Reading allocatable arrays from namelists - fortran

I am using GNU Fortran (GCC) 4.8.2
I want to read allocatable arrays from a namelist.
But I don't know in advance how many elements have to be read into the allocatable array, so I cannot allocate it before to read the namelist.
This is my namelist:
namelist.nml:
&SECTION_1
intList = 5,6,7
&END
And this is my program:
namelist.f08:
program namelist
implicit none
integer, allocatable :: intList(:)
integer :: U ! Unit to read the namelist file
namelist /SECTION_1/ intList
!allocate(intList(3)) ! <-- If I uncomment this, the program works.
open(NEWUNIT=U, file="namelist.nml", status='OLD', recl=80, delim='APOSTROPHE')
rewind(U)
read(U, nml=SECTION_1)
close(U)
write (*,*) intList
end program namelist
If I uncomment the labeled line, the program works, but, as I said before, I cannot allocate before to read the namelist.
Does anybody know how to accomplish this?.

Related

How to understand this negative index array variable declaration? [duplicate]

I need in a program to pass some allocatable arrays to subroutines, and i need to know if the way I do it are in the standard or not.
If you know where I can search for the standard of fortran, Tell me please.
Here is a little code that will better explain than words
program test
use modt99
implicit none
real(pr), dimension(:), allocatable :: vx
allocate(vx(-1:6))
vx=(/666,214,558,332,-521,-999,120,55/)
call test3(vx,vx,vx)
deallocate(vx)
end program test
with the module modt99
module modt99
contains
subroutine test3(v1,v2,v3)
real(pr), dimension(:), intent(in) :: v1
real(pr), dimension(0:), intent(in) :: v2
real(pr), dimension(:), allocatable, intent(in) :: v3
print*,'================================'
print*,v1(1:3)
print*,'================================'
print*,v2(1:3)
print*,'================================'
print*,v3(1:3)
print*,'================================'
end subroutine test3
end module modt99
on screen, I get
================================
666.000000000000 214.000000000000 558.000000000000
================================
214.000000000000 558.000000000000 332.000000000000
================================
558.000000000000 332.000000000000 -521.000000000000
================================
So are the three ways of dummy arguments in subroutine test3 legal (in what version of fortran, 90, 95, 2003?) and are their behavior normal?
The first version passes the array slice to the subroutine. Note that boundary information are not passed along in this way, arrays are assumed to start at 1 and go to size(array).
The second way is just like the first one, but you manually set the lower boundary to 0, that's why printing v3(1:3) gives you the values with an offset of 1.
The third way passes all array information to the subroutine (including boundaries), hence the "correct" indexing. Passing allocatable arrays was introduced with Fortran 2003.
Apart from the fact that you have an aliasing issue (passing the same variable to three different dummy arguments), all three versions are legal.
You can find all documents of the standards here.
Especially, take a look at the Fortran 2003 Standard, Ch. 5.1.2.5 DIMENSION attribute to see the differences between assumed shape and deferred shape arrays in dummy arguments.

Dynamic arrays f95

I am trying to understand how to use dynamic memory in f95.
I know that the following code in f2003 works.
program main
use pippo
implicit none
integer, allocatable :: arr(:)
call createDynamic(arr)
end program main
module pippo
contains
subroutine createDynamic(arr)
implicit none
integer, allocatable,dimension(:)::arr
integer :: i,n
n=10
allocate(arr(n))
do i=1,n
arr(i) = i
end do
end subroutine createDynamic
end module pippo
I would like to write a version in f95: what is the proper way to do it?
Your code us valid Fortran 95 + the ISO/IEC TR-15581 enhancements to allocatable arrays, which allowed allocatable dummy arguments.
In pure Fortran 95 you have to allocate the array in the main program or use pointers. However, it is year 2019, almost 2020. There is very little reason to use Fortran 95 without this TR. Or even not just using most of the widely supported Fortran 2008 features.

Writing assumed-size array causes "upper bound shall not be omitted..."

I am writing code to add on a closed-source Finite-Element Framework that forces me (due to relying on some old F77 style approaches) in one place to rely on assumed-size arrays.
Is it possible to write an assumed-size array to the standard output, whatever its size may be?
This is not working:
module fun
implicit none
contains
subroutine writer(a)
integer, dimension(*), intent(in) :: a
write(*,*) a
end subroutine writer
end module fun
program test
use fun
implicit none
integer, dimension(2) :: a
a(1) = 1
a(2) = 2
call writer(a)
end program test
With the Intel Fortran compiler throwing
error #6364: The upper bound shall not be omitted in the last dimension of a reference to an assumed size array.
The compiler does not know how large an assumed-size array is. It has only the address of the first element. You are responsible to tell how large it is.
write(*,*) a(1:n)
Equivalently you can use an explicit-size array
integer, intent(in) :: a(n)
and then you can do
write(*,*) a
An assumed-size array may not occur as a whole array reference when that reference requires the shape of the array. As an output item in a write statement that is one such disallowed case.
So, in that sense the answer is: no, it is not possible to have the write statement as you have it.
From an assumed-size array, array sections and array elements may appear:
write (*,*) a(1:2)
write (*,*) a(1), a(2)
write (*,*) (a(i), i=1,2)
leading simply to how to get the value 2 into the subroutine; at other times it may be 7 required. Let's call it n.
Naturally, changing the subroutine is tempting:
subroutine writer (a,n)
integer n
integer a(n) ! or still a(*)
end subroutine
or even
subroutine writer (a)
integer a(:)
end subroutine
One often hasn't a choice, alas, in particular when associating a procedure with a dummy procedure with a specific interface . However, n can get into the subroutine through any of several other ways: as a module or host entity, or through a common block (avoid this one if possible). These methods do not require modifying the interface of the procedure. For example:
subroutine writer(a)
use aux_params, only : n
integer, dimension(*), intent(in) :: a
write(*,*) a(1:n)
end subroutine writer
or we could have n as an entity in the module fun and have it accesible in writer through host association. In either case, setting this n's value in the main program before writer is executed will be necessary.

