C++11 execute block in same thread but with timeout - c++

Lets say we have block of code, we just cant modify it, but we want to break it, exit this piece of code when it runs too long (x miliseconds)
Pseudo code
Throw exception after (500ms) {
auto result = Do some risky job, for example test string by regex with catastrophic backtracking risk.
}
catch ( Exception e ) {
//...
}
Every thing has to be still in the same thread.
Is it possible with c++11 or with some other standard?

In general, C++ does not have a way to induce an exception to be thrown in code without having code that throws an exception in the code, or in code that code calls.
You could embed an ASL, a scripting language, or a separate process. All 3 could be designed to be interrupted (processes, for example, can be killed).
Boost has interruptable threads. How it works is that it has hooks in the boost synchronization primitives (mutexes etc), so when you interact with them it checks if your thread has been told to halt. If so, it then throws an exception.
An easy, partial solution is to
std::vector<std::future<R()>> futures;
futures.push_back( std::async( std::launch::async, []()->R{ /* code */ ) );
using std::chrono::literals;
if (futures.back().wait_for(500ms)==std::future_status::ready) {
auto r = futures.back().get();
futures.pop_back();
clear_ready_futures(futures); // wait for 0ms and if so, discard and destroy
return r;
}
// failed case
here our futures stores the defunct futures (threads, in effect). clear_ready_futures cleans any old ones that have finished.
Tasks that have started will still run to completion, stealing cpu, but the calling code does not have to wait for them.

FreeBSD (as well as all other linux types) have "SigAlarm": Reference here
This will allow you to set up a timer; and when the event is triggered, your current code is interrupted, and signal handler called, setup by your previous call to signal
This will allow you to set a flag, which your ohh so very risky thread can check against; and then throw if required.
It won't allow you to raise exceptions directly in the way you want, but it will allow you to keep the application single threaded.

Related

Is there a reliable way to force a thread to stop in C++? (especially detached ones)

I am recently working with threads in C++11. now I am thinking about how to force stop a thread. I couldn't find it on stackoverflow, and also tried these.
One variable each thread : not so reliable
return in the main thread : I have to force quit only one not all
and I have no more ideas. I have heard about WinAPI, but I want a portable solution. (that also means I wont use fork())
Can you please give me a solution of this? I really want to do it.
One of the biggest problems with force closing a thread in C++ is the RAII violation.
When a function (and subsequently, a thread), gracefully finishes, everything it held is gracefully cleaned up by the destructors of the objects the functions/threads created.
Memory gets freed,
OS resources (handles, file descriptors etc.) are closed and returned to the OS
Locks are getting unlocked so other threads can use the shared resources they protect.
other important tasks are preformed (such as updating counters, logging, etc.).
If you brutally kill a thread (aka by TerminateThread on Windows, for example), non of these actually happen, and the program is left in a very dangerous state.
A (not-so) common pattern that can be used is to register a "cancellation token" on which you can monitor and gracefully shut the thread if other thread asks so (a la TPL/PPL). something like
auto cancellationToken = std::make_shared<std::atomic_bool>();
cancellationToken->store(false);
class ThreadTerminator : public std::exception{/*...*/};
std::thread thread([cancellationToken]{
try{
//... do things
if (cancellationToken->load()){
//somone asked the thred to close
throw ThreadTerminator ();
}
//do other things...
if (cancellationToken->load()){
//somone asked the thred to close
throw ThreadTerminator ();
}
//...
}catch(ThreadTerminator){
return;
}
});
Usually, one doesn't even open a new thread for a small task, it's better to think of a multi threaded application as a collection of concurrent tasks and parallel algorithms. one opens a new thread for some long ongoing background task which is usually performed in some sort of a loop (such as, accepting incoming connections).
So, anyway, the cases for asking a small task to be cancelled are rare anyway.
tldr:
Is there a reliable way to force a thread to stop in C++?
No.
Here is my approach for most of my designs:
Think of 2 kinds of Threads:
1) primary - I call main.
2) subsequent - any thread launched by main or any subsequent thread
When I launch std::thread's in C++ (or posix threads in C++):
a) I provide all subsequent threads access to a boolean "done", initialized to false. This bool can be directly passed from main (or indirectly through other mechanisms).
b) All my threads have a regular 'heartbeat', typically with a posix semaphore or std::mutex, sometimes with just a timer, and sometimes simply during normal thread operation.
Note that a 'heartbeat' is not polling.
Also note that checking a boolean is really cheap.
Thus, whenever main wants to shut down, it merely sets done to true and 'join's with the subsequent threads.
On occasion main will also signal any semaphore (prior to join) that a subsequent thread might be waiting on.
And sometimes, a subsequent thread has to let its own subsequent thread know it is time to end.
Here is an example -
main launching a subsequent thread:
std::thread* thrd =
new std::thread(&MyClass_t::threadStart, this, id);
assert(nullptr != thrd);
Note that I pass the this pointer to this launch ... within this class instance is a boolean m_done.
Main Commanding shutdown:
In main thread, of course, all I do is
m_done = true;
In a subsequent thread (and in this design, all are using the same critical section):
void threadStart(uint id) {
std::cout << id << " " << std::flush; // thread announce
do {
doOnce(id); // the critical section is in this method
}while(!m_done); // exit when done
}
And finally, at an outer scope, main invokes the join.
Perhaps the take away is - when designing a threaded system, you should also design the system shut down, not just add it on.

