Translating macro from Common Lisp to Clojure - clojure

I'm trying to translate the Common Lisp code in the original "Calendrical Calculations" paper by Derhowitz and Reingold to Clojure. In this paper there is a macro named sum which is given in Common Lisp as
(defmacro sum (expression index initial condition)
;; sum expession for index = initial and successive integers,
;; as long as condition holds.
(let* ((temp (gensym)))
`(do ((,temp 0 (+ ,temp ,expression))
(,index ,initial (i+ ,index)))
((not ,condition) ,temp))))
and which I've translated to Clojure as
(defmacro sum [expression index initial condition]
; sum expession for index = initial and successive integers,
; as long as condition holds.
(let [temp (gensym)]
`(do ((~temp 0 (+ ~temp ~expression))
(~index ~initial (inc ~index)))
((not ~condition) ~temp))))
However, when I use the above in a function (for example, the following)
(defn absolute-from-gregorian [date]
;; Absolute date equivalent to the Gregorian date.
(let [month (extract-month date)
year (extract-year date)]
; Return
(+ (extract-day date) ;; Days so far this month.
(sum ;; Days in prior months this year.
(last-day-of-gregorian-month m year) m 1 (< m month))
(* 365 (dec year)) ;; Days in prior years.
(quotient (dec year) 4) ;; Julian leap days in prior years...
(- ;; ... minus prior century years...
(quotient (dec year) 100))
(quotient ;; ...plus prior years divisible...
(dec year) 400)))) ;; ... by 400.
I get an error similar to the following:
CompilerException java.lang.RuntimeException: Unable to resolve
symbol: G__53 in this context, compiling:(NO_SOURCE_PATH:165:8)
I'm almost completely unfamiliar with the Lisp/Clojure macro system, but from what I can determine it's saying that the gensym invocation in the let block has created a symbol (in this case G__53) which is being invoked, but which doesn't exist. That makes sense, but I suspect it's not the intent of the original code - however, I don't know much about Common Lisp and thus I'm not able to figure out A) what the original CL code is trying to do here, and B) how to produce a Clojure equivalent to this.
For what it's worth - the Clojure version of the other functions used in absolute-from-gregorian are:
(defn quotient [m n]
(int (Math/floor (/ m n))))
(defn extract-month [date]
(first date))
(defn extract-day [date]
(second date))
(defn extract-year [date]
(second (rest date)))
Any and all pointers as to how to make this work greatly appreciated.

do in common lisp doesn't act anything like do in clojure. You'll have to look up what do actually does (it's a looping construct in common lisp, and a grouping construct in clojure), and figure out how to accomplish the same thing.

This can be expressed with a loop construct in Clojure:
(defmacro sum [expression index initial condition]
; sum expession for index = initial and successive integers,
; as long as condition holds.
`(loop [~index ~initial temp# 0]
(if ~condition
(recur (inc ~index) (+ temp# ~expression))
temp#)))
Example:
(sum (* x x) x 1 (<= x 3)) ;; => 14
Note also that it may be sufficient to use Clojure's standard constructs instead of custom macros. As an example, the line in the code with the calendar calculations can be rewritten as:
(reduce + (map #(last-day-of-gregorian-month % year) (range 1 month)))

