It seems that dlib needs a loss layer that dictates how the layers most distant to our input layer are treated. I cannot find any documentation towards the loss layers but it seems that there is no way to have just some summation layer.
Summing up all the values of the last layer would be exactly what I need for the regression, though (see also: https://deeplearning4j.org/linear-regression)
I was thinking along the lines of writing a custom loss layer but could not find information about this, either.
So, have I overseen some corresponding layer here or is there a possibility to have what I need?
The loss layers in dlib are listed in the menu on dlib's machine learning page. Look for the words "loss layers". There is lots of documentation.
The current released version of dlib doesn't include a regression loss. However, if you get the current code from github you can use the new loss_mean_squared layer to do regression. See: https://github.com/davisking/dlib/blob/master/dlib/dnn/loss_abstract.h
Related
Problem:
I'm trying to build a image processing program which detects scratches on a module.
As seen in the image below, a few scratches can be found.
One of the problems is that I have only two samples with scratches.
Question:
What would be the best way to find the scratches under the limited number of sample condition?
(if detection is too hard, accepted / not accepted classification is also fine)
What I tried:
I tried to detect the scratches by using GMM(gaussian mixture model)
-> It didn't work because of too many features. GMM is only effective on object such as textures.
I will try to implement Deep Learning, but I'm not sure if it will work or not.
Image Sample
I'm trying to align two images taken from a handheld camera.
At first, I was trying to use the OpenCV warpPerspective method based on SIFT/SURF feature points. The problem is the feature-extract & matching process may be extremely slow when the image quality is high (3000x4000). I tried to scale-down the image before find feature-points, the result is not as good as before.(The Mat generated from findHomography shouldn't be affected by scaling down the image, right?) And sometimes, due to lack of good feature point matches, the result is quite strange.
After searching on this topic, it seems that solving the problem in Fourier domain will speed up the registration process. And I've found this question which leads me to the code here.
The only problem is the code is written in python with numpy (not even using OpenCV), which makes it quite hard to re-written to C++ code using OpenCV (In OpenCV, I can only find dft and there's no fftshift nor fft stuff, I'm not quite familiar with NumPy, and I'm not brave enough to simply ignore the missing methods). So I'm wondering why there is not such a Fourier-domain image registration implementation using C++?
Can you guys give me some suggestion on how to implement one, or give me a link to the already implemented C++ version? Or help me to turn the python code into C++ code?
Big thanks!
I'm fairly certain that the FFT method can only recover a similarity transform, that is, only a (2d) rotation, translation and scale. Your results might not be that great using a handheld camera.
This is not quite a direct answer to your question, but, as a suggestion for a speed improvement, have you tried using a faster feature detector and descriptor? In OpenCV SIFT/SURF are some of the slowest methods they have for feature extraction/matching. You could try testing some of their other methods first, they all work quite well and are faster than SIFT/SURF. Especially if you use their FLANN-based matcher.
I've had to do this in the past with similar sized imagery, and using the binary descriptors OpenCV has increases the speed significantly.
If you need only shift you can use OpenCV's phasecorrelate
I am trying to develop an automatic(or semi-automatic) image annotator for my final year project with OpenCV. I have been studying many OpenCV resources and have come across cascade classification for training and detection purposes. I understood that part, and also tried the Face Detection tutorial provided with OpenCV. So, now I know how to train and detect objects.
However, I still cannot understand how can I annotate objects present in the image?
For example, the system will show that this is an object, but I want the system to show that it is a ball. How can i accomplish that?
Thanks in advance.
One binary classificator (detector) can separate objects by two classes:
positive - the object type classifier was trained for,
and negative - all others.
If you need detect several distinguished classes you should use one detector for each class, or you can train multiclass classifier ("one vs all" type of classifiers for example), but it usually works slower and with less accuracy (because detector better search for similar objects). You can also take a look at convolutional networks (by Yann LeCun).
This is a very hard task. I suggest simplifying it by using latent SVM detector and limiting yourself to the models it supplies:
http://docs.opencv.org/modules/objdetect/doc/latent_svm.html
I was given a project on vehicle type identification with neural network and that is how I came to know the awesomeness of neural technology.