C++ SetConsoleCtrlHandler, passing data for cleanup without globals

I'm trying to check when the console is closed through the close button on Windows. I read about SetConsoleCtrlHandler and I thought I'd use that, but there's some cleanup I want to do in my main function. I'll make a small example describing what I want to do for my larger program.
BOOL CtrlHandler( DWORD fdwCtrlType )
{
switch( fdwCtrlType )
{
//Cleanup exit
case CTRL_CLOSE_EVENT:
bool* programIsOn = &???; //How do I pass the address to that variable in this function?
*programIsOn = false;
return( TRUE );
default:
return FALSE;
}
}
int main(){
MyObject obj = new MyObject();
bool programIsOn = true;
//How do I pass the address of programIsOn here?
if(!SetConsoleCtrlHandler( (PHANDLER_ROUTINE) CtrlHandler, TRUE )){
cout << "Could not set CtrlHandler. Exiting." << endl;
return 0;
}
while(programIsOn){
//...
}
//CLEANUP HERE
delete obj;
return 0;
}
I want to perform cleanup when my program closes via the console close event, however if I just close the console the main function doesn't terminate and is forced to stop. I thought of passing in programIsOn's address to the CtrlHandler callback but I have no idea how to do this without using a global variable.
TL;DR: Proper handling of this control signal is complicated. Don't bother with any 'clean-up' unless it's absolutely necessary.
The system creates a new thread (see the Remarks) in your application, which is then used to execute the handler function you registered. That immediately causes a few issues and forces you in a particular design direction.
Namely, your program suddenly became multi-threaded, with all the complications that brings. Just setting a 'program should stop' (global) boolean variable to true in the handler is not going to work; this has to be done in a thread-aware manner.
Another complication this handler brings is that the moment it returns the program is terminated as per a call to ExitProcess. This means that the handler should wait for the program to finish, again in a thread-aware manner. Queue the next complication, where the OS gives you only 10 seconds to respond to the handler before the program is terminated anyway.
The biggest issue here, I think, is that all these issues force your program to be designed in a very particular way that potentially permeates every nook and cranny of your code.
It's not necessary for your program to clean up any handles, objects, locks or memory it uses: these will all be cleaned up by Windows when your program exits.
Therefore, your clean-up code should consists solely of those operations that need to happen and otherwise wouldn't happen, such as write the end of a log file, delete temporary files, etc.
In fact, it is recommended to not perform such clean-up, as it only slows down the closing of the application and can be so hard to get right in 'unexpected termination' cases; The Old New Thing has a wonderful post about it that's also relevant to this situation.
There are two general choices here for the way to handle the remaining clean-up:
The handler routine does all the clean-up, or
the main application does all the clean-up.
Number 1 has the issue that it's very hard to determine what clean-up to perform (as this depends on where the main program is currently executing) and it's doing so 'while the engine is still running'. Number 2 means that every piece of code in the the main application needs to be aware of the possibility of termination and have short-circuit code to handle such.
So if you truly must, necessarily, absolutely, perform some additional clean-up, choose method 2. Add a global variable, preferably a std::atomic<bool> if C++11 is available to you, and use that to track whether or not the program should exit. Have the handler set it to true
// Shared global variable to track forced termination.
std::atomic<bool> programShouldExit = false;
// In the console handler:
BOOL WINAPI CtrlHandler( DWORD fdwCtrlType )
{
...
programShouldExit = true;
Sleep(10000); // Sleep for 10 seconds; after this returns the program will be terminated if it hasn't already.
}
// In the main application, regular checks should be made:
if (programShouldExit.load())
{
// Short-circuit execution, such as return from function, throw exception, etc.
}
Where you can pick your favourite short-circuiting method, for instance throwing an exception and using the RAII pattern to guard resources.
In the console handler, we sleep for as long as we think we can get away with (it doesn't really matter); the hope is that the main thread will have exited by then causing the application to exit. If not, either the sleep ends, the handler returns and the application is closed, or the OS became impatient and killed the process.
Conclusion: Don't bother with clean-up. Even if there is something you prefer to have done, such as deleting temporary files, I'd recommend you don't. It's truly not worth the hassle (but that's my opinion). If you really must, then use thread-safe means to notify the main thread that it must exit. Modify all longer-running code to handle the exit status and all other code to handle the failure of the longer-running code. Exceptions and RAII can be used to make this more manageable, for instance.
And this is why I feel that it's a very poor design choice, born from legacy code. Just being able to handle an 'exit request' requires you to jump through hoops.

