input : integer ( i'll call it N ) and (1 <= N <= 5,000,000 )
output : integer, multiple of N and only contains 0,7
Ex.
Q1 input : 1 -> output : 7 ( 7 mod 1 == 0 )
Q2 input : 2 -> output : 70 ( 70 mod 2 == 0 )
#include <string>
#include <iostream>
using namespace std;
typedef long long ll;
int remaind(string num, ll m)
{
ll mod = 0;
for (int i = 0; i < num.size(); i++) {
int digit = num[i] - '0';
mod = mod * 10 + digit;
mod = mod % m;
}
return mod;
}
int main()
{
int n;
string ans;
cin >> n;
ans.append(n, '7');
for (int i = ans.length() - 1; i >= 0; i--)
{
if (remaind(ans, n) == 0)
{
cout << ans;
return 0;
}
ans.at(i) = '0';
}
return 0;
}
is there a way to lessen the time complexity?
i just tried very hard and it takes little bit more time to run while n is more than 1000000
ps. changed code
ps2. changed code again because of wrong code
ps3. optimize code again
ps4. rewrite post
Your approach is wrong, let's say you divide "70" by 5. Then you result will be 2 which is not right (just analyze your code to see why that happens).
You can really base your search upon numbers like 77777770000000, but think more about that - which numbers you need to add zeros and which numbers you do not.
Next, do not use strings! Think of reminder for a * b if you know reminder of a and reminder of b. When you program it, be careful with integer size, use 64 bit integers.
Now, what about a + b?
Finally, find reminders for numbers 10, 100, 1000, 10000, etc (once again, do not use strings and still try to find reminder for any power of 10).
Well, if you do all that, you'll be able to easily solve the whole problem.
May I recommend any of the boost::bignum integer classes?
I suspect uint1024_t (or whatever... they also have 128, 256, and 512, bit ints already typedefed, and you can declare your own easily enough) will meet your needs, allowing you to perform a single %, rather than one per iteration. This may outweigh the performance lost when using bignum vs c++'s built-in ints.
2^1024 ~= 1.8e+308. Enough to represent any 308 digit number. That's probably excessive.
2^512 ~= 1.34e+154. Good for any 154 digit number.
etc.
I suspect you should first write a loop that went through n = 4e+6 -> 5e+6 and wrote out which string got the longest, then size your uint*_t appropriately. If that longest string length is more than 308 characters, you could just whip up your own:
typedef number<cpp_int_backend<LENGTH, LENGTH, unsigned_magnitude, unchecked, void> > myReallyUnsignedBigInt;
The modulo operator is probably the most expensive operation in that inner loop. Performing once per iteration on the outer loop rather than at the inner loop (O(n) vs O(n^2)) should save you quite a bit of time.
Will that plus the whole "not going to and from strings" thing pay for bignum's overhead? You'll have to try it and see.
The number is huge (cannot fit in the bounds of unsigned long long int in C++). How do we check?
There is a solution given here but it doesn't make much sense.
The solution here tries to repeatedly divide the large number (represented as a string) by 2 but I'm not sure I understand how the result is reached step by step.
Can someone please explain this or propose a better solution?
We cannot use any external libraries.
This is the sample code:
int isPowerOf2(char* str)
{
int len_str = strlen(str);
// sum stores the intermediate dividend while
// dividing.
int num = 0;
// if the input is "1" then return 0
// because 2^k = 1 where k >= 1 and here k = 0
if (len_str == 1 && str[len_str - 1] == '1')
return 0;
// Divide the number until it gets reduced to 1
// if we are successfully able to reduce the number
// to 1 it means input string is power of two if in
// between an odd number appears at the end it means
// string is not divisible by two hence not a power
// of 2.
while (len_str != 1 || str[len_str - 1] != '1') {
// if the last digit is odd then string is not
// divisible by 2 hence not a power of two
// return 0.
if ((str[len_str - 1] - '0') % 2 == 1)
return 0;
// divide the whole string by 2. i is used to
// track index in current number. j is used to
// track index for next iteration.