Related

creating a finite lazy sequence

I'm using the function iterate to create a lazy sequence. The sequence keeps producing new values on each item. At one point however the produced values "doesn't make sense" anymore, so they are useless. This should be the end of the lazy sequence. This is the intended behavior in a abstract form.
My approach was to let the sequence produce the values. And once detected that they are not useful anymore, the sequence would only emit nil values. Then, the sequence would be wrapped with a take-while, to make it finite.
simplified:
(take-while (comp not nil?)
(iterate #(let [v (myfunction1 %)]
(if (mypred? (myfunction2 v)) v nil)) start-value))
This works, but two questions arise here:
Is it generally a good idea to model a finite lazy sequence with a nil as a "stopper", or are there better ways?
The second question would be related to the way I implemented the mechanism above, especially inside the iterate.
The problem is: I need one function to get a value, then a predicate to test if it's valid, if yes: in needs to pass a second function, otherwise: return nil.
I'm looking for a less imperative way tho achieve this, more concretely omitting the let statement. Rather something like this:
(defn pass-if-true [pred v f]
(when (pred? v) (f v)))
#(pass-if-true mypred? (myfunction1 %) myfunction2)
For now, I'll go with this:
(comp #(when (mypred? %) (myfunction2 %)) myfunction1)
Is it generally a good idea to model a finite lazy sequence with a nil as a "stopper", or are there better ways?
nil is the idiomatic way to end a finite lazy sequence.
Regarding the second question, try writing it this way:
(def predicate (partial > 10))
(take-while predicate (iterate inc 0))
;; => (0 1 2 3 4 5 6 7 8 9)
Here inc takes the previous value and produces a next value, predicate tests whether or not a value is good. The first time predicate returns false, sequence is terminated.
Using a return value of nil can make a lazy sequence terminate.
For example, this code calculates the greatest common divisor of two integers:
(defn remainder-sequence [n d]
(let [[q r] ((juxt quot rem) n d)]
(if (= r 0) nil
(lazy-seq (cons r (remainder-sequence d r))))))
(defn gcd [n d]
(cond (< (Math/abs n) (Math/abs d)) (gcd d n)
(= 0 (rem n d)) d
:default (last (remainder-sequence n d))))
(gcd 100 32) ; returns 4

clojure laziness: prevent unneded mapcat results to realize

Consider a query function q that returns, with a delay, some (let say ten) results.
Delay function:
(defn dlay [x]
(do
(Thread/sleep 1500)
x))
Query function:
(defn q [pg]
(lazy-seq
(let [a [0 1 2 3 4 5 6 7 8 9 ]]
(println "q")
(map #(+ (* pg 10) %) (dlay a)))))
Wanted behaviour:
I would like to produce an infinite lazy sequence such that when I take a value only needed computations are evaluated
Wrong but explicative example:
(drop 29 (take 30 (mapcat q (range))))
If I'm not wrong, it needs to evaluate every sequence because it really doesn't now how long the sequences will be.
How would you obtain the correct behaviour?
My attempt to correct this behaviour:
(defn getq [coll n]
(nth
(nth coll (quot n 10))
(mod n 10)))
(defn results-seq []
(let [a (map q (range))]
(map (partial getq a)
(iterate inc 0)))) ; using iterate instead of range, this way i don't have a chunked sequence
But
(drop 43 (take 44 (results-seq)))
still realizes the "unneeded" q sequences.
Now, I verified that a is lazy, iterate and map should produce lazy sequences, so the problem must be with getq. But I can't understand really how it breaks my laziness...perhaps does nth realize things while walking through a sequence? If this would be true, is there a viable alternative in this case or my solution suffers from bad design?

find all subsets of an integer collection that sums to n

i'm trying to find a function that, given S a set of integer and I an integer, return all the subsets of S that sum to I
is there such a function somewhere in clojure-contrib or in another library ?
if no, could anyone please give me some hints to write it the clojure way?
Isn't this the subset sum problem, a classic NP-complete problem?
In which case, I'd just generate every possible distinct subset of S, and see which subsets sums to I.
I think it is the subset sum problem, as #MrBones suggests. Here's a brute force attempt using https://github.com/clojure/math.combinatorics (lein: [org.clojure/math.combinatorics "0.0.7"]):
(require '[clojure.math.combinatorics :as c])
(defn subset-sum [s n]
"Return all the subsets of s that sum to n."
(->> (c/subsets s)
(filter #(pos? (count %))) ; ignore empty set since (+) == 0
(filter #(= n (apply + %)))))
(def s #{1 2 45 -3 0 14 25 3 7 15})
(subset-sum s 13)
; ((1 -3 15) (2 -3 14) (0 1 -3 15) (0 2 -3 14) (1 2 3 7) (0 1 2 3 7))
(subset-sum s 0)
; ((0) (-3 3) (0 -3 3) (1 2 -3) (0 1 2 -3))
These "subsets" are just lists. Could convert back to sets, but I didn't bother.
You can generate the subsets of a set like this:
(defn subsets [s]
(if (seq s)
(let [f (first s), srs (subsets (disj s f))]
(concat srs (map #(conj % f) srs)))
(list #{})))
The idea is to choose an element from the set s: the first, f, will do. Then we recursively find the subsets of everything else, srs. srs comprises all the subsets without f. By adding f to each of them, we get all the subsets with f. And together, that's the lot. Finally, if we can't choose an element because there aren't any, the only subset is the empty one.
All that remains to do is to filter out from all the subsets the ones that sum to n. A function to test this is
(fn [s] (= n (reduce + s)))
It is not worth naming.
Putting this together, the function we want is
(defn subsets-summing-to [s n]
(filter
(fn [xs] (= n (reduce + xs)))
(subsets s)))
Notes
Since the answer is a sequence of sets, we can make it lazier by changing concat into lazy-cat. map is lazy anyway.
We may appear to be generating a lot of sets, but remember that they share storage: the space cost of keeping another set differing by a single element is (almost) constant.
The empty set sums to zero in Clojure arithmetic.

