Why Texture Unit number is limited in OpenGL? - opengl

As I understand we store texture in GPU memory with glTexImage2D function and there is no limited number theoretically. However, when we try to use them there is a limitation which is 32 texture units GL_TEXTURE0 to GL_TEXTURE31. Why is there this limitation?

The limitation in question (which as mentioned in the comments, is the wrong limit) is on the number of textures that can be used with a single rendering command at one time. Each shader stage has its own limit on the number of textures it can access.
This limitation exists because hardware is not unlimited in its capabilities. Textures require resources, and some hardware has limits on how many of these resources can be used at once. Just like hardware has limits on the number of uniforms a shader stage can have and so forth.
Now, there is some hardware which is capable of accessing texture data in a more low-level way. This functionality is exposed via the ARB_bindless_texture. It's not a core feature because not all recent, GL 4.x-capable hardware can support it.

Related

What is GPU driven rendering? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 3 years ago.
Improve this question
Nowadays I'm hearing from different places about the so called GPU driven rendering which is a new paradigm of rendering which doesn't require draw calls at all, and that it is supported by the new versions of OpenGL and Vulkan APIs. Can someone explain how it actually works on conceptual level and what are the main differences with the traditional approach?
Overview
In order to render a scene, a number of things have to happen. You need to walk your scene graph to figure out which objects exist. For each object which exists, you now need to determine if it is visible. For each object which is visible, you need to figure out where its geometry is stored, which textures and buffers will be used to render that object, which shaders to use to render the object, and so forth. Then you render that object.
The "traditional" method handling this is for the CPU to handle this process. The scene graph lives in CPU-accessible memory. The CPU does visibility culling on that scene graph. The CPU takes the visible objects and access some CPU data about the geometry (OpenGL buffer object and texture names, Vulkan descriptor sets and VkBuffers, etc), shaders, etc, transferring this as state data to the GPU. Then the CPU issues a GPU command to render that object with that state.
Now, if we go back farther, the most "traditional" method doesn't involve a GPU at all. The CPU would just take this mesh and texture data, do vertex transformations, rasterizatization, and so forth, producing an image in CPU memory. However, we started off-loading some of this to a separate processor. We started with the rasterization stuff (the earliest graphics chips were just rasterizers; the CPU did all the vertex T&L). Then we incorporated the vertex transformations into the GPU. When we did that, we started having to store vertex data in GPU accessible memory so the GPU could read it on its own time.
We did all of that, off-loading these things to a separate processor for two reasons: the GPU was (much) faster at it, and the CPU can now spend its time doing something else.
GPU driven rendering is just the next stage in that process. We went from no GPU, to rasterization GPU, to vertex GPU, and now to scene-graph-level GPU. The "traditional" method offloads how to render to the GPU; GPU driven rendering offloads the decision of what to render.
Mechanism
Now, the reason we haven't been doing this all along is because the basic rendering commands all take data that comes from the CPU. glDrawArrays/Elements takes a number of parameters from the CPU. So even if we used the GPU to generate that data, we would need a full GPU/CPU synchronization so that the CPU could read the data... and give it right back to the GPU.
That's not helpful.
OpenGL 4 gave us indirect rendering of various forms. The basic idea is that, instead of taking those parameters from a function call, they're just data stored in GPU memory. The CPU still has to make a function call to start the rendering operation, but the actual parameters to that call are just data stored in GPU memory.
The other half of that requires the ability of the GPU to write data to GPU memory in a format that indirect rendering can read. Historically, data on GPUs goes in one direction: data gets read for the purpose of being converted into pixels in a render target. We need a way to generate semi-arbitrary data from other arbitrary data, all on the GPU.
The older mechanism for this was to (ab)use transform feedback for this purpose, but nowadays we just use SSBOs or failing that, image load/store. Compute shaders help here as well, since they are designed to be outside of the standard rendering pipeline and therefore are not bound to its limitations.
The ideal form of GPU-driven rendering makes the scene-graph part of the rendering operation. There are lesser forms, such as having the GPU do nothing more than per-object viewport culling. But let's look at the most ideal process. From the perspective of the CPU, this looks like:
Update the scene graph in GPU memory.
Issue one or more compute shaders that generate multi-draw indirect rendering commands.
Issue a single multi-draw indirect call that draws everything.
Now of course, there's no such thing as a free lunch. Doing full scene graph processing on the GPU requires building your scene graph in a way that is efficient for GPU processing. Even more importantly, visibility culling mechanisms have to be engineered with efficient GPU processing in mind. That's complexity I'm not going to address here.
Implementation
Instead, let's look at the nuts-and-bolts of making the drawing part work. We have to sort out a lot of things here.
See, the indirect rendering command is still a regular old rendering command. While the multi-draw form draws multiple distinct "objects", it's still one CPU rendering command. This means that, for the duration of this command, all rendering state is fixed.
So everything under the purview of this multi-draw operation must use the same shader, bound buffers&textures, blending parameters, stencil state, and so forth. This makes implementing a GPU-driven rendering operation a bit complicated.
State and Shaders
If you need blending, or similar state-based differences in rendering operations, then you are going to have to issue another rendering command. So in the blending case, your scene-graph processing is going to have to compute multiple sets of rendering commands, with each set being for a specific set of blending modes. You may also need to have this system sort transparent objects (unless you're rendering them with an OIT mechanism). So instead of having just one rendering command, you have a small number of them.
