Yes, I mean real MS-DOS, not Windows' cmd.exe shell console.
Is there a way to check if a key is down in MS-DOS, analogically to the GetAsyncKeyState() function in WinAPI?
Currently I'm using kbhit() and getch(), but it's really slow, has a delay after the first character, doesn't allow multiple keys at the same time etc.
I'm using Turbo C++ 3.1. Can anyone help?
(by the way, don't ask why I'm coding my game on such an ancient system)
There is no function provided by Turbo C++, MS-DOS or the BIOS that corresponds to Windows function GetAsyncKeyState. The BIOS only keeps track of which modifier keys (Shift, Ctrl, or Alt) are held down, it doesn't track any of the other keys. If you want to do that you need to talk to the keyboard controller directly and monitor the make (key pressed) and break (key released) scan codes it receives from the keyboard.
To do that you'll need to hook the keyboard interrupt (IRQ 1, INT 0x09), read the scancodes from the keyboard controller and then update your own keyboard state table.
Here's a simple program that demonstrates how do this:
#include <conio.h>
#include <dos.h>
#include <stdio.h>
unsigned char normal_keys[0x60];
unsigned char extended_keys[0x60];
static void interrupt
keyb_int() {
static unsigned char buffer;
unsigned char rawcode;
unsigned char make_break;
int scancode;
rawcode = inp(0x60); /* read scancode from keyboard controller */
make_break = !(rawcode & 0x80); /* bit 7: 0 = make, 1 = break */
scancode = rawcode & 0x7F;
if (buffer == 0xE0) { /* second byte of an extended key */
if (scancode < 0x60) {
extended_keys[scancode] = make_break;
}
buffer = 0;
} else if (buffer >= 0xE1 && buffer <= 0xE2) {
buffer = 0; /* ingore these extended keys */
} else if (rawcode >= 0xE0 && rawcode <= 0xE2) {
buffer = rawcode; /* first byte of an extended key */
} else if (scancode < 0x60) {
normal_keys[scancode] = make_break;
}
outp(0x20, 0x20); /* must send EOI to finish interrupt */
}
static void interrupt (*old_keyb_int)();
void
hook_keyb_int(void) {
old_keyb_int = getvect(0x09);
setvect(0x09, keyb_int);
}
void
unhook_keyb_int(void) {
if (old_keyb_int != NULL) {
setvect(0x09, old_keyb_int);
old_keyb_int = NULL;
}
}
int
ctrlbrk_handler(void) {
unhook_keyb_int();
_setcursortype(_NORMALCURSOR);
return 0;
}
static
putkeys(int y, unsigned char const *keys) {
int i;
gotoxy(1, y);
for (i = 0; i < 0x30; i++) {
putch(keys[i] + '0');
}
}
void
game(void) {
_setcursortype(_NOCURSOR);
clrscr();
while(!normal_keys[1]) {
putkeys(1, normal_keys);
putkeys(2, normal_keys + 0x30);
putkeys(4, extended_keys);
putkeys(5, extended_keys + 0x30);
}
gotoxy(1, 6);
_setcursortype(_NORMALCURSOR);
}
int
main() {
ctrlbrk(ctrlbrk_handler);
hook_keyb_int();
game();
unhook_keyb_int();
return 0;
}
The code above has been compiled with Borland C++ 3.1 and tested under DOSBox and MS-DOS 6.11 running under VirtualBox. It shows the current state of keyboard a string of 0's and 1's, a 1 indicating that the key corresponding to that position's scan code is being pressed. Press the ESC key to exit the program.
Note that the program doesn't chain the original keyboard handler, so the normal MS-DOS and BIOS keyboard functions will not work while the keyboard interrupt is hooked. Also note that it restores original keyboard handler before exiting. This is critical because MS-DOS won't do this itself. It also properly handles extended keys that send two byte scan codes, which was the problem with the code in the question you linked to in your answer here.
Why are you coding your game on su…just kidding!
In MS-DOS, the "API" functions are implemented as interrupt servicers. In x86 assembly language, you use the INT instruction and specify the number of the interrupt that you want to execute. Most of the interrupts require that their "parameters" be set in certain registers before executing the INT. After the INT instruction returns control to your code, its result(s) will have been placed in certain registers and/or flags, as defined by the interrupt call's documentation.
I have no idea how Turbo C++ implements interrupts, since that pre-dates my involvement with programming, but I do know that it allows you to execute them. Google around for the syntax, or check your Turbo C++ documentation.
Knowing that these are interrupts will get you 90% of the way to a solution when you're searching. Ralf Brown compiled and published a famous list of DOS and BIOS interrupt codes. They should also be available in any book on DOS programming—if you're serious about retro-programming, you should definitely consider getting your hands on one. A used copy on Amazon should only set you back a few bucks. Most people consider these worthless nowadays.