Cleaning up Clojure function

Coming from imperative programming languages, I am trying to wrap my head around Clojure in hopes of using it for its multi-threading capability.
One of the problems from 4Clojure is to write a function that generates a list of Fibonacci numbers of length N, for N > 1. I wrote a function, but given my limited background, I would like some input on whether or not this is the best Clojure way of doing things. The code is as follows:
(fn fib [x] (cond
(= x 2) '(1 1)
:else (reverse (conj (reverse (fib (dec x))) (+ (last (fib (dec x))) (-> (fib (dec x)) reverse rest first))))
))
The most idiomatic "functional" way would probably be to create an infinite lazy sequence of fibonacci numbers and then extract the first n values, i.e.:
(take n some-infinite-fibonacci-sequence)
The following link has some very interesting ways of generating fibonnaci sequences along those lines:
http://en.wikibooks.org/wiki/Clojure_Programming/Examples/Lazy_Fibonacci
Finally here is another fun implementation to consider:
(defn fib [n]
(let [next-fib-pair (fn [[a b]] [b (+ a b)])
fib-pairs (iterate next-fib-pair [1 1])
all-fibs (map first fib-pairs)]
(take n all-fibs)))
(fib 6)
=> (1 1 2 3 5 8)
It's not as concise as it could be, but demonstrates quite nicely the use of Clojure's destructuring, lazy sequences and higher order functions to solve the problem.
Here is a version of Fibonacci that I like very much (I took the implementation from the clojure wikibook: http://en.wikibooks.org/wiki/Clojure_Programming)
(def fib-seq (lazy-cat [0 1] (map + (rest fib-seq) fib-seq)))
It works like this: Imagine you already have the infinite sequence of Fibonacci numbers. If you take the tail of the sequence and add it element-wise to the original sequence you get the (tail of the tail of the) Fibonacci sequence
0 1 1 2 3 5 8 ...
1 1 2 3 5 8 ...
-----------------
1 2 3 5 8 13 ...
thus you can use this to calculate the sequence. You need two initial elements [0 1] (or [1 1] depending on where you start the sequence) and then you just map over the two sequences adding the elements. Note that you need lazy sequences here.
I think this is the most elegant and (at least for me) mind stretching implementation.
Edit: The fib function is
(defn fib [n] (nth fib-seq n))
Here's one way of doing it that gives you a bit of exposure to lazy sequences, although it's certainly not really an optimal way of computing the Fibonacci sequence.
Given the definition of the Fibonacci sequence, we can see that it's built up by repeatedly applying the same rule to the base case of '(1 1). The Clojure function iterate sounds like it would be good for this:
user> (doc iterate)
-------------------------
clojure.core/iterate
([f x])
Returns a lazy sequence of x, (f x), (f (f x)) etc. f must be free of side-effects
So for our function we'd want something that takes the values we've computed so far, sums the two most recent, and returns a list of the new value and all the old values.
(fn [[x y & _ :as all]] (cons (+ x y) all))
The argument list here just means that x and y will be bound to the first two values from the list passed as the function's argument, a list containing all arguments after the first two will be bound to _, and the original list passed as an argument to the function can be referred to via all.
Now, iterate will return an infinite sequence of intermediate values, so for our case we'll want to wrap it in something that'll just return the value we're interested in; lazy evaluation will stop the entire infinite sequence being evaluated.
(defn fib [n]
(nth (iterate (fn [[x y & _ :as all]] (cons (+ x y) all)) '(1 1)) (- n 2)))
Note also that this returns the result in the opposite order to your implementation; it's a simple matter to fix this with reverse of course.
Edit: or indeed, as amalloy says, by using vectors:
(defn fib [n]
(nth (iterate (fn [all]
(conj all (->> all (take-last 2) (apply +)))) [1 1])
(- n 2)))
See Christophe Grand's Fibonacci solution in Programming Clojure by Stu Halloway. It is the most elegant solution I have seen.
(defn fibo [] (map first (iterate (fn [[a b]] [b (+ a b)]) [0 1])))
(take 10 (fibo))
Also see
How can I generate the Fibonacci sequence using Clojure?