But the point of this exercise however isn't to have only one rendering command; the point is that the number of CPU rendering commands does not change with regard to how much stuff you're rendering. It shouldn't matter how many objects are in the scene; the CPU will be issuing the same number of rendering commands.
When it comes to shaders, this technique requires some degree of "ubershader" style: where you have a very few number of rather flexible shaders. You want to parameterize your shader rather than having dozens or hundreds of them.
However things were probably going to fall out that way anyway, particularly with regard to deferred rendering. The geometry pass of deferred renderers tends to use the same kind of processing, since they're just doing vertex transformation and extracting material parameters. The biggest difference usually is with regard to doing skinned vs. non-skinned rendering, but that's really only 2 shader variations. Which you can handle similarly to the blending case.
Speaking of deferred rendering, the GPU driven processes can also walk the graph of lights, thus generating the draw calls and rendering data for the lighting passes. So while the lighting pass will need a separate draw call, it will still only need a single multidraw call regardless of the number of lights.
Buffers
Here's where things start to get interesting. See, if the GPU is processing the scene graph, that means that the GPU needs to somehow associate a particular draw within the multi-draw command with the resources that particular draw needs. It may also need to put the data into those resources, like the matrix transforms for a given object and so forth.
Oh, and you also somehow need to tie the vertex input data to a particular sub-draw.
That last part is probably the most complicated. The buffers which OpenGL/Vulkan's standard vertex input method pull from are state data; they cannot change between sub-draws of a multi-draw operation.
Your best bet is to try to put every object's data in the same buffer object, using the same vertex format. Essentially, you have one gigantic array of vertex data. You can then use the drawing parameters for the sub-draw to select which parts of the buffer(s) to use.
But what do we do about per-object data (matrices, etc), things you would typically use a UBO or global uniform for? How do you effectively change the buffer binding state within a CPU rendering command?
Well... you can't. So you cheat.
First, you realize that SSBOs can be arbitrarily large. So you don't really need to change buffer binding state. What you need is a single SSBO that contains everyone's per-object data. For each vertex, the VS simply needs to pick out the correct data for that sub-draw from the giant list of data.
This is done via a special vertex shader input: gl_DrawID. When you issue a multi-draw command, the VS gets an input value that represents the index of this sub-draw operation within the multidraw command. So you can use gl_DrawID to index into a table of per-object data to fetch the appropriate data for that particular object.
This also means that the compute shader which generates this sub-draw also needs use the index of that sub-draw to define where in the array to put the per-object data for that sub-draw. So the CS that writes a sub-draw also needs to be responsible for setting up the per-object data that matches the sub-draw.
Textures
OpenGL and Vulkan have pretty strict limits on the number of textures that can be bound. Well actually those limits are quite large relative to traditional rendering, but in GPU driven rendering land, we need a single CPU rendering call to potentially access any texture. That's harder.
Now, we do have gl_DrawID; coupled with the table mentioned above, we can retrieve per-object data. So: how do we convert this to a texture?
There are multiple ways. We could put a bunch of our 2D textures into an array texture. We can then use gl_DrawID to fetch an array index from our SSBO of per-object data; that array index becomes the array layer we use to fetch "our" texture. Note that we don't use gl_DrawID directly because multiple different sub-draws could use the same texture, and because the GPU code that sets up the array of draw calls does not control the order in which textures appear in our array.
Array textures have obvious downsides, the most notable of which is that we must respect the limitations of an array texture. All elements in the array must use the same image format. They must all be of the same size. Also, there are limits on the number of array layers in an array texture, so you might encounter them.
The alternatives to array textures differ along API lines, though they basically boil down to the same thing: convert a number into a texture.
In OpenGL land, you can employ bindless texturing (for hardware that supports it). This system provides a mechanism that allows one to generate a 64-bit integer handle which represents a particular texture, pass this handle to the GPU (since it is just an integer, use whatever mechanism you want), and then convert this 64-bit handle into a sampler type. So you use gl_DrawID to fetch a 64-bit handle from the per-object data, then convert that into a sampler of the appropriate type and use it.
In Vulkan land, you can employ sampler arrays (for hardware that supports it). Note that these are not array textures; in GLSL, these are sampler types which are arrayed: uniform sampler2D my_2D_textures[6000];. In OpenGL, this would be a compile error because each array element represents a distinct bind point for a texture, and you cannot have 6000 distinct bind points. In Vulkan, an arrayed sampler only represents a single descriptor, no matter how many elements are in that array. Vulkan implementations have limits on how many elements there can be in such arrays, but hardware that supports the feature you need to employ this (shaderSampledImageArrayDynamicIndexing) will typically offer a generous limit.
So your shader uses gl_DrawID to get an index from the per-object data. The index is turned into a sampler by just fetching the value from the sampler array. The only limitation for textures in that arrayed descriptor is that they must all be of the same type and basic data format (floating-point 2D for sampler2D, unsigned integer cubemap for usamplerCube, etc). The specifics of formats, texture sizes, mipmap counts, and the like are all irrelevant.
And if you're concerned about the cost difference of Vulkan's array of samplers compared to OpenGL's bindless, don't be; implementations of bindless are just doing this behind your back anyway.

