanf("%d",&num1);
printf("Enter num2\n");
scanf("%d",&num2);
printf("Enter num3\n");
scanf("%d",&num3);
printf("Enter num4\n");
scanf("%d",&num4);
if(num1>num2 && num1>num3 && num1>num4){
printf("greatest number is %d",num1);
}
if(num2>num3 && num2>num1 && num2>num4){
printf("greatest number is %d",num2);
}
if(num3>num1 && num3>num2 && num3>num4){
printf("greatest number is %d",num3);
}
if(num4>num1 && num4>num2 && num4>num3){
printf("greatest number is %d",num4);
}
return 0;
}

how to convert an for loop to while loop c++

I'm trying to convert a for loop to while loop in c++ and do some checking for duplicates in a random number generator for generating lotto numbers so far all the stuff i'm trying seems to make the compiler very unhappy and I could really use a few pointers. It's the for loop in the Harray() function that feeds the Balls[] array
that i want to convert to a while loop.
#include<iostream>
#include<cstdlib> // to call rand and srand.
#include<ctime> // to make rand a bit more random with srand(time(0)) as first call.
#include<iomanip> // to manipulate the output with leading 0 where neccesary.
using namespace std;
// Hrand() function create and return a random number.
int Hrand()
{
int num = rand()%45+1; // make and store a random number change 45 for more or less Balls.
return num; // return the random number.
}
// Harray() function create and fill an array with random numbers and some formatting.
void Harray()
{
int Balls[6]; // change the number in Balls[6] and in the for loop for more or less nrs. a row.
for(int x=0; x<=6; x++) //the loop to fill array with random numbers.
{
int a; // made to pass the Balls[x] data into so i can format output.
int m = Hrand(); // calling the Hrand() function and passing it's value in int m.
Balls[x] = m; // throwing it into the array tought i did this because of an error.
a = Balls[x]; // throwing it into int a because of an type error.
cout<<"["<<setfill('0')<<setw(02)<<a<<"]"; //format output with leading 0 if neccesary.
}
cout<<endl; // start new row on new line.
}
// Main function do the thing if compiler swallows the junk.
int main() // start the program.
{
int h; // int to store user cchoice.
srand(time(0)); // make rand more random.
cout<<"How many rows do you want to generate?"<<endl; // ask how many rows?
cin>>h; // store user input.
for(int i=h; h>0; h--) // produce rows from user input choice.
{
Harray(); // calling Harray function into action.
}
return 0; // return zero keep the comipler happy.
}
I would like to always have six diffrent numbers in a row but i don't see how to get there with the for loops i think the while loop is way to go but am open to any suggestion that will work. I'm just starting with c++ i might have overlooked some options.
int x=0;
while(x<6)
{
int a;format output.
int m = Hrand();value in int m.
Balls[x] = m; because of an error.
a = Balls[x];
cout<<"["<<setfill('0')<<setw(02)<<a<<"]";
x++;
}
Here, I also fixed a bug. Since Balls has 6 elements, the last element will be 5. Thus you want x<6 instead of x<=6. That goes for the for loop too.
One drawback of while loops is that you cannot declare local variables with them.
First of all, you should realize that the difference between a for loop and a while loop is mostly syntactic--anything you can do with one, you can also do with the other.
In this case, given what you've stated as your desired output, what you probably really want is something like this:
std::vector<int> numbers;
std::set<int> dupe_tracker;
while (dupe_tracker.size() < 6) {
int i = Hrand();
if (dupe_tracker.insert(i).second)
numbers.push_back(i);
}
The basic idea here is that dupe_tracker keeps a copy of each number you've generated. So, you generate a number, and insert it into the set. That will fail (and return false in retval.second) if the number is already in the set. So, we only add the number to the result vector if it was not already in the set (i.e., if it's unique).
How convert for-loop to while-loop
#include <iostream>
class T545_t
{
// private data attributes
int j;
public:
int exec()
{
// A for-loop has 3 parameters, authors often fill 2 of them with magic
// numbers. (magic numbers are usually discouraged, but are expected
// in for-loops)
// Here, I create names for these 3 for-loop parameters
const int StartNum = 2;
const int EndNum = 7;
const int StrideNum = 2;
std::cout << std::endl << " ";
for (int i = StartNum; i < EndNum; i += StrideNum ) {
std::cout << i << " " << std::flush;
}
std::cout << std::flush;
// A while-loop must use / provide each of these 3 items also, but
// because of the increased code-layout flexibility (compared to
// for-loop), the use of magic numbers should be discouraged.
std::cout << std::endl << " ";
j = StartNum;
do {
if (j >= EndNum) break;
std::cout << j << " " << std::flush;
j += StrideNum;
} while(true);
std::cout << std::flush;
std::cout << std::endl << " ";
j = StartNum;
while(true) {
if (j >= EndNum) break;
std::cout << j << " " << std::flush;
j += StrideNum;
}
std::cout << std::flush;
std::cout << std::endl << " ";
j = StartNum;
while(j < EndNum) {
std::cout << j << " " << std::flush;
j += StrideNum;
}
std::cout << std::endl;
return 0;
}
}; // class T545_t
int main(int , char** )
{
T545_t t545;
return(t545.exec());
}
Ask me where 'j' is declared?
This code is marked as C++, so in this case, I have declared 'j' in the private data attribute 'section' of this class definition. That is where you'd look for it, right?
If your c++ code does not have class, what's the point?