Why isn't this running in constant space (and how do I make it so it does)?

I'm doing Project Euler to learn Clojure.
The purpose of this function is to calculate the lcm of the set of integers from 1 to m.
(lcm 10) returns 2520
This is a rather brute-force way of doing this. In theory, we go through each number from m to infinity and return the first number for which all values 1 through m divide that number evenly.
If I understand what 'lazy' means correctly (and if I am truly being lazy here), then this should run in constant space. There's no need to hold more than the list of numbers from 1 to m and 1 value from the infinite set of numbers that we're looping through.
I am, however, getting a java.lang.OutOfMemoryError: Java heap space at m values greater than 17.
(defn lcm [m]
(let [xs (range 1 (+ m 1))]
(first (for [x (iterate inc m) :when
(empty?
(filter (fn [y] (not (factor-of? y x))) xs))] x))))
Thanks!
As far as I can tell, your code is in fact lazy (also in the sense that it's in no hurry to reach the answer... ;-) -- see below), however it generates piles upon piles upon piles of garbage. Just consider that (lvm 17) amounts to asking for over 1.2 million lazy filtering operations on (range 1 18). I can't reproduce your out-of-memory problem, but I'd tentatively conjecture it might be an issue with your memory & GC settings.
Now although I realise that your question is not actually about algorithms, note that the production of all that garbage, the carrying out of all those filtering operations etc. not only utterly destroy the space complexity of this, but the time complexity as well. Why not use an actual LCM algorithm? Like the one exploiting lcm(X) = gcd(X) / product(X) for X a set of natural numbers. The GCD can be calculated with Euclid's algorithm.
(defn gcd
([x y]
(cond (zero? x) y
(< y x) (recur y x)
:else (recur x (rem y x))))
([x y & zs]
(reduce gcd (gcd x y) zs)))
(defn lcm
([x y] (/ (* x y) (gcd x y)))
([x y & zs]
(reduce lcm (lcm x y) zs)))
With the above in place, (apply lcm (range 1 18)) will give you your answer in short order.
I'm getting the same OutOfMemoryError on Clojure 1.1, but not on 1.2.
I imagine it's a bug in 1.1 where for holds on to more garbage than necessary.
So I suppose the fix is to upgrade Clojure. Or to use Michal's algorithm for an answer in a fraction of the time.
While I accept that this is acknowledged to be brute force, I shiver at the idea. For the set of consecutive numbers that runs up to 50, the lcm is 3099044504245996706400. Do you really want a loop that tests every number up to that point to identify the lcm of the set?
Other schemes would seem far better. For example, factor each member of the sequence, then simply count the maximum number of occurrences of each prime factor. Or, build a simple prime sieve, that simultaneously factors the set of numbers, while allowing you to count factor multiplicities.
These schemes can be written to be highly efficient. Or you can use brute force. The latter seems silly here.
Michal is correct about the problem. A sieve will be a little bit faster, since no gcd calculations are needed:
EDIT: This code is actually horribly wrong. I've left it here to remind myself to check my work twice if I have such a hangover.
(ns euler (:use clojure.contrib.math))
(defn sieve
([m] (sieve m (vec (repeat (+ 1 m) true)) 2))
([m sieve-vector factor]
(if (< factor m)
(if (sieve-vector factor)
(recur m
(reduce #(assoc %1 %2 false)
sieve-vector
(range (* 2 factor) (+ 1 m) factor))
(inc factor))
(recur m sieve-vector (inc factor)))
sieve-vector)))
(defn primes [m] (map key (filter val (seq (zipmap (range 2 m) (subvec (sieve m) 2))))))
(defn prime-Powers-LCM [m] (zipmap (primes m) (map #(quot m %) (primes m))))
(defn LCM [m] (reduce #(* %1 (expt (key %2) (val %2))) 1 (seq (prime-Powers-LCM m))))