Here is a site that lists the sub-functions available for DOS interrupt 21h. The ones that would be relevant to your use are 01, 06, 07, and 08. These are basically what the C standard library functions like getch are going to be doing under the hood. I find it difficult to imagine, but I have heard reports that programmers back in the day found it faster to call the DOS interrupts directly. The reason I question that is that I can't imagine the runtime library implementers would have been so stupid as to provide unnecessarily slow implementations. But maybe they were.
If the DOS interrupts are still too slow for you, your last recourse would be to use BIOS interrupts directly. This might make an appreciable difference in speed because you're bypassing every abstraction layer possible. But it does make your program significantly less portable, which is the reason operating systems like DOS provided these higher level function calls to begin with. Again, check Ralf Brown's list for the interrupt that is relevant to your use. For example, INT 16 with the 01h sub-function.
pressing on the arrows keys shoots two Keyboard interrupts ? ( int 09h )
The implementation in this question works just fine, so if anyone for some reason wants a ready function for this, here you go:
unsigned char read_scancode() {
unsigned char res;
_asm {
in al, 60h
mov res, al
in al, 61h
or al, 128
out 61h, al
xor al, 128
out 61h, al
}
return res;
}
(EDIT: corrected char to unsigned char so putting this function's return value in "if" statements with things like scancode & 0x80 actually works)
When a key is pressed, it returns one of the scancodes listed there http://www.ctyme.com/intr/rb-0045.htm and when it's released it returns the same scancode but ORed with 80h.
If you actually run this in a game loop you'll eventually overflow the BIOS keyboard buffer and the computer will beep at you. A way to free the keyboard buffer is of course while(kbhit()) getch(); but since we are on 286 realmode and we have all of our hardware to f*ck with, here's a more low-level solution:
void free_keyb_buf() {
*(char*)(0x0040001A) = 0x20;
*(char*)(0x0040001C) = 0x20;
}
If you're looking for explanation how and why does it work, here you go:
The BIOS keyboard buffer starts at 0040:001Ah and looks like this: 2-byte "head" pointer, 2-byte "tail" pointer and 32 bytes of 2-byte scancodes. The "tail" pointer indicates where to start reading from the keyboard buffer, the "head" pointer indicates where to stop. So by setting both of these to 0x20 (so they actually point to 0040:0020h) we basically trick the computer into thinking that there are no new keystrokes ready for extraction.
So, I've gone through all this stuff somewhat recently, and just happen to have the code that you need. (Also, I will link you some great books to get information from in pdf format.)
So, the way that this works, is you need to overwrite the Interrupt Vector Table in memory at index 9h. The Interrupt Vector Table is simply a table of memory addresses that point to a piece of code to run when that interrupt is triggered (these are called interrupt handler routines or ISRs). Interrupt 9h is triggered when the keyboard controller has a scancode ready for use.
Anyways, we first need to overwrite the old int9h ISR by calling the KeyboardInstallDriver() function. Now, when int9h is triggered, the KeyboardIsr() function is called, and it gets the scancode from the keyboard controller, and sets a value in the keyStates[] array to either 1 (KEY_PRESSED) or 0 (KEY_RELEASED) based on the value of the scan code that was retrieved from the keyboard controller.
After the corresponding value in the keyStates[] array has been set, then you can call KeyboardGetKey() giving it the scancode of the key that you want to know the state of, and it will look it up in the keyStates[] array and return whatever the state is.
There is a lot of details to this, but it's WAY too much to write on here. All the details can be found in the books that I will link here:
IBM PC Technical Reference, IBM PC XT Technical Reference,
IBM PC AT Technical Reference, Black Art of 3D Game Programming
Hopefully those links stay active for a while. Also, the "Black Art of 3D Game Programming" book is not always completely accurate on every little detail. Sometimes there are typos, and sometimes there is misinformation, but the IBM Technical References have all the details (even if they are a bit cryptic at times), but they have no example code. Use the book to get the general idea, and use the references to get the details.
Here is my code for getting input from the keyboard:
(it's not completely finished for all the possible keys and certain other things, but it works quite well for most programs and games.)
Also, there is some code to handle the "extended" keys. The extended keys have 0xE0 prefixed to their regular scan code. There are even more crazy details with this, so I'm not gonna cover it, but, there is the mostly working code, anyways.
keyboard.h
#ifndef KEYBOARD_H_INCLUDED
#define KEYBOARD_H_INCLUDED
#include "keyboard_scan_codes.h"
unsigned char KeyboardGetKey(unsigned int scanCode);
void KeyboardClearKeys();
void KeyboardInstallDriver();
void KeyboardUninstallDriver();
void KeyboardDumpScancodeLog();
#endif // KEYBOARD_H_INCLUDED
keyboard.c
#define MAX_SCAN_CODES 256
#define KEYBOARD_CONTROLLER_OUTPUT_BUFFER 0x60
#define KEYBOARD_CONTROLLER_STATUS_REGISTER 0x64
#define KEY_PRESSED 1
#define KEY_RELEASED 0
#define PIC_OPERATION_COMMAND_PORT 0x20
#define KEYBOARD_INTERRUPT_VECTOR 0x09
// PPI stands for Programmable Peripheral Interface (which is the Intel 8255A chip)
// The PPI ports are only for IBM PC and XT, however port A is mapped to the same
// I/O address as the Keyboard Controller's (Intel 8042 chip) output buffer for compatibility.
