I'm trying to make my program calcul all these multiplications:
999*999 , 999*998, 998*998, 998*997, ......... Until 100*100.
Right now, it only calcul 999*999 998*998 997*997 ... 100*100.
I don't get why? Can you take a look on my code?
Thanks
BR
#include <iostream>
#include <vector>
#include <cmath>
int main () {
int i = 999;
int j = 999;
while (j >= 100) {
i == j ;
while (i >= j-1) {
std::cout << i*j << std::endl;
i -= j;
}
j = j-1;
}
return 0;
}
You are not seeing your loops correctly. Try to write the numbers you want to compute in a table first, and use it to build your loops.
For one value of your first loop variable - call it i, you want it multiplied by one, then two, then three (etc), values of j.
Regardless of what those values of j actually are, your loops should look like:
for(int i=999; i>=100; --i)
for(int j=999; j>=i; j--)
; //computation goes here
Here you clearly see that for one value of i, you will use one value of j when i=999, then two values of j, then thre...
If you are new at coding, I would recommend starting with for loops and switch to while when you feel comfortable with the former ones.
You can use two for loops like this:
#include <iostream>
int main()
{
for (int i = 999; i > 99; --i)
{
for (int j = 0; j < 2; ++j)
{
std::cout << i * (i - j) << std::endl;
}
}
}
I was trying to correct your code, but the inner while loop really should be deleted. After I deleted it, I can't tell whether I am rewriting it or correcting it. Anyway, it is delete, no need of it at all.
Here is the right code :
#include <iostream>
#include <vector>
#include <cmath>
int main () {
int i = 999;
int j = 999;
while (j >= 100) {
std::cout << i << " " << j << std::endl;
if (i==j)
--j;
else
--i;
}
return 0;
}
The logic is simple, whenever i==j, we --j. Whenever i!=j, we --i.
We begin with i and j at the same position, during the loop, when i is one step behind j, i takes a step. When i and j is at the same position, j takes a step.
Related
I have tried to do some practice with vector, and I made a simple for loop to calculate the sum of the elements within the vector. The program did not behave in the way I expect, so I try to run a debugger, and to my surprise, somehow, the compiler skips the for loop altogether, and I have not come up with a reasonable explanation.
//all code is written in cpp
#include <vector>
#include <iostream>
using namespace std;
int simplefunction(vector<int>vect)
{
int size = vect.size();
int sum = 0;
for (int count = 0; count == 4; count++) //<<--this for loop is being skipped when I count==4
{
sum = sum + vect[count];
}
return sum; //<<---the return sum is 0
}
int main()
{
vector<int>myvector(10);
for (int i = 0; i == 10; i++)
{
myvector.push_back(i);
}
int sum = simplefunction(myvector);
cout << "the result of the sum is " << sum;
return 0;
}
I have done some research, and usually the ill-defined for loop shows up when the final condition cannot be met (Ex: when setting count-- instead of count++)
Your loop's conditions are wrong, as they are always false!
Look at to the loops there
for (int i = 0; i == 10; i++)
// ^^^^^^^-----> condition : is it `true` when i is 0 (NO!!)
and
for (int count=0; count==4; count++)
// ^^^^^^^^^-----> condition : is it `true` when i is 0 (NO!!)
you are checking i is equal to 10 and 4 respectively, before incrementing it. That is always false. Hence it has not executed further. They should be
for (int i = 0; i < 10; i++) and for (int count=0; count<4; count++)
Secondly, vector<int> myvector(10); allocates a vector of integers and initialized with 0 s. Meaning, the loop afterwards this line (i.e. in the main())
for (int i = 0; i == 10; i++) {
myvector.push_back(i);
}
will insert 10 more elements (i.e. i s) to it, and you will end up with myvector with 20 elements. You probably meant to do
std::vector<int> myvector;
myvector.reserve(10) // reserve memory to avoid unwanted reallocations
for (int i = 0; i < 10; i++)
{
myvector.push_back(i);
}
or simpler using std::iota from <numeric> header.
#include <numeric> // std::iota
std::vector<int> myvector(10);
std::iota(myvector.begin(), myvector.end(), 0);
As a side note, avoid practising with using namespace std;
I want to output my histogram using the fewest amount of for loops possible
int* histogram(int size, int* arr)
{
int bin[10] = {};
for (int i = 0; i < size; i++)
{
if (arr[i] >= 0 && arr[i] < 10)
{
bin[0]++;
}
else if (arr[i] >= 10 && arr[i] < 20)
{
bin[1]++;
}
return bin;
}
Currently I am outputting the histogram like this:
cout << "0|";
for (int j = 0; j < bin[0]; j++)
cout << "*";
cout << endl;
But this is long and annoying. Is there a way to achieve the same output in fewer
for loops?