cancelling a search using threads

I am new to multi-threading. I am using c++ on unix.
In the code below, runSearch() takes a long time and I want to be able to kill the search as soon as "cancel == true". The function cancelSearch is called by another thread.
What is the best way to solve this problem?
Thanks you..
------------------This is the existing code-------------------------
struct SearchTask : public Runnable
{
bool cancel = false;
void cancelSearch()
{
cancel = true;
}
void run()
{
cancel = false;
runSearch();
if (cancel == true)
{
return;
}
//...more steps.
}
}
EDIT: To make it more clear, say runSearch() takes 10 mins to run. After 1 min, cancel==true, then I want to exit out of run() immediately rather than waiting another 9 more mins for runSearch() to complete.
You'll need to keep checking the flag throughout the search operation. Something like this:
void run()
{
cancel = false;
while (!cancel)
{
runSearch();
//do your thread stuff...
}
}
You have mentioned that you cannot modify runSearch(). With pthreads there's a pthread_setcancelstate() function, however I don't believe this is safe, especially with C++ code that expects RAII semantics.
Safe thread cancellation must be cooperative. The code that gets canceled must be aware of the cancellation and be able to clean up after itself. If the code is not designed to do this and is simply terminated then your program will probably exhibit undefined behavior.
For this reason C++'s std::thread does not offer any method of thread cancellation and instead the code must be written with explicit cancellation checks as other answers have shown.
Create a generic method that accepts a action / delegate. Have each step be something REALLY small and specific. Send the generic method a delegate / action of what you consider a "step". In the generic method detect if cancel is true and return if true. Because steps are small if it is cancelled it shouldn't take long for the thread to die.
That is the best advice I can give without any code of what the steps do.
Also note :
void run()
{
cancel = false;
runSearch();
while (!cancel)
{
//do your thread stuff...
}
}
Won't work because if what you are doing is not a iteration it will run the entire thread before checking for !cancel. Like I said if you can add more details on what the steps do it would easier to give you advice. When working with threads that you want to halt or kill, your best bet is to split your code into very small steps.
Basically you have to poll the cancel flag everywhere. There are other tricks you could use, but they are more platform-specific, like thread cancellation, or are not general enough like interrupts.
And cancel needs to be an atomic variable (like in std::atomic, or just protected it with a mutex) otherwise the compiler might just cache the value in a register and not see the update coming from another thread.
Reading the responses is right - just because you've called a blocking function in a thread doesn't mean it magically turns into a non-blocking call. The thread may not interrupt the rest of the program, but it still has to wait for the runSearch call to complete.
OK, so there are ways round this, but they're not necessarily safe to use.
You can kill a thread explicitly. On Windows you can use TerminateThread() that will kill the thread execution. Sound good right? Well, except that it is very dangerous to use - unless you know exactly what all the resources and calls are going on in the killed thread, you may find yourself with an app that refuses to work correctly next time round. If runSearch opens a DB connection for example, the TerminateThread call will not close it. Same applies to memory, loaded dlls, and all they use. Its designed for killing totally unresponsive threads so you can close a program and restart it.
Given the above, and the very strong recommendation you not use it, the next step is to call the runSearch in a external manner - if you run your blocking call in a separate process, then the process can be killed with a lot more certainty that you won't bugger everything else up. The process dies, clears up its memory, its heap, any loaded dlls, everything. So inside your thread, call CreateProcess and wait on the handle. You'll need some form on IPC (probably best not to use shared memory as it can be a nuisance to reset that when you kill the process) to transfer the results back to your main app. If you need to kill this process, call ExitProcess on it's handle (or exit in Linux)
Note that these exit calls require to be called inside the process, so you'll need to run a thread inside the process for your blocking call. You can terminate a process externally, but again, its dangerous - not nearly as dangerous as killing a thread, but you can still trip up occasionally. (use TerminateProcess or kill for this)