#define PPI_PORT_A 0x60
#define PPI_PORT_B 0x61
#define PPI_PORT_C 0x62
#define PPI_COMMAND_REGISTER 0x63
#include <dos.h>
#include <string.h>
#include <stdio.h>
#include <conio.h>
#include "keyboard.h"
void interrupt (*oldKeyboardIsr)() = (void *)0;
unsigned char keyStates[MAX_SCAN_CODES];
unsigned char keyCodeLog[256] = {0};
unsigned char keyCodeLogPosition = 0;
static unsigned char isPreviousCodeExtended = 0;
unsigned char KeyboardGetKey(unsigned int scanCode)
{
// Check for the extended code
if(scanCode >> 8 == 0xE0)
{
// Get rid of the extended code
scanCode &= 0xFF;
return keyStates[scanCode + 0x7F];
}
else
{
return keyStates[scanCode];
}
}
void KeyboardClearKeys()
{
memset(&keyStates[0], 0, MAX_SCAN_CODES);
}
void interrupt far KeyboardIsr()
{
static unsigned char scanCode;
unsigned char ppiPortB;
_asm {
cli // disable interrupts
};
/* The keyboard controller, by default, will send scan codes
// in Scan Code Set 1 (reference the IBM Technical References
// for a complete list of scan codes).
//
// Scan codes in this set come as make/break codes. The make
// code is the normal scan code of the key, and the break code
// is the make code bitwise "OR"ed with 0x80 (the high bit is set).
//
// On keyboards after the original IBM Model F 83-key, an 0xE0
// is prepended to some keys that didn't exist on the original keyboard.
//
// Some keys have their scan codes affected by the state of
// the shift, and num-lock keys. These certain
// keys have, potentially, quite long scan codes with multiple
// possible 0xE0 bytes along with other codes to indicate the
// state of the shift, and num-lock keys.
//
// There are two other Scan Code Sets, Set 2 and Set 3. Set 2
// was introduced with the IBM PC AT, and Set 3 with the IBM
// PS/2. Set 3 is by far the easiest and most simple set to work
// with, but not all keyboards support it.
//
// Note:
// The "keyboard controller" chip is different depending on
// which machine is being used. The original IBM PC uses the
// Intel 8255A-5, while the IBM PC AT uses the Intel 8042 (UPI-42AH).
// On the 8255A-5, port 0x61 can be read and written to for various
// things, one of which will clear the keyboard and disable it or
// re enable it. There is no such function on the AT and newer, but
// it is not needed anyways. The 8042 uses ports 0x60 and 0x64. Both
// the 8255A-5 and the 8042 give the scan codes from the keyboard
// through port 0x60.
// On the IBM PC and XT and compatibles, you MUST clear the keyboard
// after reading the scancode by reading the value at port 0x61,
// flipping the 7th bit to a 1, and writing that value back to port 0x61.
// After that is done, flip the 7th bit back to 0 to re-enable the keyboard.
//
// On IBM PC ATs and newer, writing and reading port 0x61 does nothing (as far
// as I know), and using it to clear the keyboard isn't necessary.*/
scanCode = 0;
ppiPortB = 0;
ppiPortB = inp(PPI_PORT_B); // get the current settings in PPI port B
scanCode = inp(KEYBOARD_CONTROLLER_OUTPUT_BUFFER); // get the scancode waiting in the output buffer
outp(PPI_PORT_B, ppiPortB | 0x80); // set the 7th bit of PPI port B (clear keyboard)
outp(PPI_PORT_B, ppiPortB); // clear the 7th bit of the PPI (enable keyboard)
// Log scancode
keyCodeLog[keyCodeLogPosition] = scanCode;
if(keyCodeLogPosition < 255)
{
++keyCodeLogPosition;
}
// Check to see what the code was.
// Note that we have to process the scan code one byte at a time.
// This is because we can't get another scan code until the current
// interrupt is finished.
switch(scanCode)
{
case 0xE0:
// Extended scancode
isPreviousCodeExtended = 1;
break;
default:
// Regular scancode
// Check the high bit, if set, then it's a break code.
if(isPreviousCodeExtended)
{
isPreviousCodeExtended = 0;
if(scanCode & 0x80)
{
scanCode &= 0x7F;
keyStates[scanCode + 0x7F] = KEY_RELEASED;
}
else
{
keyStates[scanCode + 0x7F] = KEY_PRESSED;
}
}
else if(scanCode & 0x80)
{
scanCode &= 0x7F;
keyStates[scanCode] = KEY_RELEASED;
}
else
{
keyStates[scanCode] = KEY_PRESSED;
}
break;
}
// Send a "Non Specific End of Interrupt" command to the PIC.