I am going to ignore the bugs in your histogram code, as it isn't really relevant to the question of optimising histogram output.
For information on the bug (returning a local variable), check out this Stack Overflow question.
Also, you are missing a curly brace. Always check that your code compiles and runs in its most minimalist form before posting it.
You state that the problem is that the method you use is "long and annoying", but it isn't clear if you are referring to the design of your code or the speed at which it performs.
Performance
The fastest you can possibly read the histogram is with O(n), where n is the number of bins in the histogram. In this sense your code is about as fast as it can get without micro-optimising it.
If you include the printing out of your histogram, then you have O(n*m), where m is the average number of entries per bin.
Writing a histogram is also O(n*k), where k is the number of entries in your array, because you have to figure out which bin each value belongs in.
Design
If the problem you have is that the code is bloated and unwieldy, then use less magic numbers and add more arguments to the function, like this:
#include <iostream>
void histogram(int const size, int const * const arr, unsigned int const number_of_bins, float const bin_min, float const bin_max, int * output)
{
float const binsize = (bin_max - bin_min)/number_of_bins;
for (int i = 0; i < size; i++)
{
for(int j = 0; j < number_of_bins; ++j)
{
if (arr[i] >= bin_min + binsize*j && arr[i] < bin_min + binsize*(j+1))
{
output[j]++;
}
}
}
}
int main(){
int const number_of_bins = 10;
float const bin_min = 0;
float const bin_max = 100;
int const size = 20;
int const array[size] = {5,6,20,40,44,50,110,6,-1,51,55,56,20,50,60,80,81,0,32,3};
int bin[number_of_bins] = {};
histogram(size, array, number_of_bins, bin_min, bin_max, bin);
for(int i = 0; i < number_of_bins; ++i)
{
std::cout << i << "|";
for (int j = 0; j < bin[i]; j++)
{
std::cout << "*";
}
std::cout << std::endl;
}
}
Compiled with:
g++ main.cc -o Output
Output:
0|*****
1|
2|**
3|*
4|**
5|*****
6|*
7|
8|**
9|
(Bonus, your bugs are fixed)
First of all your program is incorrect since, as pointed out, you return a pointer to a local variable form a function. To correct this you should use either std::array<Type, Size> or std::vector<Type>.
Regarding your question if you want short and compact code try this:
#include <string>
#include <algorithm>
#include <iostream>
#include <array>
std::array<int, 10> bin;
// Fill your array here
int i = 0;
std::for_each(bin.begin(), bin.end(), [&i](auto x)
{
std::cout << i++ << "|" << std::string(x, '*') << std::endl;
});
This code takes advantage of fill constructor of std::string which avoids your for cycle. But since you want to iterate through the array you need to do it in one way or the other. Either by an explicit for or by calling another function.
Note: this code is less efficient than a standard for loop but your question is how to avoid these.
As practice for myself I'm trying to create a genetic algorithm that will solve equations. So far my program can generate random "genes", fill up individuals with these "genes", and do some basic calculations with the genes (at the moment, simply summing the "genes").
However, I've realised now that I want to implement my fitness function that I would have been better off creating a struct for individual, since I need to keep the genes and the fitness outcome together to have the fittest genes reproduce again.
Anyway, here's my code:
// GA.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include <iostream>
#include <vector>
#include <random>
#include <string>
const int population_size = 10;
const int number_of_variables = 7;
struct one_individual
{
std::vector<std::vector<double>>individual;;
double evaluation = 0;
double fit = 0;
};
int main()
{
// Generate random number
std::random_device rd;
std::mt19937 rng(rd()); // random-number engine (Mersenne-Twister in this case)
std::uniform_real_distribution<double> dist(-10.0, 10.0);
// Create vector that holds vectors called individual and fill size it to the amount of individuals I want to have.
std::vector<std::vector<double>>individual;
for (int i = 0; i < population_size; i++)
{
std::vector<double>variables;
for (int j = 0; j < number_of_variables; j++)
{
variables.push_back(dist(rng));
}
individual.push_back(variables);
}
// Display entire population
for (auto &count : individual)
{
for (auto &count2 : count)
{
std::cout << count2 << " ";
}
std::cout << "\n";
}
// Do calculation with population. At the moment I just add up all the genes (sum) and display the sum for each individual.