for (int i = 0, j = 0; i < len_str; i++) {
num = num * 10 + str[i] - '0';
// if num < 2 then we have to take another digit
// to the right of A[i] to make it bigger than
// A[i]. E. g. 214 / 2 --> 107
if (num < 2) {
// if it's not the first index. E.g 214
// then we have to include 0.
if (i != 0)
str[j++] = '0';
// for eg. "124" we will not write 064
// so if it is the first index just ignore
continue;
}
str[j++] = (int)(num / 2) + '0';
num = (num) - (num / 2) * 2;
}
str[j] = '\0';
// After every division by 2 the
// length of string is changed.
len_str = j;
}
// if the string reaches to 1 then the str is
// a power of 2.
return 1;
}
I'm trying to understand the process in the while loop. I know there are comments but they arent really helping me glean through the logic.
Let's start by figuring out how to halve a "string-number". We'll start with 128 as an example. You can halve each digit in turn (starting from the left), keeping in mind that an odd number affects the digit on the right(a). So, for the 1 in 128, you halve that to get zero but, because it was odd, five should be kept in storage to be added to the digit on its right (once halved):
128
v
028
Then halve the 2 as follows (adding back in that stored 5):
028
v
018
v
068
Because that wasn't odd, we don't store a 5 for the next digit so we halve the 8 as follows:
068
v
064
You can also make things easier then by stripping off any leading zeros. From that, you can see that it correctly halves 128 to get 64.
To see if a number is a power of two, you simply keep halving it until you reach exactly 1. But, if at any point you end up with an odd number (something ending with a digit from {1, 3, 5, 7, 9}, provided it's not the single-digit 1), it is not a power of two.
By way of example, the following Python 3 code illustrates the concept:
import re, sys
# Halve a numeric string. The addition of five is done by
# Choosing the digit from a specific set (lower or upper
# digits).
def half(s):
halfS = '' # Construct half value.
charSet = '01234' # Initially lower.
for digit in s: # Digits left to right.
if digit in '13579': # Select upper for next if odd.
nextCharSet = '56789'
else:
nextCharSet = '01234' # Otherwise lower set.
halfS += charSet[int(digit) // 2] # Append half value.
charSet = nextCharSet # And prep for next digit.
while halfS[0] == '0': # Remove leading zeros.
halfS = halfS[1:]
return halfS
# Checks for validity.
if len(sys.argv) != 2:
print('Needs a single argument')
sys.exit(1)
num = sys.argv[1]
if not re.match('[1-9][0-9]*', num):
print('Argument must be all digits')
sys.exit(1)
print(num)
while num != '1':
if num[-1:] in '13579':
print('Reached odd number, therefore cannot be power of two')
sys.exit(0)
num = half(num)
print(num)
print('Reached 1, was therefore power of two')
Running that with various (numeric) arguments will show you the process, such as with:
pax$ python ispower2.py 65534
65534
32767
Reached odd number, therefore cannot be power of two
pax$ python ispower2.py 65536
65536
32768
16384
8192
4096
2048
1024
512
256
128
64
32
16
8
4
2
1
Reached 1, was therefore power of two
(a) Take, for example, the number 34. Half of the 3 is 1.5 so the 1 can be used to affect that specific digit position but the "half" left over can simply be used by bumping up the digit on the right by five after halving it. So the 4 halves to a 2 then has five added to make 7. And half of 34 is indeed 17.
This solution does work only for numbers which are not too large i.e. fits in the range of unsigned long long int.
Simpler C++ solution using bitmanipulation for small numbers :-
int power(string s) {
// convert number to unsigned long long int
// datatype can be changed to long int, int as per the requirement
// we can also use inbuilt function like stol() or stoll() for this
unsigned long long int len = s.length();
unsigned long long int num = s[0]-'0';
for(unsigned long long int i = 1; i<len; i++)
num = (num*10)+(s[i]-'0');
if(num == 1)
return 0;
//The powers of 2 have only one set bit in their Binary representation
//If we subtract 1 from a power of 2 what we get is 1s till the last unset bit and if we apply Bitwise AND operator we should get only zeros
if((num & (num-1)) == 0)
return 1;
return 0;
}
A bit better solution that I could code in Java, which doesn't use any fancy object like BigInteger. This approach is same as simple way of performing division. Only look out for remainder after each division. Also trim out the leading zeroes from the quotient which becomes new dividend for next iteration.