// See Intel 8259A datasheet for details.
outp(PIC_OPERATION_COMMAND_PORT, 0x20);
_asm
{
sti // enable interrupts
};
}
void KeyboardInstallDriver()
{
// Make sure the new ISR isn't already in use.
if(oldKeyboardIsr == (void *)0)
{
oldKeyboardIsr = _dos_getvect(KEYBOARD_INTERRUPT_VECTOR);
_dos_setvect(KEYBOARD_INTERRUPT_VECTOR, KeyboardIsr);
}
}
void KeyboardUninstallDriver()
{
// Make sure the new ISR is in use.
if(oldKeyboardIsr != (void *)0)
{
_dos_setvect(KEYBOARD_INTERRUPT_VECTOR, oldKeyboardIsr);
oldKeyboardIsr = (void *)0;
}
}
void KeyboardDumpScancodeLog()
{
FILE *keyLogFile = fopen("keylog.hex", "w+b");
if(!keyLogFile)
{
printf("ERROR: Couldn't open file for key logging!\n");
}
else
{
int i;
for(i = 0; i < 256; ++i)
{
fputc(keyCodeLog[i], keyLogFile);
}
fclose(keyLogFile);
}
}
keyboard_scan_codes.h (simply defines all the scancodes to the qwerty button layout)
#ifndef KEYBOARD_SCAN_CODES_H_INCLUDED
#define KEYBOARD_SCAN_CODES_H_INCLUDED
// Original 83 Keys from the IBM 83-key Model F keyboard
#define SCAN_NONE 0x00
#define SCAN_ESC 0x01
#define SCAN_1 0x02
#define SCAN_2 0x03
#define SCAN_3 0x04
#define SCAN_4 0x05
#define SCAN_5 0x06
#define SCAN_6 0x07
#define SCAN_7 0x08
#define SCAN_8 0x09
#define SCAN_9 0x0A
#define SCAN_0 0x0B
#define SCAN_MINUS 0x0C
#define SCAN_EQUALS 0x0D
#define SCAN_BACKSPACE 0x0E
#define SCAN_TAB 0x0F
#define SCAN_Q 0x10
#define SCAN_W 0x11
#define SCAN_E 0x12
#define SCAN_R 0x13
#define SCAN_T 0x14
#define SCAN_Y 0x15
#define SCAN_U 0x16
#define SCAN_I 0x17
#define SCAN_O 0x18
#define SCAN_P 0x19
#define SCAN_LEFT_BRACE 0x1A
#define SCAN_RIGHT_BRACE 0x1B
#define SCAN_ENTER 0x1C
#define SCAN_LEFT_CONTROL 0x1D
#define SCAN_A 0x1E
#define SCAN_S 0x1F
#define SCAN_D 0x20
#define SCAN_F 0x21
#define SCAN_G 0x22
#define SCAN_H 0x23
#define SCAN_J 0x24
#define SCAN_K 0x25
#define SCAN_L 0x26
#define SCAN_SEMICOLON 0x27
#define SCAN_APOSTROPHE 0x28
#define SCAN_ACCENT 0x29
#define SCAN_TILDE 0x29 // Duplicate of SCAN_ACCENT with popular Tilde name.
#define SCAN_LEFT_SHIFT 0x2A
#define SCAN_BACK_SLASH 0x2B
#define SCAN_Z 0x2C
#define SCAN_X 0x2D
#define SCAN_C 0x2E
#define SCAN_V 0x2F
#define SCAN_B 0x30
#define SCAN_N 0x31
#define SCAN_M 0x32
#define SCAN_COMMA 0x33
#define SCAN_PERIOD 0x34
#define SCAN_FORWARD_SLASH 0x35
#define SCAN_RIGHT_SHIFT 0x36
#define SCAN_KP_STAR 0x37
#define SCAN_KP_MULTIPLY 0x37 // Duplicate of SCAN_KP_STAR
#define SCAN_LEFT_ALT 0x38
#define SCAN_SPACE 0x39
#define SCAN_CAPS_LOCK 0x3A
#define SCAN_F1 0x3B
#define SCAN_F2 0x3C
#define SCAN_F3 0x3D
#define SCAN_F4 0x3E
#define SCAN_F5 0x3F
#define SCAN_F6 0x40
#define SCAN_F7 0x41
#define SCAN_F8 0x42
#define SCAN_F9 0x43
#define SCAN_F10 0x44
#define SCAN_NUM_LOCK 0x45
#define SCAN_SCROLL_LOCK 0x46
#define SCAN_KP_7 0x47
#define SCAN_KP_8 0x48
#define SCAN_KP_9 0x49
#define SCAN_KP_MINUS 0x4A
#define SCAN_KP_4 0x4B
#define SCAN_KP_5 0x4C
#define SCAN_KP_6 0x4D
#define SCAN_KP_PLUS 0x4E
#define SCAN_KP_1 0x4F
#define SCAN_KP_2 0x50
#define SCAN_KP_3 0x51
#define SCAN_KP_0 0x52
#define SCAN_KP_PERIOD 0x53
// Extended keys for the IBM 101-key Model M keyboard.