for (int i = 0; i < population_size; i++)
{
int j = 0;
std::cout << "Organism "<< i;
double sum = individual[i].at(j) + individual[i].at(j + 1) + individual[i].at(j + 2) + individual[i].at(j + 3) + individual[i].at(j + 4) + individual[i].at(j + 5) + individual[i].at(j + 6);
std::cout << " is " << sum << "\n";
}
std::cout << "\n";
return 0;
}
What I think I should be doing is something like this:
for (int i = 0; i < population_size; i++)
{
one_individual individual;
std::vector<double>variables;
for (int j = 0; j < number_of_variables; j++)
{
variables.push_back(dist(rng));
}
one_individual.individual.push_back(variables);
}
The above code is not working. What happens when I try to compile is I get a list of errors, I just pasted it into pastebin since it's a pretty big list: www.pastebin.com/EVJaV0Ex. If I remove everything except the parts needed for the "creating individuals part" the errors that remain are: www.pastebin.com/djw6JmXZ. All errors are on line 41 which is the final line one_individual.individual.push_back(variables);
Edited for clarity, apologies that it was unclear.
Consider the instruction
one_individual.individual.push_back(variables);
where one_individual is a type (struct one_individual).
I suppose you should use the defined variable of type one_individual, so
individual.individual.push_back(variables);
My homework program has to write random numbers for arrival time and burst time into a file. Then after they are written, it reads the file and sorts the contents.
I figured setting up a 2d array would be the easiest way for me to go about this. But I am unsure on how to implement my sort so that if an arrival time swaps places then burst time of that arrival goes along for the ride.
I feel like I worded that poorly, but a basic example would be:
array[3][10] > array[2][23]
So since second array has an earlier arrival time I need both its arrival 2 and its burst 23 to move before array[3][10], but I need this do that and compare 100 inputs.
#include <iostream>
#include <cstdlib>
#include <iomanip>
#include <fstream>
const int max = 100;
using namespace std;
int main()
{
multimap<int [][]> myMap;
int randomBurst[max];
int arrivalTime[max];
int line[max][2];
int first = 0;
for (int i = 0; i < 100; i++)
{
if (i < 100)
{
ofstream write("Schedule.txt", ios::app);
randomBurst[i] = rand() % 1000;
arrivalTime[i] = rand() % 1000;
write << arrivalTime[i] << " " << randomBurst[i] << endl;
}
}
ifstream read("Schedule.txt");
for (int i = 0; i <= max; i++)
{
for (int j = 0; j < 2; j++)
{
read >> line[i][j];
cout << line[i][j] << " " ;
}
cout << endl;
}
cout << endl;
cout << endl;
for (int i = 0; i <= max; i++)
{
for (int j = 0; j < 2; j++)
{
myMap.insert(pair<int[][]>(line[i][j]);
}
cout << endl;
}
system("pause");
return 0;
}
My code sets up my array correctly after it reads the written file content, but I'm kind of lost what I should implement for a sort.
Well coming forward with this, mainly left that comment to be able to find this question faster on my laptop.
Like I said in the comment, if you want a presorted, by key value 2D "array", the quickest manner in which you could do this is with the map container., and if you really need the internal points to be ordered, and you will be using multiple entries within it, lets say entries 2,30 2,12 ... You could either build a map of vectors, or arrays, or use a Multimap. Not too sure of this data structure, as I have never really had a reason to use it as of yet. Referenced here http://www.cplusplus.com/reference/map/multimap/
The above will provide you with the sorting done for you, and the reason why I recommended a vector is the lack of order within it, and not sure if the 'bursts?' are to be ordered as well.
EDIT:
Forgot to mention, that a map will not hold more than one key of any given value, so if you are, again, inputting multiple points a above, then you will. if implementing things as you were before, overwrite things.
EDIT:
So this is more or less the fix I think I have, but you are working around this in a very indirect manner, that is hard to follow honestly.
#include <map>
#include <iostream>
#include <cstdlib>
#include <iomanip>
#include <fstream>
using namespace std;
const int MAX = 100;
int main()
{
multimap<int,int> myMap;
int randomBurst[100];
int arrivalTime[100];
int line[100][2];
int first = 0;
for (int i = 0; i < 100; i++)
{
if (i < 100)
{
ofstream write("Schedule.txt", ios::app);
randomBurst[i] = rand() % 1000;
arrivalTime[i] = rand() % 1000;
write << arrivalTime[i] << " " << randomBurst[i] << endl;
}
}
ifstream read("Schedule.txt");
for (int i = 0; i <= 100; i++)
{
for (int j = 0; j < 2; j++)
{
read >> line[i][j];
cout << line[i][j] << " " ;
}
cout << endl;
}
// cout << endl;
// cout << endl;
for (int i = 0; i < 100; i++)
{
for (int j = 0; j < 2; j++)
{
//Attain the value in the index, and the held value within it.
myMap.insert(pair<int, int> (line[i][j], line[i][j]));
}
cout << endl;
}
// system("pause");
return 0;
This fixes the insertion point, just because you give it an array it does not mean that the program will take that as a pair, as the first index is a point to another array in itself. And so on. I recommend starting off wiht a map object instead, as the multimap makes things a bit annoying, if you are familiar with the vector containers then use that instead within the map to log multiple values.