class DivisionResult{
String quotient;
int remainder;
public DivisionResult(String q, int rem){
this.quotient = q;
this.remainder = rem;
}
}
public int power(String A) {
if (A.equals("0") || A.equals("1")) return 0;
while (!A.equals("1")){
DivisionResult dr = divideByTwo(A);
if (dr.remainder == 1) return 0;
A = dr.quotient;
}
return 1;
}
public DivisionResult divideByTwo(String num){
StringBuilder sb = new StringBuilder();
int carry = 0;
for (int i = 0;i < num.length(); i++){
int divisibleNum = carry*10 + (num.charAt(i) - '0');
carry = divisibleNum%2;
sb.append(divisibleNum/2);
}
return new DivisionResult(sb.toString().replaceAll("^0+(?!$)", ""), carry);
}
This is an interview practice problem from CodeFights. I have a solution that's working except for the fact that it takes too long to run for very large inputs.
Problem Description (from the link above)
A top secret message containing uppercase letters from 'A' to 'Z' has been encoded as numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
You are an FBI agent and you need to determine the total number of ways that the message can be decoded.
Since the answer could be very large, take it modulo 10^9 + 7.
Example
For message = "123", the output should be
mapDecoding(message) = 3.
"123" can be decoded as "ABC" (1 2 3), "LC" (12 3) or "AW" (1 23), so the total number of ways is 3.
Input/Output
[time limit] 500ms (cpp)
[input] string message
A string containing only digits.
Guaranteed constraints:
0 ≤ message.length ≤ 105.
[output] integer
The total number of ways to decode the given message.
My Solution so far
We have to implement the solution in a function int mapDecoding(std::string message), so my entire solution is as follows:
/*0*/ void countValidPaths(int stIx, int endIx, std::string message, long *numPaths)
/*1*/ {
/*2*/ //check out-of-bounds error
/*3*/ if (endIx >= message.length())
/*4*/ return;
/*5*/
/*6*/ int subNum = 0, curCharNum;
/*7*/ //convert substr to int
/*8*/ for (int i = stIx; i <= endIx; ++i)
/*9*/ {
/*10*/ curCharNum = message[i] - '0';
/*11*/ subNum = subNum * 10 + curCharNum;
/*12*/ }
/*13*/
/*14*/ //check for leading 0 in two-digit number, which would not be valid
/*15*/ if (endIx > stIx && subNum < 10)
/*16*/ return;
/*17*/
/*18*/ //if number is valid
/*19*/ if (subNum <= 26 && subNum >= 1)
/*20*/ {
/*21*/ //we've reached the end of the string with success, therefore return a 1
/*22*/ if (endIx == (message.length() - 1) )
/*23*/ ++(*numPaths);
/*24*/ //branch out into the next 1- and 2-digit combos
/*25*/ else if (endIx == stIx)
/*26*/ {
/*27*/ countValidPaths(stIx, endIx + 1, message, numPaths);
/*28*/ countValidPaths(stIx + 1, endIx + 1, message, numPaths);
/*29*/ }
/*30*/ //proceed to the next digit
/*31*/ else
/*32*/ countValidPaths(endIx + 1, endIx + 1, message, numPaths);
/*33*/ }
/*34*/ }
/*35*/
/*36*/ int mapDecoding(std::string message)
/*37*/ {
/*38*/ if (message == "")
/*39*/ return 1;
/*40*/ long numPaths = 0;
/*41*/ int modByThis = static_cast<int>(std::pow(10.0, 9.0) + 7);
/*42*/ countValidPaths(0, 0, message, &numPaths);
/*43*/ return static_cast<int> (numPaths % modByThis);
/*44*/ }
The Issue
I have passed 11/12 of CodeFight's initial test cases, e.g. mapDecoding("123") = 3 and mapDecoding("11115112112") = 104. However, the last test case has message = "1221112111122221211221221212212212111221222212122221222112122212121212221212122221211112212212211211", and my program takes too long to execute:
Expected_output: 782204094
My_program_output: <empty due to timeout>
I wrote countValidPaths() as a recursive function, and its recursive calls are on lines 27, 28 and 32. I can see how such a large input would cause the code to take so long, but I'm racking my brain trying to figure out what more efficient solutions would cover all possible combinations.