#define SCAN_RIGHT_ALT 0xE038
#define SCAN_RIGHT_CONTROL 0xE01D
#define SCAN_LEFT_ARROW 0xE04B
#define SCAN_RIGHT_ARROW 0xE04D
#define SCAN_UP_ARROW 0xE048
#define SCAN_DOWN_ARROW 0xE050
#define SCAN_NUMPAD_ENTER 0xE01C
#define SCAN_INSERT 0xE052
#define SCAN_DELETE 0xE053
#define SCAN_HOME 0xE047
#define SCAN_END 0xE04F
#define SCAN_PAGE_UP 0xE049
#define SCAN_PAGE_DOWN 0xE051
#define SCAN_KP_FORWARD_SLASH 0xE035
#define SCAN_PRINT_SCREEN 0xE02AE037
#endif // KEYBOARD_SCAN_CODES_H_INCLUDED
Related
Newbie question for library designers, how to determine #define values (in this case MPU6050.h)? I can't wrap my head where these values came from. (0x68, 0x00, etc)
#define MPU6050_ADDRESS_AD0_LOW 0x68 // address pin low (GND), default for InvenSense evaluation board
#define MPU6050_ADDRESS_AD0_HIGH 0x69 // address pin high (VCC)
#define MPU6050_DEFAULT_ADDRESS MPU6050_ADDRESS_AD0_LOW
#define MPU6050_RA_XG_OFFS_TC 0x00 //[7] PWR_MODE, [6:1] XG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_YG_OFFS_TC 0x01 //[7] PWR_MODE, [6:1] YG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_ZG_OFFS_TC 0x02 //[7] PWR_MODE, [6:1] ZG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_X_FINE_GAIN 0x03 //[7:0] X_FINE_GAIN
#define MPU6050_RA_Y_FINE_GAIN 0x04 //[7:0] Y_FINE_GAIN
#define MPU6050_RA_Z_FINE_GAIN 0x05 //[7:0] Z_FINE_GAIN
#define MPU6050_RA_XA_OFFS_H 0x06 //[15:0] XA_OFFS
#define MPU6050_RA_XA_OFFS_L_TC 0x07
#define MPU6050_RA_YA_OFFS_H 0x08 //[15:0] YA_OFFS
#define MPU6050_RA_YA_OFFS_L_TC 0x09
#define MPU6050_RA_ZA_OFFS_H 0x0A //[15:0] ZA_OFFS
Most code for embedded controllers have a lot of these defines. Each define either represents a register base address of an offset from that base. Then you could also have bit-masks that are used to access specific bits inside on an address. E.g.
#define MEMORYADD_OUTPUTENABLED (1<<5)
You seem to be using the MPU-6050 3-axis accelerometer. If you look in the datasheet for that device, they mention the "MPU-6000/MPU-6050 Register Map and Register Descriptions". Looking in that document you can find the register map, which looks like this:
See the connection?
These defines help you write readable interfacing code with your component.
Thank you to whoever is kind enough to look into this question.
I want to receive multiple data from arduino to raspberry pi using I2C.
I can obtain 1 data from arduino, but once I move to more than one data, it fails to do so.
I have tried multiple methods so far, and I found this method to work the best to obtain data from Arduino.
My previous attempt in obtaining data from arduino is as follows:
I want to read from Arduino using I2C using Raspberry Pi
Raspberry Pi's terminal response has weird font that cannot be recognized
Which are all solved by now.
Got Massive Help from link below
https://area-51.blog/2014/02/15/connecting-an-arduino-to-a-raspberry-pi-using-i2c/
Arduino Code
#include <Wire.h>
#define echoPin 7
#define trigPin 8
int number=0;
long duration;
long distance;
void setup()
{
//Join I2C bus as slave with address 8
Wire.begin(8);
//Call SendData & Receive Data
Wire.onRequest(SendData);
//Setup pins as output and input to operate ultrasonic sensor
Serial.begin(9600);
pinMode(echoPin,INPUT);
pinMode(trigPin,OUTPUT);
}
void loop ()
{
digitalWrite(trigPin,LOW);
delayMicroseconds(2);
digitalWrite(trigPin,HIGH);
delayMicroseconds(2);
digitalWrite(trigPin,LOW);
duration=pulseIn(echoPin,HIGH);
distance=duration/58.2;
Serial.print(distance);
Serial.println(" cm");
}
void SendData()
{
Wire.write(distance);
Wire.write("Why No Work?");
Wire.write(distance);
}
C++ Code
//Declare and Include the necessary header files
#include <iostream>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <linux/i2c-dev.h>
#include <sys/ioctl.h>
#include <fcntl.h>
//Define Address of Slave Address
#define ADDRESS 0x08
//Eliminate the Used of std in the future
using namespace std;
static const char *devName="/dev/i2c-1";
int main(int argc, char **argv)
{
//Check to see if C++ works
cout<<"Hello, World!\n";
cout<<"I2C: Connecting"<<endl;
int file;
if ((file = open(devName, O_RDWR))<0)
{
fprintf(stderr, "I2C: Failed to access");
exit(1);
}
if (ioctl(file, I2C_SLAVE, ADDRESS)<0)
{
cout<<"Failed to Access"<<endl;
}
char buf[0];
char dd;
for (int i=0; i<100;i++)
{
read(file,buf, 3);
float distance= (int) buf[0];
dd= buf[1];
float dist=(int) buf[2];
cout<<distance<<endl;
usleep(10000);
cout<<"doh"<<endl;
cout<<dd<<endl;
cout<<dist<<endl;
}
return 0;
}
What I would expect from the c++ code would be as follows
15
doh
Why No Work?