I'm trying to implement the Sieve by myself and with no help other than the algorithm provided...
#include <iostream>
using namespace std;
void findPrimeNumbers(int number) {
int n=0;
bool* boolArray = new bool[number]();
for(int i=0; i<number; i++) {
boolArray[i] = true;
}
for(int i = 2; i<(int)sqrt(number); i++) {
cout << "calculating...\n";
if(boolArray[i]) {
for(int j=(i^2+(n*i)); j<number; n++)
boolArray[j] = false;
}
if(boolArray[i])
cout << i << "\n";
}
return;
}
int main()
{
findPrimeNumbers(55);
system("pause");
return 0;
}
Except the program is hanging on line 37; specifically, "boolArray[j] = false". It's never exiting that loop, and I don't know why.
Edited: Ok, this fixes the hang but still isn't right, but don't answer, I want to figure it out :)
#include <iostream>
#include <cmath>
using namespace std;
void findPrimeNumbers(int number) {
int n=0;
bool* boolArray = new bool[number]();
for(int i=0; i<number; i++) {
boolArray[i] = true;
}
for(int i = 2; i<sqrt(number); i++) {
if(boolArray[i]) {
for (int j = pow(i,2) + n*i; j <= number; j = pow(i, 2) + (++n*i))
boolArray[j] = false;
}
if(boolArray[i] && number % i == 0)
cout << i << "\n";
}
return;
}
int main()
{
findPrimeNumbers(13195);
system("pause");
return 0;
}
Beyond the error pointed out by #Rapptz (^ is bitwise xor), you are incrementing n instead of j, so the termination condition is never reached.
Two problems:
The ^ operator is not the exponent operator like it is in some other languages. Just multiply i by itself instead (i*i).
your for loop:
for(int j=(i^2+(n*i)); j<number; n++)
boolArray[j] = false;
does not reevaluate the initial condition each loop. You need to reevaluate the condition at the beginning of the for loop:
for(int n=0; j<number; n++)
{
j=(i*i+(n*i));
boolArray[j] = false;
}
Your issue is the line i^2+(n*i) like the comments point out, operator^ is the XOR operator, not exponentiation. In order to exponentiate something you have to include the <cmath> header and call std::pow(a,b) where it is equivalent to the mathematical expression a^b.
Although you didn't ask for code review, it should be noted that using dynamic allocation for a bool array is probably not a good idea. You should use std::vector<bool> and a proper reserve call. It should also be noted that the pow call would be completely unnecessary, as you are only multiplying it by itself (i.e. 2^2 is the same as 2*2).
A better naive prime sieve would be something similar to this:
#include <vector>
#include <iostream>
template<typename T>
std::vector<T> generatePrimes(unsigned int limit) {
std::vector<T> primes;
std::vector<bool> sieve((limit+1)/2);
if(limit > 1) {
primes.push_back(2);
for(unsigned int i = 1, prime = 3; i < sieve.size(); ++i, prime += 2) {
if(!sieve[i]) {
primes.push_back(prime);
for(unsigned int j = (prime*prime)/2; j < sieve.size(); j += prime)
sieve[j] = true;
}
}
}
return primes;
}
int main() {
std::vector<unsigned> primes = generatePrimes<unsigned>(1000000);
for(auto& i : primes)
std::cout << i << '\n';
}
You can see it here.
You have a number of problems:
int j=(i^2+(n*i))
^ is not power in C++, it's the bitwise XOR operator. To fix this, you'll need to #include <cmath> and utilize pow, or simply use i * i.
Secondly, as others have mentioned, you are incrementing n. The easiest fix for this is to use a while loop instead:
int j = std::pow(i, 2) + (n*i);
while(j < number) {
//Set bool at index to false
j += i;
}
Thirdly, you have a memory leak - you new without a delete. Further, there's no reason to use new here, instead you should have:
bool b[number];
This will deallocate b automatically when the function exits.
Finally, why return at the bottom of a void function? Technically you can do it, but there is no reason to.