ghdl missing util.misc_conv_pkg ubuntu 14.04 - c++

I am trying to compile vhdl code using ghdl compiler. However I am missing two util libraries:
util.misc_conv_pkg and
util.vstring.
therefore this code is not working
LIBRARY util;
USE util.misc_conv_pkg.ALL;
USE util.vstring.ALL;
I have tried all possible installations methods I found:
http://ghdl.free.fr/site/pmwiki.php?n=Main.Installation
or
https://sourceforge.net/p/ghdl-updates/wiki/Installing%20ghdl/
But it is still not working. How do i fix this.

You need to find the source for those packages and compile them into the util library. They are part of the project you're working on, not part of VHDL.
If you can't find them, just comment out the USE clauses. Then one of two things will happen...
They aren't actually used at all, in which case the project will compile and work fine without them, and you have cleaned it up by eliminating unnecessary dependencies. It's amazing how often this is the case with those deprecated std_logic_arith packages.
Some functions or declarations from them are used, in which case compilation will fail with a fairly accurate description of what's missing. (Add the first few to the question if necessary).
Normally with a "util" library, the functionality is fairly obvious, so you can either find a more standard or more portable way of doing it, or you can write your own package that fulfils JUST the bits required for this project.

Related

Is there anything like a forwarding C++ preprocessor, that could be used by GCC?

I've been searching around for different custom pre-processor extensions and replacements, but all of them seem to come with 1 of 2 caveats:
Either 1), you generate the code as a separate build-system, them manually put the output into your real (CMake) build system, or 2) you end up losing the builtin preprocessor for GCC.
Is there really no tool that can, say, run each file it gets against some configured script, then through cpp, then pass the result to gcc?
I'd love to use something like Cog by just setting an environment variable for gcc, indicating a tool that runs Cog first and then the standard preprocessor.
Alternatively, is there a straightforward way to accomplish that in CMake, itself? I don't want to have to write a custom script for each file, especially if I have to then hard-code the compiler/preprocessor flags in each target.
edit: For clarity, I am aware of several partial/partially-applicable solutions. For example, how to tell GCC to use a different preprocessor. (Or really, to look in a different place for its own preprocessor, cc1. See: Custom gcc preprocessor) However, that leaves a lot of work to do, to modify files, and then correctly invoke the real cc1, with the correct original arguments.
Since that is effectively a constant/generic problem, I'm just surprised there is no drop in program.
Edit 2: After looking over several proposed solutions, I am not convinced there is an answer to this question. For example, if files are going to be generated by CMake, then they can't be included and browsed by the IDE - due to not yet existing.
As ridiculous as it sounds, I don't think there is any way to extend the preprocessor short of forking Gcc. Everything recommended so far, constitutes incomplete hacks.
The GCC (C++ compiler) is made for compiling C++ programs. As the C++ preprocessor is standardized within the C++ standard there is usually no need for anything like a "plugin" or "extension" there.
Don't listen to the comments, that suggest you using any exotic extension to CMake or change source code of GCC. Running source files through a different program (cog in your case) before compiling is a well known task and all major build systems support it right away.
In CMake you can use the add_custom_command function. If you need this for more than one file, you could use a CMake loop like e.g. suggested in this answer.

How to make my program work with the latest boost library

I have compiled a C++ program that need libboost-system1.46. I'm using Ubuntu 14.04 so I have libboost-system1.54. When I run the program it says that libboost_filesystem.so.1.46.1 was not found. How can I (if it is possible) to make the program work with libboost-system1.54. Perhaps there's a place where we specify which version to use. Is what I thinking is correct?
You need to recompile against the newer version of library. AFAIK boost libraries are not binary compatible between versions, so simple . You could do tricks, to use the other version (symbolic links or other magic), but it would most probably not work.
So you either need to provide the version that is required or change the requirement - recompilation.
If you wrote the program, or built it, you just need to repeat the whole build procedure, with all the configures before the make or compilation. Technically, just relinking should work, but some systems like CMake cache the configuration options evaluated at this step, and simply, calling make again would not work. So I would suggest to repeat whole process.
Whatever the procedure looked, it should suffice just to repeat it.
You may be able to create a symbolic link which points the name libboost-system1.46 to libboost-system1.54.
This will work as long as the interfaces for the functionality you're using hasn't changed, though is probably not a good idea. It may work just get your code going and tested, but would never be appropriate for any sort of release software.
You should try to recompile your program with the newer version of boost.