What is the reasoning behind OpenGL texture units as opposed to regular buffers and uniforms?

I am very new to the OpenGL API and just discovered textures and how to use them. The generated texture buffers are not bound in the same way as regular uniforms are bound and instead use glActiveTexture, followed by a bind rather than just supplying the texture to the shaders via glUniform as we do with other constants.
What is the reasoning behind this convention?
The only reason I can think of is to utilize the graphics card's full potential and texture processing capabilities instead of just binding buffers directly. Is this correct reasoning, or is it simply the way the API was implemented?
No reasoning is given on the official wiki, just says that it's weird: "Binding textures for use in OpenGL is a little weird" https://www.khronos.org/opengl/wiki/Texture
Your question can be interpreted in two ways.
"Why do we bind textures to the context rather than to the shader?"
Because that would make it needlessly difficult to have multiple shaders use the same textures. Note that pretty much no graphics API directly attaches the texture to the program. Not D3D of any version, not Metal, nor even Vulkan.
Textures are resources used by shaders. But they are not part of the shader.
"Why do we treat textures differently from a general array of values?"
In modern OpenGL, shaders have access to several different kinds of resources: UBOs, SSBOs, textures, and images. Each of these kinds of resources ultimately represents a potentially distinct part of the graphics hardware.
A storage block is not just a uniform block that can be bigger. Storage buffers represent the shader doing global memory accesses, while uniform blocks are often copied directly into the shader execution units. In the latter case, accessing their data is much faster, but that also means that you're limited by how much storage those execution units can have.
Now, this is not true for all hardware (AMD's GCN hardware treats the two almost identically, which is why their UBO limits are so large). But it is true of much hardware.
Textures are even more complicated, because implementations need to be able to store their data in an optimal way for performance reasons. As such, texture storage formats are opaque. They're even opaque in ostensibly low-level APIs like Vulkan. Oh sure, linear formats exist, but implementations aren't required to let you read from them at all.
So textures are not just constant arrays.
You are comparing two completely different things
A texture object can (somehow) be compared to a buffer object. The texture is bound by a combination of glActiveTexture and glBindTexture to a texture unit, whereas a buffer is bound by glBindBuffer which is kind-off similar.
A texture sampler uniform is a uniform in the shader and should thus be compared with other uniforms. This sampler is set by a glUniform1i call.

Do compute shaders in OpenGl have instruction limits?

I've looked everywhere and couldn't find a definitive answer
vertex and fragment shaders do in fact have a limit on the maximum size of the shader and number of instructions, but i've never heard about those limitations on a compute shader
Since I need to port an existing CPU Path tracer with many different BRDFs I need to know in advance if this could be an issue and move to CUDA or if OpenGL's compute shaders could handle the work just fine
There are always limits. But these limits are implementation-defined; they're not expressed in any a-priori determinable way. So the only way you'll find out what they are is to cross them.
CUDA has limits too.