C++: How to call a synchronous library call asynchronously?

I am working with a library that has a blocking call that never times out if it does not succeed. I would like to be able to handle this error condition more gracefully. I know there must be a way to wrap the call in a worker thread (or some other type of delegate object), wait x amount of seconds, and then throw an exception if x amount of seconds have passed. I only need to do this for one function in the library. How do I go about implementing this? I see similar examples all over the net but none that are doing exactly what I'm trying to do. Thanks!
My answer is "do not attempt to do this".
Sure, you can probably find some hack that will appear to work in your particular case. But the race conditions here are very hard to fix.
The obvious approach is to have thread A make the blocking call, then set up thread B to kill A if a timeout expires.
But... What if the timeout expires at the same time A is returning from the blocking call? Specifically, what if B thinks it is time to kill A, then your OS scheduler decides to run A for a while, then your OS decides to run the B code that kills A?
Bottom line: You wind up killing A at some indeterminate point in its execution. (For example, maybe it just deducted $500 from the savings account but has not yet added $500 to the checking account. The possibilities are endless...)
OK, so you can have thread A exist for the sole purpose of running the library call, and then signal a condition or whatever when it finishes. At least it is possible to make this work in principle. But even then, what if the library itself has some internal state that gets left in an inconsistent state should A get killed at an inopportune moment?
There are good reasons asynchronous thread cancellation was omitted from the C++11 standard. Just say no. Fix the library routine. Whatever that costs, it is almost certainly cheaper in the long run than what you are attempting.
Using C++11 then launching a thread explicitly for that call could look like:
// API
T call(int param);
// asynchronous call with 42 as parameter
auto future = std::async(std::launch::async, call, 42);
// let's wait for 40 ms
auto constexpr duration = std::chrono::milliseconds(40);
if(future.wait_for(duration) == std::future_status::timeout) {
// We waited for 40ms and had a timeout, now what?
} else {
// Okay, result is available through future.get()
// if call(42) threw an exception then future.get() will
// rethrow that exception so it's worth doing even if T is void
future.get();
}
As you can see in case of a timeout you have a big problem as you're stuck with a blocked thread forever. This is arguably not a fault of the C++11 std::future: a fair number of thread abstractions will provide at best cooperative cancellation, and that would still not be enough to save you.
If you're not using C++11 then Boost.Thread has a very similar interface with boost::unique_future (where wait_for is instead timed_wait, and returns bool), although it doesn't have something akin to std::async so you have to do some of the busywork yourself (with e.g. boost::packaged_task + boost::thread). Details available in the documentation.
Obviously the thread within which the blocking call is made cannot kill itself - it will be blocked.
One approach would be to launch a thread A that makes the blocking call, then launch another thread B that sleeps for the timeout then kills thread A. A mutex protected shared flag can indicate whether the operation succeeded, based on which an exception can be thrown or not.
A second approach (very similar) would be to launch a thread A, which in turn launches thread B, sleeps for the timeout, then kills thread B.
The specifics of your preferred threading library (such as which threads are allowed to kill each other) and the nature of the blocking function will impact exactly how you go about this.
On Windows, you will want to do something like this:
//your main thread
DWORD threadID;
HANDLE h = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)&ThreadProc, 0, 0, &threadID);
DWORD ret = 0xFFFFFF;
for (int i = 0; i < /*some timeout*/; i++) {
ret = WaitForSingleObject(h, 100);
if (ret == WAIT_OBJECT_0) break;
}
if (ret != WAIT_OBJECT_0) {
DWORD exitCode;
TerminateThread(h, &exitCode); // you will want to stop the thread as it isn't exiting.
/*throw*/;
}
And
//Thread Routine
DWORD ThreadProc (LPVOID threadParam) {
//call your function here
return 0;
}
The idea here is to spin up a thread to do the work you want. You can then wait on that thread in
100 ms increments (or whatever you want). If it doesn't end within a certain time period, you can throw an exception.
There are some problems. First, does the library hold any internal state that will be left unuseable by a failed library call? If so, you are stuft because calls following the failed call that blocked will also fail or, worse, generate erroneous results without any exception or other notification.
If the library is safe, then you could indeed try to thread off the call and wait on some event with a timeout. It's now that you need to handle the concerns of #Nemo - you need to take care over how you handle the return of results. How exactly you do this depends on, well, how you intend to return results from the thread that calls the library. Typically, both threads would enter a critical section to safely arbitrate between the lib thread returning results and the timeout thread instructing the lib thread to never return anything, (eg. by setting a flag in it), and just exit if the lib call ever returns.
Orphaning the lib. thread is such a way will result in a thread leak if the lib call never returns. Whether you can absorb such leaks, or safely resort to eventual forced termination of the orphaned threads, is between you and your app :)

C++ Exception Handling In Critical Section (pthreads)