Conditionally compile if boost is present

I want to conditionally compile some c++ code that uses boost, and make it so it doesn't try to compile the boost dependent code if boost is not present.
Does boost have any global macro that will be defined, like __BOOST__, that I can check for?
EDIT: It's clear to me now that I have to achieve this on the makefile level. I am working on OSX lion. Using gnu make
The TYPICAL way that this is done is to use a "configuration script" or similar, that detects if the required/optional component(s) is/are present, and then selectively sets some -D options to the build system.
Obviously, if it's just your own project or a small distribution, you could do the same thing manually.
You probably also need a couple of ifdef type of choices in the Makefile if there are library files that you need.
One of the easier ways to determine if a part of boost that you need is installed is to try to compile it. If there are errors, the likely cause is that that part of boost isn't present (this obviously doesn't work if there are more important parts missing - for example, not having a compiler or standard library installed will ALSO cause a compile to fail. This is why nearly all configure type tools "start with the most basic features, and work their way up the tree of dependencies").

boost without libraries

I would like to start using boost in an embedded environment. I can live without boost libraries that require compilation for quite sometime. I suppose just moving boost directory into appropriate place in our code base will do the trick
Am I right about it or it is more involved than that?
How to get rid of header files for the libraries that are not being used?
Are there any gcc version dependencies in boost libraries. E.g. can use gcc-4.1.1 with the latest?
Am I right about it or it is more involved than that?
That will do it.
How to get rid of header files for the libraries that are not being used?
Why bother? They're not going to be compiled into the program. When you deploy your distribution won't be any different whether you remove them or not.
Are there any gcc version dependencies in boost libraries. E.g. can use gcc-4.1.1 with the latest?
vOv - That's a very old version. Boost takes things a lot further than most, more that I think they should most of the time, trying to make sure it works with old and/or broken compilers. You're really pushing it though.
I have not tried it myself, but if you compile Boost with a directory prefix, then I suppose you could move the directory later. I can't see a big problem with that or at least one that can't be fixed quickly.
As for getting rid of header files for libraries that aren't use, look into the bcp utility for the version with which you are using:
http://www.boost.org/doc/libs/1_49_0/tools/bcp/doc/html/index.html
It is "a tool for extracting subsets of Boost" -- exactly what you are looking for.
As for your last question, I think it depends on what version of Boost you are using. I've never had a problem with gcc dependencies...it seems their requirements are fairly liberal. I don't think you need to be worried too much about it unless you plan to use a version of gcc that is "much" older (than the Boost you plan to use). I would guess 'old' here is old enough that you don't need to worry -- any number that I would say would be merely a guess...
Hope this helps!