Thus the million dollar question: what suggestions do you have to optimize my current program so that it runs in far less time?
A couple of suggestions.
First this problem can probably be formulated as a Dynamic Programming problem. It has that smell to me. You are computing the same thing over and over again.
The second is the insight that long contiguous sequences of "1"s and "2"s are a Fibonacci sequence in terms of the number of possibilities. Any other value terminates the sequence. So you can split the strings into runs of of ones and twos terminated by any other number. You will need special logic for a termination of zero since it does not also correspond to a character. So split the strings count, the length of each segment, look up the fibonacci number (which can be pre-computed) and multiply the values. So your example "11115112112" yields "11115" and "112112" and f(5) = 8 and f(6) = 13, 8*13 = 104.
Your long string is a sequence of 1's and 2's that is 100 digits long. The following Java (Sorry, my C++ is rusty) program correctly computes its value by this method
public class FibPaths {
private static final int MAX_LEN = 105;
private static final BigInteger MOD_CONST = new BigInteger("1000000007");
private static BigInteger[] fibNum = new BigInteger[MAX_LEN];
private static void computeFibNums() {
fibNum[0] = new BigInteger("1");
fibNum[1] = new BigInteger("1");
for (int i = 2; i < MAX_LEN; i++) {
fibNum[i] = fibNum[i-2].add(fibNum[i-1]);
}
}
public static void main(String[] argv) {
String x = "1221112111122221211221221212212212111221222212122221222112122212121212221212122221211112212212211211";
computeFibNums();
BigInteger val = fibNum[x.length()].mod(MOD_CONST);
System.out.println("N=" + x.length() + " , val = " + val);
}
}
The “Narcissistic numbers”, are n digit numbers where the sum of all the nth power of their digits is equal to the number.
So, 153 is a narcissistic number because 1^3 + 5^3 + 3^3 = 153.
Now given N, find all Narcissistic numbers that are N digit length ?
My Approach : was to iterate over all numbers doing sum of powers of digits
and check if its the same number or not, and I per calculated the powers.
but that's not good enough, so is there any faster way ?!
Update:
In nature there is just 88 narcissistic numbers, and the largest is 39 digits long,
But I just need the numbers with length 12 or less.
My Code :
long long int powers[11][12];
// powers[x][y] is x^y. and its already calculated
bool isNarcissistic(long long int x,int n){
long long int r = x;
long long int sum = 0;
for(int i=0; i<n ; ++i){
sum += powers[x%10][n];
if(sum > r)
return false;
x /= 10;
}
return (sum == r);
}
void find(int n,vector<long long int> &vv){
long long int start = powers[10][n-1];
long long int end = powers[10][n];
for(long long int i=start ; i<end ; ++i){
if(isNarcissistic(i,n))
vv.push_back(i);
}
}
Since there are only 88 narcisstic numbers in total, you can just store them in a look up table and iterate over it: http://mathworld.wolfram.com/NarcissisticNumber.html
Start from the other end. Iterate over the set of all nondecreasing sequences of d digits, compute the sum of the d-th powers, and check whether that produces (after sorting) the sequence you started with.
Since there are
9×10^(d-1)
d-digit numbers, but only
(10+d-1) `choose` d
nondecreasing sequences of d digits, that reduces the search space by a factor close to d!.
The code below implements the idea of #Daniel Fischer. It duplicates the table referenced at Mathworld and then prints a few more 11-digit numbers and verifies that there are none with 12 digits as stated here.