Finding the closest number of array to another given number

I have this program to write that I have a array of 11 numbers entered from me. Then I need to find the avarage sum of those numbers, and then im asked to find the closest number of this array to the avarage sum, and then the most distant element of the array to the avarage sum again. SO far I manage to write a program to create this array and find the avarage sum. I asssume there is something to do with abs function of cmath libary , but so far I only fail to make it.
#include <iostream>
using namespace std;
int main() {
unsigned const int size = 11;
float number[size];
for (unsigned i = 0; i<size; i++) {
cout << "Please enter value for number "
<< i + 1 << ":";
cin >> number[i];
}
for (unsigned i = 0; i<size; i++) {
cout << "Number " << i + 1 << " is : "
<< number[i] << endl;
}
unsigned int sum = 0;
for (unsigned i = 0; i<size; i++) {
sum += number[i];
}
What is the problem? You are not asking a question, just making a statement... It does seem that you have not posted the whole code..
In c++ usually to use "abs" you should use fabs from the "math.h" library!
You will be okay with the compare operators.
Just traverse your array in a loop and calculate the difference between your compare value and the current value on your array. Initiate a temporary variable that keeps the array entry that created the smallest difference.
Every time a difference that is smaller than the current one comes up replace the value in your temporary variable.
So you replace under the following condition: If |number[i] - average_value| < |tmp_closest_val -average_val| Then tmp_closest_val = number[i] EndIf.
I hope you get the concept from that rough draft.

How Can I Speed My C++ Program Up?