I am a beginner with this field, but I have sufficient materials to learn it. I just want to know some good places to start for this project specifically, as my biggest problem is that I don't have very much time. I would really appreciate any help. Most importantly, I want to learn how to match patterns with images (in my case, vehicles).
I'd also like to know if python is a good language to start this in, as I'm most comfortable with it.
I am having some images of cars as input and I need to classify those cars by there model number.
Eg: Audi A4,Audi A6,Audi A8,etc
You didn't say whether you can use an existing framework or need to implement the solution from scratch, but either way Python is excellent language for coding neural networks.
If you can use a framework, check out Theano, which is written in Python and is the most complete neural network framework available in any language:
http://www.deeplearning.net/software/theano/
If you need to write your implementation from scratch, look at the book 'Machine Learning, An Algorithmic Perspective' by Stephen Marsland. It contains example Python code for implementing a basic multilayered neural network.
As for how to proceed, you'll want to convert your images into 1-D input vectors. Don't worry about losing the 2-D information, the network will learn 'receptive fields' on its own that extract 2-D features. Normalize the pixel intensities to a -1 to 1 range (or better yet, 0 mean with a standard deviation of 1). If the images are already centered and normalized to roughly the same size than a simple feed-forward network should be sufficient. If the cars vary wildly in angle or distance from the camera, you may need to use a convolutional neural network, but that's much more complex to implement (there are examples in the Theano documentation). For a basic feed-forward network try using two hidden layers and anywhere from 0.5 to 1.5 x the number of pixels in each layer.
Break your dataset into separate training, validation, and testing sets (perhaps with a 0.6, 0.2, 0.2 ratio respectively) and make sure each image only appears in one set. Train ONLY on the training set, and don't use any regularization until you're getting close to 100% of the training instances correct. You can use the validation set to monitor progress on instances that you're not training on. Performance should be worse on the validation set than the training set. Stop training when the performance on the validation set stops improving. Once you've accomplished this you can try different regularization constants and choose the one that results in the best validation set performance. The test set will tell you how well your final result is performing (but don't change anything based on test set results, or you risk overfitting to that too!).
If your car images are very complex and varied and you cannot get a basic feed-forward net to perform well, you might consider using 'deep learning'. That is, add more layers and pre-train them using unsupervised training. There's a detailed tutorial on how to do this here (though all the code examples are in MatLab/Octave):
http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial
Again, that adds a lot of complexity. Try it with a basic feed-forward NN first.
As a part of my masters project I proposed to build a virtual trial room application intended for retail clothing stores. Currently its meant to be used directly in store though it may be extended for online stores as well.
This application will show customers how a selected apparel would look on them by showing it on their 3D replica on screen.
It involves 3 steps
Sizing up the customer
Building customer replica 3D humanoid model
Apply simulated cloth on the model
My question is about the feasibility of the project and choice of framework.
Can this be achieved in real time using a normal Desktop computer? If yes what would be appropriate framework ( hardware, software, programming language etc ) for this purpose?
On the work I have done till now, I was planning to achieve above steps in following ways
for step 1 : option a) Two cameras for front and side views or
option b) 1 Kinect or 2 Kinect for complete 3D data
for step 2: either use makehuman (http://www.makehuman.org/) code to build a customised 3D model using above data or build everything from scratch, unsure about the framework.
for step 3: Just need few cloth samples, so thought of building simulated clothes in blender.
Currently I have just the vague idea about different pieces but I am not sure of how to develop complete application.
Theoretically this can be achieved in real time. Many usefull algorithms for video tracking, stereo vision and 3d recostruction are available in OpenCV library. But it's very difficult to build robust solution. For example, you'll probably need to track human body which moves frame to frame and perform pose estimation (OpenCV contains POSIT algorithm), however it's not trivial to eliminate noise in resulting objects coordinates. For inspiration see a nice work on video tracking.
You might want to choose another way, simplify some things, avoid complicated stuff do things less dynamicaly and estimate only clothes size and approximate human location. I this case most likely you will create something usefull and interesting.
I've lost link to one online fiting room where hands and body detection implemented. Using Kinnect solves many problems. But If for some reason you won't use it then AR(augmented reality) helps you (yet another fitting room)