It would actually be simplier and probably a little faster to generate all possible histograms of non-increasing digit strings rather than the strings themselves. By a histogram I mean a table indexed 0-9 of frequencies of the respective digit. These can be compared directly without sorting. But the code below runs in < 1 sec, so I'm not going to implement the histogram idea.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_DIGITS 12
// pwr[d][n] is d^n
long long pwr[10][MAX_DIGITS + 1];
// Digits and final index of number being considered.
int digits[MAX_DIGITS];
int m;
// Fill pwr.
void fill_tbls(void)
{
for (int d = 0; d < 10; d++) {
pwr[d][0] = 1;
for (int p = 1; p <= MAX_DIGITS; p++)
pwr[d][p] = pwr[d][p-1] * d;
}
}
// qsort comparison for integers descending
int cmp_ints_desc(const void *vpa, const void *vpb)
{
const int *pa = vpa, *pb = vpb;
return *pb - *pa;
}
// Test current number and print if narcissistic.
void test(void)
{
long long sum = 0;
for (int i = 0; i <= m; i++)
sum += pwr[digits[i]][m + 1];
int sum_digits[MAX_DIGITS * 2];
int n = 0;
for (long long s = sum; s; s /= 10)
sum_digits[n++] = s % 10;
if (n == m + 1) {
qsort(sum_digits, n, sizeof(int), cmp_ints_desc);
if (memcmp(sum_digits, digits, n * sizeof(int)) == 0)
printf("%lld\n", sum);
}
}
// Recursive generator of non-increasing digit strings.
// Calls test when a string is complete.
void gen(int i, int min, int max)
{
if (i > m)
test();
else {
for (int d = min; d <= max; d++) {
digits[i] = d;
gen(i + 1, 0, d);
}
}
}
// Fill tables and generate.
int main(void)
{
fill_tbls();
for (m = 0; m < MAX_DIGITS; m++)
gen(0, 1, 9);
return 0;
}
I wrote a program in Lua which found all the narcissistic numbers in 30829.642 seconds. The basis of the program is a recursive digit-value count array generator function which calls a checking function when it's generated the digit-value count for all the digit-values. Each nested loop iterates:
FROM i=
The larger of 0 and the solution to a+x*d^o+(s-x)*(d-1)^o >= 10^(o-1) for x
where
- 'a' is the accumulative sum of powers of digits so far,
- 'd' is the current digit-value (0-9 for base 10),
- 'o' is the total number of digits (which the sum of the digit-value count array must add up to),
- 's' represents the remaining slots available until the array adds to 'o'
UP TO i<=
The smaller of 's' and the solution to a+x*d^o < 10^o for x with the same variables.
This ensures that the numbers checked will ALWAYS have the same number of digits as 'o', and therefore be more likely to be narcissistic while avoiding unnecessary computation.
In the loop, it does the recursive call for which it decrements the digit-value 'd' adds the current digit-value's contribution (a=a+i*d^o) and takes the i digit-slots used up away from 's'.
The gist of what I wrote is:
local function search(o,d,s,a,...) --Original number of digits, digit-value, remaining digits, accumulative sum, number of each digit-value in descending order (such as 5 nines)
if d>0 then
local d0,d1=d^o,(d-1)^o
local dd=d0-d1
--a+x*d^o+(s-x)*(d-1)^o >= 10^(o-1) , a+x*d^o < 10^o
for i=max(0,floor((10^(o-1)-s*d1-a)/dd)),min(s,ceil((10^o-a)/dd)-1) do
search(o,d-1,s-i,a+i*d0,i,...) --The digit counts are passed down as extra arguments.
end
else
--Check, with the count of zeroes set to 's', if the sum 'a' has the same count of each digit-value as the list specifies, and if so, add it to a list of narcissists.
end
end
local digits=1 --Skip the trivial single digit narcissistic numbers.