15
But I get
15
doh
weird font can't be recognized
255
Wire.write(distance);
wants to write a long onto the I2C bus. For an Arduino This is 32 bits, 4 bytes, of data. I'm not sure exactly what wire.write does because the documentation I can find is substandard to the point of being garbage, but the documentation looks like it's going to send exactly 1 of the 4 bytes you wanted to send. In order to send more than one byte, it looks like you need to use the array version: Wire.write(&distance, sizeof (distance));, but even this may not be sufficient. I'll get back into that later.
Wire.write("Why No Work?");
writes a null-terminated string (specifically a const char[13]) onto the I2C bus. I don't know arduino well enough to know if this also sends the terminating null.
so
Wire.write(distance);
Wire.write("Why No Work?");
Wire.write(distance);
needed to write at least 4 + 12 + 4 bytes onto the I2C bus. and probably only wrote 1 + 12 + 1.
On the Pi side,
read(file,buf, 3);
read out 3 bytes. This isn't enough to get the whole of distance, let alone the array of characters and second write of distance. You need to read all of the data you wrote, at least 20 bytes.
In addition,
char buf[0];
defines an array of 0 length. There isn't much you can do with it as there is no space to store anything here. It cannot hold 3 characters, let alone the 20 or 21 necessary. read of 3 bytes wrote into invalid memory and the program can no longer be counted on for sane results.
This means that at best
float distance= (int) buf[0];
dd= buf[1];
float dist=(int) buf[2];
got only one byte of the four bytes of distance and it's dumb luck that the result was the same as expected. dd got exactly one character, not the whole string, and this is turning out to be nonsense because of one of the preceding mistakes. dist is similarly garbage.
To successfully move data from one machine to another, you need to establish a communication protocol. You can't just write a long onto a wire. long doesn't have the same size on all platforms, nor does it always have the same encoding. You have to make absolutely certain that both sides agree on how the long is to be written (size and byte order) and read.
Exactly how you are going to do this is up to you, but here are some pointers and a search term, serialization, to assist you in further research.
I'm pretty new still to all this. So please excuse me if there is something obvious.
I have been struggling with the included datasheet for a magnetoscope. For some reason it seems like everything is working, but when I wave a magnet at it, I'm not really getting any response in the serial.
So here is some information.
#include <Wire.h>
void setup() {
Wire.begin(); // join i2c bus (address optional for master)
Serial.begin(9600); // start serial communication at 9600bps
}
void loop() {
int reading = 0;
int Address = 30;
Wire.beginTransmission(Address);
Wire.write(byte(0x03));
Wire.write(byte(0x04));
Wire.endTransmission();
Wire.requestFrom(Address, 2);
delay(10);
if (2 <= Wire.available()) {
reading = Wire.read();
reading = reading << 8;
reading |= Wire.read();
Serial.println(int(reading));
}
delay(250); // wait a bit since people have to read the output :)
}
With this code, I receive a number.
-5637
-5637
-5637
-5637
-5637
But then if I remove the following line Wire.write(byte(0x03));, my output does not change. The value from the device is supposed to be expressed as two's complement.
So at first I thought I didn't know how to send multiple bytes to the device, but after some research I found that I was doing it right (I think).
Then if I only put Wire.write(byte(0x03)); I receive "0" as response. Reading the datasheet I see that response 0 means that the command is invalid.
I included the datasheet to this post. Can someone point me in the right dirrection? The IC I'm using is an LSM303DLHC and I'm using it from this "sheild".
Here is the datasheet.
The following picture is a picture of the communication of the bus.
I believe the following code does this, which is like Table 11 in the datasheet:
Wire.beginTransmission(Address); // START and write to device address 0x1E
Wire.write(byte(0x03)); // Set the register pointer to sub-address 0x03
Wire.write(byte(0x04)); // Write a value of 0x04 to sub-address 0x3
Wire.endTransmission(); // STOP.