Basically I am relearning C++ and decided to create a lotto number generator.
The code creates the ticket and if that ticket does not already exist, it is added to a vector to store every possible combination.
The program works, but its just far too slow, adding an entry roughly every second, and It will get slower as it finds it more difficult to add unique combinations out of over 13 million possible combinations.
Anyway here is my code, any optimization tips would appreciated:
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <string>
#include <sstream>
#include <vector>
#include <algorithm>
using namespace std;
vector<string> lottoCombos;
const int NUMBERS_PER_TICKET = 6;
const int NUMBERS = 49;
const int POSSIBLE_COMBOS = 13983816;
string createTicket();
void startUp();
void getAllCombinations();
int main()
{
lottoCombos.reserve(POSSIBLE_COMBOS);
cout<< "Random Ticket: "<< createTicket()<< endl;
getAllCombinations();
for (int i = 0; i < POSSIBLE_COMBOS; i++)
{
cout << endl << lottoCombos[i];
}
system("PAUSE");
return 0;
}
string createTicket()
{
srand(static_cast<unsigned int>(time(0)));
vector<int> ticket;
vector<int> numbers;
vector<int>::iterator numberIterator;
//ADD AVAILABLE NUMBERS TO VECTOR
for (int i = 0; i < NUMBERS; i++)
{
numbers.push_back(i + 1);
}
for (int j = 0; j < NUMBERS_PER_TICKET; j++)
{
int ticketNumber = rand() % numbers.size();
numberIterator = numbers.begin()+ ticketNumber;
int nm = *numberIterator;
numbers.erase(numberIterator);
ticket.push_back(nm);
}
sort(ticket.begin(), ticket.end());
string result;
ostringstream convert;
convert << ticket[0] << ", " << ticket[1] << ", " << ticket[2] << ", " << ticket[3] << ", " << ticket[4] << ", " << ticket[5];
result = convert.str();
return result;
}
void getAllCombinations()
{
int i = 0;
cout << "Max Vector Size: " << lottoCombos.max_size() << endl;
cout << "Creating Entries" << endl;
while ( i != POSSIBLE_COMBOS )
{
bool matchFound = true;
string newNumbers = createTicket();
for (int j = 0; j < lottoCombos.size(); j++)
{
if ( newNumbers == lottoCombos[j] )
{
matchFound = false;
break;
}
}
if (matchFound != false)
{
lottoCombos.push_back(createTicket());
i++;
cout << "Entries: "<< i << endl;
}
}
sort(lottoCombos.begin(), lottoCombos.end());
cout << "\nCombination generation complete!!!\n\n";
}
The reason each lottery ticket is taking a second to generate is because you are misusing srand(). By calling srand(time(0)) every time createTicket() is called, you ensure that createTicket() returns the same numbers every time it is called, until the next time the value returned by time() changes, i.e. once per second. So your reject-duplicates algorithm will almost always find a duplicate until the next second goes by. You should move your srand(time(0)) call to the top of main() instead.
That said, there are perhaps larger issues to confront here: my first question would be, is it really necessary to generate and store every possible lottery ticket? (and if so, why?) IIRC real lotteries don't do that when issuing a ticket; they just generate some random numbers and print them out (and if there are multiple winning tickets printed with the same numbers, the owners of those tickets share the prize money).
Assuming you do need to generate every possible lottery ticket for some reason, there are better ways to do it than randomly. If you've ever watched the odometer increment while driving a car, you'll get the idea for how to do it linearly; just imagine an odometer with 6 wheels, where each wheel has 49 different possible positions it can be in (rather than the traditional 10).
Finally, a vector has O(N) lookup time, and if you are doing a lookup in the vector for every value you generate, then your algorithm has O(N^2) time, which is to say, it's going to get really slow really quickly as you generate more tickets. So if you have to store all known tickets in a data structure, you should definitely use a data structure with quicker lookup times, for example a std::map or a std::unordered_set, or even a std::bitset as suggested by #RedAlert.