Adding Boost makes Debug build depend on "non-D" MSVC runtime DLLs

I have an annoying problem which I might be able to somehow circumvent, but on the other hand would much rather be on top of it and understand what exactly is going on, since it looks like this stuff is really here to stay.
Here's the story: I have a simple OpenGL app which works fine: never a major problem in compiling, linking, or running it. Now I decided to try to move some of the more intensive calculations into a worker thread, in order to possibly make the GUI even more responsive — using Boost.Thread, of course.
In short, if I add the following fragment in the beginning of my .cpp file:
#include <boost/thread/thread.hpp>
void dummyThreadFun() { while (1); }
boost::thread p(dummyThreadFun);
, then I start getting "This application has failed to start because MSVCP90.dll was not found" when trying to launch the Debug build. (Release mode works ok.)
Now looking at the executable using the Dependency Walker, who also does not find this DLL (which is expected I guess), I could see that we are looking for it in order to be able to call the following functions:
?max#?$numeric_limits#K#std##SAKXZ
?max#?$numeric_limits#_J#std##SA_JXZ
?min#?$numeric_limits#K#std##SAKXZ
?min#?$numeric_limits#_J#std##SA_JXZ
Next, I tried to convert every instance of min and max to use macros instead, but probably couldn't find all references to them, as this did not help. (I'm using some external libraries for which I don't have the source code available. But even if I could do this — I don't think it's the right way really.)
So, my questions — I guess — are:
Why do we look for a non-debug DLL even though working with the debug build?
What is the correct way to fix the problem? Or even a quick-and-dirty one?
I had this first in a pretty much vanilla installation of Visual Studio 2008. Then tried installing the Feature Pack and SP1, but they didn't help either. Of course also tried to Rebuild several times.
I am using prebuilt binaries for Boost (v1.36.0). This is not the first time I use Boost in this project, but it may be the first time that I use a part that is based on a separate source.
Disabling incremental linking doesn't help. The fact that the program is OpenGL doesn't seem to be relevant either — I got a similar issue when adding the same three lines of code into a simple console program (but there it was complaining about MSVCR90.dll and _mkdir, and when I replaced the latter with boost::create_directory, the problem went away!!). And it's really just removing or adding those three lines that makes the program run ok, or not run at all, respectively.
I can't say I understand Side-by-Side (don't even know if this is related but that's what I assume for now), and to be honest, I am not super-interested either — as long as I can just build, debug and deploy my app...
Edit 1: While trying to build a stripped-down example that anyway reproduces the problem, I have discovered that the issue has to do with the Spread Toolkit, the use of which is a factor common to all my programs having this problem. (However, I never had this before starting to link in the Boost stuff.)
I have now come up with a minimal program that lets me reproduce the issue. It consists of two compilation units, A.cpp and B.cpp.
A.cpp:
#include "sp.h"
int main(int argc, char* argv[])
{
mailbox mbox = -1;
SP_join(mbox, "foo");
return 0;
}
B.cpp:
#include <boost/filesystem.hpp>
Some observations:
If I comment out the line SP_join of A.cpp, the problem goes away.
If I comment out the single line of B.cpp, the problem goes away.
If I move or copy B.cpp's single line to the beginning or end of A.cpp, the problem goes away.
(In scenarios 2 and 3, the program crashes when calling SP_join, but that's just because the mailbox is not valid... this has nothing to do with the issue at hand.)
In addition, Spread's core library is linked in, and that's surely part of the answer to my question #1, since there's no debug build of that lib in my system.
Currently, I'm trying to come up with something that'd make it possible to reproduce the issue in another environment. (Even though I will be quite surprised if it actually can be repeated outside my premises...)
Edit 2: Ok, so here we now have a package using which I was able to reproduce the issue on an almost vanilla installation of WinXP32 + VS2008 + Boost 1.36.0 (still pre-built binaries from BoostPro Computing).
The culprit is surely the Spread lib, my build of which somehow requires a rather archaic version of STLPort for MSVC 6! Nevertheless, I still find the symptoms relatively amusing. Also, it would be nice to hear if you can actually reproduce the issue — including scenarios 1-3 above. The package is quite small, and it should contain all the necessary pieces.
As it turns out, the issue did not really have anything to do with Boost.Thread specifically, as this example now uses the Boost Filesystem library. Additionally, it now complains about MSVCR90.dll, not P as previously.