Then I suspect the device's register pointer gets automatically incremented from register 0x03 to 0x04. And then the rest of your code maybe reads two bytes from sub-address 0x04 and 0x05.
You didn't express your intention for your code but I suspect the above is NOT what you intended. My guess is that you intend to read two bytes from device address 0x1E, sub-address 0x03 and sub-address 0x04. Is that right?
You should be doing an operation like what is described in Table 13.
Wire.beginTransmission(Address); // START and write to device address 0x1E
Wire.write(byte(0x03)); // Set the register pointer to sub-address 0x03
Wire.requestFrom(Address, 2); // REPEAT-START and read 2 bytes from sub-address 0x03 and 0x04
I'm writing a logging service that may collect privileges of a process for the purpose of transmitting it to another computer. I use the following code to collect it:
HANDLE hToken;
if(OpenProcessToken(::GetCurrentProcess(), TOKEN_QUERY, &hToken))
{
DWORD dwSize = 0;
if(!GetTokenInformation(hToken, TokenPrivileges, NULL, dwSize, &dwSize) &&
::GetLastError() == ERROR_INSUFFICIENT_BUFFER)
{
BYTE* pb = new (std::nothrow) BYTE[dwSize];
if(pb)
{
TOKEN_PRIVILEGES* pTPs = (TOKEN_PRIVILEGES*)pb;
DWORD dwSize2;
if(GetTokenInformation(hToken, TokenPrivileges, pTPs, dwSize, &dwSize2) &&
dwSize2 <= dwSize)
{
//Got our BYTE array in 'pb' of size 'dwSize2' bytes
memcpy(pByteArrayToTransmit, pb, dwSize2);
}
delete[] pb;
}
}
CloseHandle(hToken);
}
But I'm curious, if I could pass the pByteArrayToTransmit array to another Windows computer and be able to convert it into a readable form using LookupPrivilegeName API?
PS. The reason I'm not calling LookupPrivilegeName on the client machine (where the data is being logged) is to save on the size of the logged data, since this process may repeat many times over.
From the documentation for LookupPrivilegeValue:
The LookupPrivilegeValue function retrieves the locally unique identifier (LUID) used on a specified system to locally represent the specified privilege name.
That strongly suggests that the LUIDs are different on each system. At the very least, there is no guarantee that they will be the same.
Addendum
Assuming that the logging system does not absolutely have to work under every conceivable circumstance, and assuming that the logs will be analyzed in software and that you can update the analysis software every time a new version of Windows comes out, and provided the logs also include the Windows version, it should be safe enough to compress this information into a single 64-bit bitmap as Eryksun suggests in the comments.
If you want to play it as safe as possible, I suggest a bitmap followed by an optional variable-length field. You can have a fixed table of strings (one for each privilege name that we know about) with one bit in the bitmap for each string. If all the privilege names you see are in the table, the bitmap is all you need.
If you see one or more privilege names you didn't know about, set the top bit in the bitmap to indicate that there is more data, then add one or more null-terminated strings, with an additional null at the end to indicate the end of the list.
yes, you can do this. privilege values is invariant.
#define SE_MIN_WELL_KNOWN_PRIVILEGE (2L)
#define SE_CREATE_TOKEN_PRIVILEGE (2L)
#define SE_ASSIGNPRIMARYTOKEN_PRIVILEGE (3L)
#define SE_LOCK_MEMORY_PRIVILEGE (4L)
#define SE_INCREASE_QUOTA_PRIVILEGE (5L)
#define SE_MACHINE_ACCOUNT_PRIVILEGE (6L)
#define SE_TCB_PRIVILEGE (7L)
#define SE_SECURITY_PRIVILEGE (8L)
#define SE_TAKE_OWNERSHIP_PRIVILEGE (9L)
#define SE_LOAD_DRIVER_PRIVILEGE (10L)
#define SE_SYSTEM_PROFILE_PRIVILEGE (11L)
#define SE_SYSTEMTIME_PRIVILEGE (12L)
#define SE_PROF_SINGLE_PROCESS_PRIVILEGE (13L)
#define SE_INC_BASE_PRIORITY_PRIVILEGE (14L)
#define SE_CREATE_PAGEFILE_PRIVILEGE (15L)
#define SE_CREATE_PERMANENT_PRIVILEGE (16L)
#define SE_BACKUP_PRIVILEGE (17L)
#define SE_RESTORE_PRIVILEGE (18L)
#define SE_SHUTDOWN_PRIVILEGE (19L)
#define SE_DEBUG_PRIVILEGE (20L)
#define SE_AUDIT_PRIVILEGE (21L)
#define SE_SYSTEM_ENVIRONMENT_PRIVILEGE (22L)
#define SE_CHANGE_NOTIFY_PRIVILEGE (23L)
#define SE_REMOTE_SHUTDOWN_PRIVILEGE (24L)
#define SE_UNDOCK_PRIVILEGE (25L)
#define SE_SYNC_AGENT_PRIVILEGE (26L)
#define SE_ENABLE_DELEGATION_PRIVILEGE (27L)
#define SE_MANAGE_VOLUME_PRIVILEGE (28L)
#define SE_IMPERSONATE_PRIVILEGE (29L)
#define SE_CREATE_GLOBAL_PRIVILEGE (30L)
#define SE_TRUSTED_CREDMAN_ACCESS_PRIVILEGE (31L)
#define SE_RELABEL_PRIVILEGE (32L)
#define SE_INC_WORKING_SET_PRIVILEGE (33L)
#define SE_TIME_ZONE_PRIVILEGE (34L)
#define SE_CREATE_SYMBOLIC_LINK_PRIVILEGE (35L)
#define SE_MAX_WELL_KNOWN_PRIVILEGE (SE_CREATE_SYMBOLIC_LINK_PRIVILEGE)
For my informatics studies I have to write a Space Invaders Clone using Windows API.