Storing many small textures in OpenGL

I'm building an OpenGL app with many small textures. I estimate that I will have a few hundred
textures on the screen at any given moment.
Can anyone recommend best practices for storing all these textures in memory so as to avoid potential performance issues?
I'm also interested in understanding how OpenGL manages textures. Will OpenGL try to store them into GPU memory? If so, how much GPU memory can I count on? If not, how often does OpenGL pass the textures from application memory to the GPU, and should I be worried about latency when this happens?
I'm working with OpenGL 3.3. I intend to use only modern features, i.e. no immediate mode stuff.
If you have a large number of small textures, you would be best off combining them into a single large texture with each of the small textures occupying known sub-regions (a technique sometimes called a "texture atlas"). Switching which texture is bound can be expensive, in that it will limit how much of your drawing you can batch together. By combining into one you can minimize the number of times you have to rebind. Alternatively, if your textures are very similarly sized, you might look into using an array texture (introduction here).
OpenGL does try to store your textures in GPU memory insofar as possible, but I do not believe that it is guaranteed to actually reside on the graphics card.
The amount of GPU memory you have available will be dependent on the hardware you run on and the other demands on the system at the time you run. What exactly "GPU memory" means will vary across machines, it can be discrete and used only be the GPU, shared with main memory, or some combination of the two.
Assuming your application is not constantly modifying the textures you should not need to be particularly concerned about latency issues. You will provide OpenGL with the textures once and from that point forward it will manage their location in memory. Assuming you don't need more texture data than can easily fit in GPU memory every frame, it shouldn't be cause for concern. If you do need to use a large amount of texture data, try to ensure that you batch all use of a certain texture together to minimize the number of round trips the data has to make. You can also look into the built-in texture compression facilities, supplying something like GL_COMPRESSED_RGBA to your call to glTexImage2D, see the man page for more details.
Of course, as always, your best bet will be to test these things yourself in a situation close to your expected use case. OpenGL provides a good number of guarantees, but much will vary depending on the particular implementation.

Shader limitations

I've been tuning my game's renderer for my laptop, which has a Radeon HD 3850. This chip has a decent amount of processing power, but rather limited memory bandwidth, so I've been trying to move more shader work into fewer passes.
Previously, I was using a simple multipass model:
Bind and clear FP16 blend buffer (with depth buffer)
Depth-only pass
For each light, do an additive light pass
Bind backbuffer, use blend buffer as a texture
Tone mapping pass
In an attempt to improve the performance of this method, I wrote a new rendering path that counts the number and type of lights to dynamically build custom GLSL shaders. These shaders accept all light parameters as uniforms and do all lighting in a single pass. I was expecting to run into some kind of limit, so I tested it first with one light. Then three. Then twenty-one, with no errors or artifacts, and with great performance. This leads me to my actual questions:
Is the maximum number of uniforms retrievable?
Is this method viable on older hardware, or are uniforms much more limited?
If I push it too far, at what point will I get an error? Shader compilation? Program linking? Using the program?
Shader uniforms are typically implemented by the hardware as registers (or sometimes by patching the values into shader microcode directly, e.g. nVidia fragment shaders). The limit is therefore highly implementation dependent.
You can retrieve the maximums by querying GL_MAX_VERTEX_UNIFORM_COMPONENTS_ARB and GL_MAX_FRAGMENT_UNIFORM_COMPONENTS_ARB for vertex and fragment shaders respectively.
See 4.3.5 Uniform of The OpenGLĀ® Shading Language specs:
There is an implementation dependent limit on the amount of storage for uniforms that can be used for
each type of shader and if this is exceeded it will cause a compile-time or link-time error. Uniform
variables that are declared but not used do not count against this limit.
It will fail at link or compile-time, but not using the program.
For how to get the max number supported by your OpenGL implementation, see moonshadow's answer.
For an idea of where the limit actually is for arbitrary GPUs, I'd recommend looking at which DX version that GPU supports.
DX9 level hardware:
vs2_0 supports 256 vec4. ps2_0 supports 32 vec4.
vs3_0 is 256 vec4, ps3_0 is 224 vec4.
DX10 level hardware:
vs4_0/ps4_0 is a minumum of 4096 constants per constant buffer - and you can have 16 of them.
In short, It's unlikely you'll run out with anything that is DX10 based.
I guess the maximum number of uniforms is determined by the amount of video memory,
as it's just a variable. Normal varaibles on the cpu are limited by your RAM too right?