Segmentation fault on creating matrices

I was practicing on c++ on some tutorials and I encountered on a tutorial that creates matrices, I wanted something more from it and I modified it, I dont know matrices at all cuz I didnt learn them yet at school but this code below sometimes works sometimes not.
When it doesn't work I usually get: Segmentation fault.
why does this happen ?
before it happened everytime but after i gave a 0 value to variable line and member on the beginning it doesnt happen anymore, but still if I type exc
Line: 10
Member: 9
it gives:
1 1 1 1 1 1 1 1 1
1 2 3 4 5 1 7 8 9
Segmentation fault
and stopes.
Can anyone explain me this ?
thank you !
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
int line=0,member=0;
int i,j,matrice[line][member];
cout << "\nLine: ";
cin >> line;
cout << "Member: ";
cin >> member;
cout << "\nCreated Matrice: \n" << endl;
for (i=0;i<line;i++)
{
for (j=0;j<member;j++)
{
matrice[i][j]=i*j+1;
cout << setw(5) << matrice[i][j];
}
cout << "\n\n";
}
return 0;
}
int line=0,member=0;
int i,j,matrice[line][member];
This line shouldn't compile. In standard C++,
arrays of 0 size are not allowed
array sizes must be constant expressions
It appears that your compiler allows these as extensions. In any case when you later input line and member your array size doesn't change. You should define your array after you've input these numbers. But the array must be dynamically allocated (better yet, use vectors)
#include <vector>
//...
int line, member;
cin >> line >> member;
vector<vector<int> > matrix(line, vector<int>(member));
or if you don't want to use vector for educational purposes, do this:
int line, member;
int ** matrix;
cin >> line >> member;
matrix = new int*[line];
for(int i = 0; i < line; ++i)
matrix[i] = new int[member];
Don't forget to free the matrix.
for(int i = 0; i < line; ++i)
delete [] matrix[i];
delete [] matrix;
I suggest that you should read a good C++ book
HTH
The matrice array is initialized with a size of [0][0], which are the values of line and member. Since you override the values with the inputted values, the bounds used in the for loops are invalid.
i.e. You are accessing items out of the array's bounds.
You may want to use new to dynamically create arrays, or just use std::vector which resizes itself.
Also, it is not standard, but if your compiler supports it, you can use variable-length arrays. They behave like regular arrays but are allocated using a runtime-computed value :
int line=0,member=0;
int i,j;
cout << "\nLine: ";
cin >> line;
cout << "Member: ";
cin >> member;
int matrice[line][member];
You should also check for the inputted values, since C++ does not allows zero-size arrays (And it wouldn't make sense in your program anyway.)
You are using dynamic array without allocating memory using malloc or similar. That is in your line int i,j,matrice[line][member]; is not an array with constant size thus memory should be dynamically allocated. Or use a constant matix size as poster above suggested.
I agree with other comments that using vectors is a much safer way to solve your problem: using arrays directly is definitely error-prone. Of course, if your exercise requires using arrays, then you should use arrays.
Regarding the performance, I have written a small test using g++ on Ubuntu 10.04. Running
g++ --version
I get
g++ (Ubuntu 4.4.3-4ubuntu5) 4.4.3
My test program creates a 100x100 matrix and sets each element to some value. It first has a few declarations:
#include <vector>
#include <iostream>
#include "util.h" // Timer utilities.
#define LINE_COUNT (100) // The number of lines.
#define COL_COUNT (100) // The number of columns.
#define REPETITIONS (100000) // Number of repetitions for each test.
using namespace std;
Then I have the test using vectors:
void use_vectors()
{
int line = LINE_COUNT;
int member = COL_COUNT;
vector<vector<int> > matrix(line, vector<int>(member));
// Set data.
for (int i = 0; i < line; i++)
{
for (int j = 0; j < member; j++)
{
matrix[i][j] = -5;
}
}
}
Then I have a function to perform the same test (create matrix and set values) using arrays:
void use_arrays()
{
int line = LINE_COUNT;
int member = COL_COUNT;
int **matrix;
matrix = new int * [line];
for (int i = 0; i < line; i++)
{
matrix[i] = new int[member];
}
// Set data.
for (int i = 0; i < line; i++)
{
for (int j = 0; j < member; j++)
{
matrix[i][j] = -5;
}
}
for (int i = 0; i < line; ++i)
{
delete [] matrix[i];
}
delete [] matrix;
}
The main program repeats both tests, and records the time needed for each of them. Here is the main program:
main()
{
long int es = 0;
long int eu = 0;
start_timer();
for (int i = 0; i < REPETITIONS; i++)
{
use_vectors();
}
stop_timer();
es = elapsed_sec();
eu = elapsed_usec();
cout << "Vectors needed: " << es << " sec, " << eu << " usec" << endl;
start_timer();
for (int i = 0; i < REPETITIONS; i++)
{
use_arrays();
}
stop_timer();
es = elapsed_sec();
eu = elapsed_usec();
cout << "Arrays needed: " << es << " sec, " << eu << " usec" << endl;
}
The timer functions are based on the library function gettimeofday() (see e.g. http://linux.die.net/man/2/gettimeofday).
The result is the following:
Vectors needed: 24 sec, 624416 usec
Arrays needed: 10 sec, 16970 usec
So it seems that vectors do have some overhead wrt to arrays. Or can I do something to improve the performance of vectors? I checked my benchmark code a few times and it seems to me I got it right.
Anyway, I would by no means advise using arrays just to gain performance unless it really makes a big difference in your application.
You want to allocate memory dynamically.
Then, Use Dynamic allocation like this:
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
int line=0,member=0;
int i,j;
int **matrice; //Define matrice as a 2D array(a Matrix)
cout << "\nLine: ";
cin >> line;
cout << "Member: ";
cin >> member;
//start of dynamic allocation
matrice=new int*[line];
for (i=0;i<line;i++)
matrice[i]=new int[member];
//End of dynamic allocation
cout << "\nCreated Matrice: \n" << endl;
for (i=0;i<line;i++)
{
for (j=0;j<member;j++)
{
matrice[i][j]=i*j+1;
cout << setw(5) << matrice[i][j];
}
cout << "\n\n";
}
delete[] matrice; //Releasing allocated memory
return 0;
}