One of our tasks is to write and display a Highscore list which works very well.
If you have lost all credits you should be able to write your name into the highscore list (if you have enough points).
Windows API has no easy possibility to get a text input so I wrote an own version that works not as I want it to.
I use pName to write the name and save it into an array called "Name".
This array is used to save the Highscore and the name together into the Highscore.txt.
The Saving progress is working fine so far.
But my problem now is:
I'm able to write letters but they're sorted automatically.
So if i input: asdf
it is sorted: adfs
I can't see any code that does something like that so where's my fault?
Thank you guys!
Greets Michael
bool HighScore::EnterName(HDC hdc)
{
#define VK_A 0x41
#define VK_B 0x42
#define VK_C 0x43
#define VK_D 0x44
#define VK_E 0x45
#define VK_F 0x46
#define VK_G 0x47
#define VK_H 0x48
#define VK_I 0x49
#define VK_J 0x4A
#define VK_K 0x4B
#define VK_L 0x4C
#define VK_M 0x4D
#define VK_N 0x4E
#define VK_O 0x4F
#define VK_P 0x50
#define VK_Q 0x51
#define VK_R 0x52
#define VK_S 0x53
#define VK_T 0x54
#define VK_U 0x55
#define VK_V 0x56
#define VK_W 0x57
#define VK_X 0x58
#define VK_Y 0x59
#define VK_Z 0x5A
string pName;
if(GetKeyState(VK_A)) pName.append("A"); if(GetKeyState(VK_B)) pName.append("B");
if(GetKeyState(VK_C)) pName.append("C"); if(GetKeyState(VK_D)) pName.append("D");
if(GetKeyState(VK_E)) pName.append("E"); if(GetKeyState(VK_F)) pName.append("F");
if(GetKeyState(VK_G)) pName.append("G"); if(GetKeyState(VK_H)) pName.append("H");
if(GetKeyState(VK_I)) pName.append("I"); if(GetKeyState(VK_J)) pName.append("J");
if(GetKeyState(VK_K)) pName.append("K"); if(GetKeyState(VK_L)) pName.append("L");
if(GetKeyState(VK_M)) pName.append("M"); if(GetKeyState(VK_N)) pName.append("N");
if(GetKeyState(VK_O)) pName.append("O"); if(GetKeyState(VK_P)) pName.append("P");
if(GetKeyState(VK_Q)) pName.append("Q"); if(GetKeyState(VK_R)) pName.append("R");
if(GetKeyState(VK_S)) pName.append("S"); if(GetKeyState(VK_T)) pName.append("T");
if(GetKeyState(VK_U)) pName.append("U"); if(GetKeyState(VK_V)) pName.append("V");
if(GetKeyState(VK_W)) pName.append("W"); if(GetKeyState(VK_X)) pName.append("X");
if(GetKeyState(VK_Y)) pName.append("Y"); if(GetKeyState(VK_Z)) pName.append("Z");
TextOut(hdc, 20, 200, "TRAGE DEINEN NAMEN EIN",22);
if(GetAsyncKeyState(VK_BACK)) pName.erase(pName.begin() + pName.length()-1);
sprintf(Name,"%s", pName.c_str());
TextOut(hdc, 50,250,Name, strlen(Name));
return true;
}
Normally text input in Windows is done with an edit control, that allows the user to type into the edit control. To get the contents of the control, you use the GetWindowText API passing in the HWND of the edit control.
Forget about GetKeyState.
If you're doing all custom rendering, handle the WM_CHAR message.
If you can use widgets (child windows), the the EDIT control as Larry suggested would be best.
I found a soultion that was pretty easy.
I made a big fault that I couldn't see after hours of programming:
I initiate my string pName again ang again from the beginning. So I moved it to my constructor and now it all works fine.
To get a better sensibility, you have to change
(GetKeyState(VK_LETTER))
to
(HIWORD(GetAsyncKeyState(VK_LETTER)))
Now it works much better!