while #found<89 do
digits=digits+1
search(digits,9,digits,0)
end
EDIT: I forgot to mention that my program finds 89 narcissistic numbers! These are what it finds:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, 1741725, 4210818, 9800817, 9926315, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153, 4679307774, 32164049650, 32164049651, 40028394225, 42678290603, 44708635679, 49388550606, 82693916578, 94204591914, 28116440335967, 4338281769391370, 4338281769391371, 21897142587612075, 35641594208964132, 35875699062250035, 1517841543307505039, 3289582984443187032, 4498128791164624869, 4929273885928088826, 63105425988599693916, 128468643043731391252,449177399146038697307, 21887696841122916288858, 27879694893054074471405, 27907865009977052567814, 28361281321319229463398, 35452590104031691935943, 174088005938065293023722, 188451485447897896036875, 239313664430041569350093, 1550475334214501539088894, 1553242162893771850669378, 3706907995955475988644380, 3706907995955475988644381, 4422095118095899619457938, 121204998563613372405438066, 121270696006801314328439376, 128851796696487777842012787, 174650464499531377631639254, 177265453171792792366489765, 14607640612971980372614873089, 19008174136254279995012734740, 19008174136254279995012734741, 23866716435523975980390369295, 1145037275765491025924292050346, 1927890457142960697580636236639, 2309092682616190307509695338915, 17333509997782249308725103962772, 186709961001538790100634132976990, 186709961001538790100634132976991, 1122763285329372541592822900204593, 12639369517103790328947807201478392, 12679937780272278566303885594196922, 1219167219625434121569735803609966019, 12815792078366059955099770545296129367, 115132219018763992565095597973971522400, 115132219018763992565095597973971522401
For posterity ;-) This is most similar to #Krakow10's approach, generating bags of digits recursively, starting with 9, then 8, then 7 ... to 0.
It's Python3 code and finds all base-10 solutions with 1 through 61 digits (the first "obviously impossible" width) in less than 10 minutes (on my box). It's by far the fastest code I've ever heard of for this problem. What's the trick? No trick - just tedium ;-) As we go along, the partial sum so far yields a world of constraints on feasible continuations. The code just pays attention to those, and so is able to cut off vast masses of searches early.
Note: this doesn't find 0. I don't care. While all the references say there are 88 solutions, their tables all have 89 entries. Some eager editor must have added "0" later, and then everyone else mindlessly copied it ;-)
EDIT New version is over twice as fast, by exploiting some partial-sum constraints earlier in the search - now finishes in a little over 4 minutes on my box.
def nar(width):
from decimal import Decimal as D
import decimal
decimal.getcontext().prec = width + 10
if width * 9**width < 10**(width - 1):
raise ValueError("impossible at %d" % width)
pows = [D(i) ** width for i in range(10)]
mintotal, maxtotal = D(10)**(width - 1), D(10)**width - 1
def extend(d, todo, total):
# assert d > 0
powd = pows[d]
d1 = d-1
powd1 = pows[d1]
L = total + powd1 * todo # largest possible taking no d's
dL = powd - powd1 # the change to L when i goes up 1
for i in range(todo + 1):
if i:
total += powd
todo -= 1
L += dL
digitcount[d] += 1
if total > maxtotal:
break
if L < mintotal:
continue
if total < mintotal or L > maxtotal:
yield from extend(d1, todo, total)
continue
# assert mintotal <= total <= L <= maxtotal
t1 = total.as_tuple().digits
t2 = L.as_tuple().digits
# assert len(t1) == len(t2) == width
# Every possible continuation has sum between total and
# L, and has a full-width sum. So if total and L have
# some identical leading digits, a solution must include
# all such leading digits. Count them.
c = [0] * 10
for a, b in zip(t1, t2):
if a == b:
c[a] += 1
else:
break
else: # the tuples are identical
# assert d == 1 or todo == 0
# assert total == L
# This is the only sum we can get - no point to
# recursing. It's a solution iff each digit has been
# picked exactly as many times as it appears in the
# sum.
# If todo is 0, we've picked all the digits.
# Else todo > 0, and d must be 1: all remaining
# digits must be 0.
digitcount[0] += todo
# assert sum(c) == sum(digitcount) == width
if digitcount == c:
yield total
digitcount[0] -= todo
continue
# The tuples aren't identical, but may have leading digits
# in common. If, e.g., "9892" is a common prefix, then to
# get a solution we must pick at least one 8, at least two
# 9s, and at least one 2.
if any(digitcount[j] < c[j] for j in range(d, 10)):
# we're done picking digits >= d, but don't have
# enough of them
continue
# for digits < d, force as many as we need for the prefix
newtodo, newtotal = todo, total
added = []
for j in range(d):
need = c[j] - digitcount[j]
# assert need >= 0
if need:
newtodo -= need
added.append((j, need))
if newtodo < 0:
continue
for j, need in added:
newtotal += pows[j] * need
digitcount[j] += need
yield from extend(d1, newtodo, newtotal)
for j, need in added:
digitcount[j] -= need
digitcount[d] -= i
digitcount = [0] * 10
yield from extend(9, width, D(0))
assert all(i == 0 for i in digitcount)
if __name__ == "__main__":
from datetime import datetime
start_t = datetime.now()
width = total = 0
while True:
this_t = datetime.now()
width += 1
print("\nwidth", width)
for t in nar(width):
print(" ", t)
total += 1
end_t = datetime.now()
print(end_t - this_t, end_t - start_t, total)
I think the idea is to generate similar numbers. For example, 61 is similar to 16 as you are just summing
6^n +1^n
so
6^n+1^n=1^n+6^n
In this way you can reduce significant amount of numbers. For example in 3 digits scenario,
121==112==211,
you get the point. You need to generate those numbers first.
And you need to generate those numbers without actually iterating from 0-n.
Python version is:
def generate_power_list(power):
return [i**power for i in range(0,10)]
def find_narcissistic_numbers_naive(min_length, max_length):
for number_length in range(min_length, max_length):
power_dict = generate_power_dictionary(number_length)
max_number = 10 ** number_length
number = 10** (number_length -1)
while number < max_number:
value = 0
for digit in str(number):
value += power_dict[digit]
if value == number:
logging.debug('narcissistic %s ' % number)
number += 1
Recursive solution:
In this solution each recursion handles a single digit of the array of digits being used, and tries all appropriate combinations of that digit
def execute_recursive(digits, number_length):
index = len(digits)
if digits:
number = digits[-1]
else:
number = 0
results = []
digits.append(number)
if len(digits) < number_length:
while number < 10:
results += execute_recursive(digits[:], number_length)
number += 1
digits[index] = number
else:
while number < 10:
digit_value = sum_digits(digits)
if check_numbers_match_group(digit_value, digits):
results.append(digit_value)
logging.debug(digit_value)
number += 1
digits[index] = number
return results
def find_narcissistic_numbers(min_length, max_length):
for number_length in range(min_length, max_length):
digits = []
t_start = time.clock()
results = execute_recursive(digits, number_length)
print 'duration: %s for number length: %s' %(time.clock() - t_start, number_length)
Narcissistic number check
In the base version, when checking that a number matched the digits, we iterated through each digit type, to ensure that there were the same number of each type. In this version we have added the optimisation of checking the digit length is correct before doing the full check.
I expected that this would have more of an effect on small number lengths, because as number length increases, there will tend to be more numbers in the middle of the distribution. This was somewhat upheld by the results:
n=16: 11.5% improvement
n=19: 9.8% improvement
def check_numbers_match_group(number, digits):
number_search = str(number)
# new in v1.3
if len(number_search) != len(digits):
return False
for digit in digit_list:
if number_search.count(digit[0]) != digits.count(digit[1]):
return False
return True
I think you could use Multinomial theorem for some optimisation of cheacking if it is Narcissistic number.
you can calculate (a+b+c+..)^n- sum of non n-th powers values
for example for n=2 you should compare x and (a+b)^2-2*a*b where a and b is digits of number x
'''We can use Nar() function to calculate the Narcissitic Number.'''
import math
def Nar(num):
sum=0
n=len(str(num))
while n>0:
temp=num%10
sum=sum+math.pow(temp,n)
num=num/10
return sum
x=input()
y=Nar(x)
if x==y:
print x,' is a Narcissistic number'
else:
print x,' is not a Narcissistic number'