Boost.Thread has quite a few possible build combinations in order to try and cater for all the differences in linking scenarios possible with MSVC. Firstly, you can either link statically to Boost.Thread, or link to Boost.Thread in a separate DLL. You can then link to the DLL version of the MSVC runtime, or the static library runtime. Finally, you can link to the debug runtime or the release runtime.
The Boost.Thread headers try and auto-detect the build scenario using the predefined macros that the compiler generates. In order to link against the version that uses the debug runtime you need to have _DEBUG defined. This is automatically defined by the /MD and /MDd compiler switches, so it should be OK, but your problem description suggests otherwise.
Where did you get the pre-built binaries from? Are you explicitly selecting a library in your project settings, or are you letting the auto-link mechanism select the appropriate .lib file?
I believe I have had this same problem with Boost in the past. From my understanding it happens because the Boost headers use a preprocessor instruction to link against the proper lib. If your debug and release libraries are in the same folder and have different names the "auto-link" feature will not work properly.
What I have done is define BOOST_ALL_NO_LIB for my project(which prevents the headers from "auto linking") and then use the VC project settings to link against the correct libraries.
Looks like other people have answered the Boost side of the issue. Here's a bit of background info on the MSVC side of things, that may save further headache.
There are 4 versions of the C (and C++) runtimes possible:
/MT: libcmt.lib (C), libcpmt.lib (C++)
/MTd: libcmtd.lib, libcpmtd.lib
/MD: msvcrt.lib, msvcprt.lib
/MDd: msvcrtd.lib, msvcprtd.lib
The DLL versions still require linking to that static lib (which somehow does all of the setup to link to the DLL at runtime - I don't know the details). Notice in all cases debug version has the d suffix. The C runtime uses the c infix, and the C++ runtime uses the cp infix. See the pattern? In any application, you should only ever link to the libraries in one of those rows.
Sometimes (as in your case), you find yourself linking to someone else's static library that is configured to use the wrong version of the C or C++ runtimes (via the awfully annoying #pragma comment(lib)). You can detect this by turning your linker verbosity way up, but it's a real PITA to hunt for. The "kill a rodent with a bazooka" solution is to use the /nodefaultlib:... linker setting to rule out the 6 C and C++ libraries that you know you don't need. I've used this in the past without problem, but I'm not positive it'll always work... maybe someone will come out of the woodwork telling me how this "solution" may cause your program to eat babies on Tuesday afternoons.
This is a classic link error. It looks like you're linking to a Boost DLL that itself links to the wrong C++ runtime (there's also this page, do a text search for "threads"). It also looks like the boost::posix::time library links to the correct DLL.
Unfortunately, I'm not finding the page that discusses how to pick the correctly-built Boost DLL (although I did find a three-year-old email that seems to point to BOOST_THREAD_USE_DLL and BOOST_THREAD_USE_LIB).
Looking at your answer again, it appears you're using pre-built binaries. The DLL you're not able to link to is part of the TR1 feature pack (second question on that page). That feature pack is available on Microsoft's website. Or you'll need a different binary to link against. Apparently the boost::posix::time library links against the unpatched C++ runtime.
Since you've already applied the feature pack, I think the next step I would take would be to build Boost by hand. That's the path I've always taken, and it's very simple: download the BJam binary, and run the Boost Build script in the library source. That's it.
Now this got even a bit more interesting... If I just add this somewhere in the source:
boost::posix_time::ptime pt = boost::posix_time::microsec_clock::universal_time();
(together with the corresponding #include stuff), then it again works ok. So this is one quick and not even too dirty solution, but hey — what's going on here, really?
From memory various parts of the boost libraries need you to define some preprocessor flags in order to be able to compile correctly. Stuff like BOOST_THREAD_USE_DLL and so on.
The BOOST_THREAD_USE_DLL won't be what's causing this particular error, but it may be expecting you to define _DEBUG or something like that. I remember a few years ago in our boost C++ projects we had quite a few extra BOOST_XYZ preprocessor definitions declared in the visual studio compiler options (or makefile)
Check the config.hpp file in the boost thread directory. When you pull in the ptime stuff it's possibly including a different config.hpp file, which may then define those preprocessor things differently.