[Edit: (copied from a comment) As it turns out, the problem was elsewhere, but thank you all for your input.]
I have a shared container class which uses a single mutex to lock the push() and pop() functions, since I don't want to simultaneously modify the head and tail. Here's the code:
int Queue::push( WorkUnit unit )
{
pthread_mutex_lock( &_writeMutex );
int errorCode = 0;
try
{
_queue.push_back( unit );
}
catch( std::bad_alloc )
{
errorCode = 1;
}
pthread_mutex_unlock( &_writeMutex );
return errorCode;
}
When I run this in debug mode, everything is peachy. When I run in release mode, I get crashes at roughly the time when the driver program starts pushing and popping "simultaneously". Does the try/catch block immediately force an exit if it catches a std::bad_alloc exception? If so, should I enclose the remainder of the function in a finally block?
Also, is it possible that the slower debug mode only succeeds because my push() and pop() calls never actually occur at the same time?
In C++ we use Resource Acquisition Is Initialization (RAII) for guarding against exceptions.
Is this actually bombing after an exception? Far more likely from your snippet is that you just have bad synchronization in place. That starts with the name of your mutex: "writeMutex". This is not going to work if there is also a "readMutex". All reading, peeking and writing operations need to be locked by the same mutex.
Does the try/catch block immediately
force an exit if it catches a
std::bad_alloc exception?
No. If a std::bad_alloc is thrown inside the try {...} block, the code in the catch {...} block will fire.
If your program is actually crashing, then it seems like either your push_back call is throwing some exception other than bad_alloc (which isn't handled in your code), or the bad_alloc is being thrown somewhere outside the try {...} block.
By the way, are you sure you really want to use a try...catch block here?
plus
what does the pop look like
create a lock wrapper class that will automatically free the lock when it goes out of scope (as in RAII comment)
c++ does not have finally (thanks to mr stoustrop being stroppy)
i would catch std::exception or none at all (ducks head down for flame war). If u catch none then you need the wrapper
Regarding release/debug: Yes, you will often find race condition change between the two types of builds. When you deal with synchronization, your threads will run with different level of training. Well written threading will mostly run concurrently while poorly written threading the threads will in a highly synchronous manner relative to each other. All types of synchronization yield some level synchronous behavior. It as if synchronous and synchronization come from the same root word...
So yes, given the slightly different run-time performance between debug and release, those points where the threads synchronize can sometimes cause bad code to manifest in one type of build and not the other.
You need to use RAII
This basically means using the constructor/destructor to lock/unlock the resource.
This gurantees that the mutex will always be unlocked even when exceptions are around.