Program stops due to array allocation in a function [duplicate]

The following code is returning a Segmentation Fault because the allocatable array I am trying to pass is not being properly recognized (size returns 1, when it should be 3). In this page (http://www.eng-tips.com/viewthread.cfm?qid=170599) a similar example seems to indicate that it should work fine in F95; my code file has a .F90 extension, but I tried changing it to F95, and I am using gfortran to compile.
My guess is that the problem should be in the way I am passing the allocatable array to the subroutine; What am I doing wrong?
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
PROGRAM test
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
IMPLICIT NONE
DOUBLE PRECISION,ALLOCATABLE :: Array(:,:)
INTEGER :: iii,jjj
ALLOCATE(Array(3,3))
DO iii=1,3
DO jjj=1,3
Array(iii,jjj)=iii+jjj
PRINT*,Array(iii,jjj)
ENDDO
ENDDO
CALL Subtest(Array)
END PROGRAM
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
SUBROUTINE Subtest(Array)
DOUBLE PRECISION,ALLOCATABLE,INTENT(IN) :: Array(:,:)
INTEGER :: iii,jjj
PRINT*,SIZE(Array,1),SIZE(Array,2)
DO iii=1,SIZE(Array,1)
DO jjj=1,SIZE(Array,2)
PRINT*,Array(iii,jjj)
ENDDO
ENDDO
END SUBROUTINE
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
If a procedure has a dummy argument that is an allocatable, then an explicit interface is required in any calling scope.
(There are numerous things that require an explicit interface, an allocatable dummy is but one.)
You can provide that explicit interface yourself by putting an interface block for your subroutine inside the main program. An alternative and far, far, far better option is to put the subroutine inside a module and then USE that module in the main program - the explicit interface is then automatically created. There is an example of this on the eng-tips site that you provided a link to - see the post by xwb.
Note that it only makes sense for a dummy argument to have the allocatable attribute if you are going to do something related to its allocation status - query its status, reallocate it, deallocate it, etc.
Please also note that your allocatable dummy argument array is declared with intent(in), which means its allocation status will be that of the associated actual argument (and it may not be changed during the procedure). The actual argument passed to your subroutine may be unallocated and therefore illegal to reference, even with an explicit interface. The compiler will not know this and the behaviour of inquiries like size is undefined in such cases.
Hence, you first have to check the allocation status of array with allocated(array) before referencing its contents. I would further suggest to implement loops over the full array with lbound and ubound, since in general you can't be sure about array's bounds:
subroutine subtest(array)
double precision, allocatable, intent(in) :: array(:,:)
integer :: iii, jjj
if(allocated(array)) then
print*, size(array, 1), size(array, 2)
do iii = lbound(array, 1), ubound(array, 1)
do jjj = lbound(array, 2), ubound(array, 2)
print*, array(iii,jjj)
enddo
enddo
endif
end subroutine
This is a simple example that uses allocatable dummy arguments with a module.
module arrayMod
real,dimension(:,:),allocatable :: theArray
end module arrayMod
program test
use arrayMod
implicit none
interface
subroutine arraySub
end subroutine arraySub
end interface
write(*,*) allocated(theArray)
call arraySub
write(*,*) allocated(theArray)
end program test
subroutine arraySub
use arrayMod
write(*,*) 'Inside arraySub()'
allocate(theArray(3,2))
end subroutine arraySub

Fortran modules and C++ with Eigen

I am a Fortran user and a complete newbie to C++ and Eigen. I use modules in Fortran to be able to keep my variables, arrays and matrices in different groups and use them as needed. How to implement the idea of modules in Fortran in C++ so that I am able to pass on the data between different subroutines? I cannot paste the entire Fortran code as it is too large and there will be many new concepts which I would like to write directly in C++. Perhaps, a sample snippet or document showing how to pass on the information between C++ routines could be useful. I want to do something like this (and much more) in C++:
!*************************************************************************
! **** module file: module.f95 ****
module global
save
integer, allocatable :: kod(:,:)
end module
module local
save
integer, allocatable :: kode(:)
real*8, allocatable :: func1(:)
integer pts
end module
module fileunits
save
integer,parameter :: file1 = 11, file2 = 12
end module
!*************************************************************************
! Main program
program main
use global
use local
use fileunits
implicit none
int i,j,k,n
open(unit=file1,file='input.dat')
open(unit=file2,file='output.dat')
read(file1, *) n,pts
allocate(kod(n,pts))
allocate(kode(pts), func1(pts))
do I = 1, n
read(file1, *) (kod(i,j),j=1,pts)
do J=1,pts
kode(j) = kode(i,j)
end do
call proc1
write(file2,*) ((func1(j), j =1, pts)
end do
end program
subroutine proc1
use local
implicit none
int j
do j=1,pts
funct1(j) = kode(j) * kode(j)
...
...
end do
end subroutine