You should only be using one mutex for access to the list.
Even if you have a read only mutex that is used by a thread that only reads. That does not mean it is safe to read when another thread is updating the queue. The queue could be in some intermediate state caused by a thread calling push() while another thread is trying ti navigate an invlide intermediate state.
class Locker
{
public:
Locker(pthread_mutex_t &lock)
:m_mutex(lock)
{
pthread_mutex_lock(&m_mutex);
}
~Locker()
{
pthread_mutex_unlock(&m_mutex);
}
private:
pthread_mutex_t& m_mutex;
};
int Queue::push( WorkUnit unit )
{
// building the object lock calls the constructor thus locking the mutex.
Locker lock(_writeMutex);
int errorCode = 0;
try
{
_queue.push_back( unit );
}
catch( std::bad_alloc ) // Other exceptions may happen here.
{ // You catch one that you handle locally via error codes.
errorCode = 1; // That is fine. But there are other exceptions to think about.
}
return errorCode;
} // lock destructor called here. Thus unlocking the mutex.
PS. I hate the use of leading underscore.
Though technically it is OK here (assuming member variables) it is so easy to mess up that I prefer not to pre pend '' to idnetifiers. See What are the rules about using an underscore in a C++ identifier? for a whole list of rules to do about '' in identifier names.
Previous code sample with Locker class has a major problem:
What do you do when and if pthread_mutex_lock() fails?
The answer is you must throw an exception at this point, from constructor, and it can be caught.
Fine.
However,
According to c++ exception specs throwing an exception from a destructor is a no-no.
HOW DO YOU HANDLE pthread_mutex_unlock FAILURES?
Running code under any instrumentation software serves no purpose whatsoever.
You have to right code that works, not run it under valgrind.
In C it works perfectly fine:
pthread_cleanup_pop( 0 );
r = pthread_mutex_unlock( &mutex );
if ( r != 0 )
{
/* Explicit error handling at point of occurance goes here. */
}
But because c++ is a software abortion there just no reasonable way to deal with threaded coded failures with any degree of certainty. Brain-dead ideas like wrapping pthread_mutex_t into a class that adds some sort of state variable is just that - brain dead. The following code just does not work:
Locker::~Locker()
{
if ( pthread_mutex_unlock( &mutex ) != 0 )
{
failed = true; // Nonsense.
}
}
And the reason for that is that after pthread_mutex_unlock() returns this thread very well may be sliced out of cpu - preempted. That means that the .failed public variable will be still false. Other threads looking at it will get wrong information - the state variable says no failures, meanwhile pthread_mutex_unlock() failed. Even if, by some stroke of luck, these two statements run in one go, this thread may be preempted before ~Locker() returns and other threads may modify the value of .failed. Bottom line these schemes do not work - there is no atomic test-and-set mechanism for application defined variables.
Some say, destructors should never have code that fails. Anything else is a bad design. Ok, fine. I am just curious to see what IS a good design to be 100% exception and thread safe in c++.