How do I minimize global error across multiple image homographies? - computer-vision

I am stitching together multiple images with arbitrary 3D views of a planar surface. I have some estimation of which images overlap and a coarse estimate of each pairwise homography between pairs of overlapping images. However, I need to refine my homographies by minimizing the global error across all images.
I have read a few different papers with various methods for doing this, and I think the best way would be to use a non-linear optimization such as Levenberg–Marquardt, ideally in a fast way that is sparse and/or parallel.
Ideally I would like to use an existing library such as sba or pba, but I am really confused as to how to limit the calculation to just estimating the eight parameters of the homography rather than the full 3 dimensions for both camera pose and object position. I also found this handy explanation by Szeliski (see section 5.1 on page 50) but again, the math is all for a rotating camera rather than a flat surface.
How do I use L-M to minimize the global error for a set of homographies? Is there a speedy way to do this with existing bundle adjustment libraries?
Note: I cannot use methods that rely on rotation-only camera motion (such as in openCV) because those cannot accurately estimate camera poses, and I also cannot use full 3D reconstruction methods (such as SfM) because those have too many parameters which results in non-planar point clouds. I definitely need something specific to a full 8 parameter homography. Camera intrinsics don't really matter because I am already correcting those in an earlier step.
Thanks for your help!

Related

findHomography usage opencv

I am using opencv c++ and am a new user. I am interested in object detection problems . So far I have studies and implemented the use of sparse optical flow( Lucas Kanade method) in a video from a stationary camera.After trying k means and Background substraction , I have decided to move to a more difficult problem , that is the moving camera.
I have so far studied some documentation and found out that I could use cv::findHomography in order to find the inliers or outliers during the sequence of frames in my video and then understand from the returned values what movement is caused due to camera motion and what due to object motion. In addition , I could use SURF features to track some objects and then decide which of them are good points .
However , I was wondering how I could implement this theory. For example, should I use the first frame as ground truth and detect some features using SURF and then for the rest of the video use findHomography for each frame ? Any ideas/help is welcome !
Detecting moving objects from moving camera is a quite challenging task, and requires solid understanding of multiple view geometry, besides there is less info on this topic available (than, for example, about structure from motion), so be warned!
Anyway, homography matrix will not be a good choice for detection of moving objects (unless you are 100% sure that your background can be represented by a flat surface accurately enough). You should probably use a fundamental matrix or trifocal tensor.
Fundamental matrix is computed from point correspondences between 2 frames. It associates points on one image with lines on other image (so called epipolar lines), and this way it is independent from scene structure. After you have obtained F matrix using some robust estimation method, like RANSAC or LMEDS (RANSAC seems to be better for this kind of task), you can calculate the reprojection error for each point. Objects that move independently from scene would not be accurately described by F matrix and will have a bigger error. So, outliers of F matrix calculated from image matches over two frames can be considered moving objects. One note though - objects that move along epipolar lines would not be detected by this approach, since their parallax can be also described by some depth level.
Trifocal tensor does not have the depth/motion ambiguity with objects that move along epipolar lines, but it is harder to estimate and it is not included into OpenCV. It can be calculated from correspondences over 3 frames, and its usage can be conceptually described as triangulating a point from 2 views and then calculating reprojection error on a third view.
As for the matching - I still think that LK tracking will be better than SURF matching if you work with video sequences, since in that case you don't need to consider very distant points as matches, and tracking usually is faster then detection+matching.

OpenCV triangulatePoints varying distance

I am using OpenCV's triangulatePoints function to determine 3D coordinates of a point imaged by a stereo camera.
I am experiencing that this function gives me different distance to the same point depending on angle of camera to that point.
Here is a video:
https://www.youtube.com/watch?v=FrYBhLJGiE4
In this video, we are tracking the 'X' mark. In the upper left corner info is displayed about the point that is being tracked. (Youtube dropped the quality, the video is normally much sharper. (2x1280) x 720)
In the video, left camera is the origin of 3D coordinate system and it's looking in positive Z direction. Left camera is undergoing some translation, but not nearly as much as the triangulatePoints function leads to believe. (More info is in the video description.)
Metric unit is mm, so the point is initially triangulated at ~1.94m distance from the left camera.
I am aware that insufficiently precise calibration can cause this behaviour. I have ran three independent calibrations using chessboard pattern. The resulting parameters vary too much for my taste. ( Approx +-10% for focal length estimation).
As you can see, the video is not highly distorted. Straight lines appear pretty straight everywhere. So the optimimum camera parameters must be close to the ones I am already using.
My question is, is there anything else that can cause this?
Can a convergence angle between the two stereo cameras can have this effect? Or wrong baseline length?
Of course, there is always a matter of errors in feature detection. Since I am using optical flow to track the 'X' mark, I get subpixel precision which can be mistaken by... I don't know... +-0.2 px?
I am using the Stereolabs ZED stereo camera. I am not accessing the video frames using directly OpenCV. Instead, I have to use the special SDK I acquired when purchasing the camera. It has occured to me that this SDK I am using might be doing some undistortion of its own.
So, now I wonder... If the SDK undistorts an image using incorrect distortion coefficients, can that create an image that is neither barrel-distorted nor pincushion-distorted but something different altogether?
The SDK provided with the ZED Camera performs undistortion and rectification of images. The geometry model is based on the same as openCV :
intrinsic parameters and distortion parameters for both Left and Right cameras.
extrinsic parameters for rotation/translation between Right and Left.
Through one of the tool of the ZED ( ZED Settings App), you can enter your own intrinsic matrix for Left/Right and distortion coeff, and Baseline/Convergence.
To get a precise 3D triangulation, you may need to adjust those parameters since they have a high impact on the disparity you will estimate before converting to depth.
OpenCV gives a good module to calibrate 3D cameras. It does :
-Mono calibration (calibrateCamera) for Left and Right , followed by a stereo calibration (cv::StereoCalibrate()). It will output Intrinsic parameters (focale, optical center (very important)), and extrinsic (Baseline = T[0], Convergence = R[1] if R is a 3x1 matrix). the RMS (return value of stereoCalibrate()) is a good way to see if the calibration has been done correctly.
The important thing is that you need to do this calibration on raw images, not by using images provided with the ZED SDK. Since the ZED is a standard UVC Camera, you can use opencv to get the side by side raw images (cv::videoCapture with the correct device number) and extract Left and RIght native images.
You can then enter those calibration parameters in the tool. The ZED SDK will then perform the undistortion/rectification and provide the corrected images. The new camera matrix is provided in the getParameters(). You need to take those values when you triangulate, since images are corrected as if they were taken from this "ideal" camera.
hope this helps.
/OB/
There are 3 points I can think of and probably can help you.
Probably the least important, but from your description you have separately calibrated the cameras and then the stereo system. Running an overall optimization should improve the reconstruction accuracy, as some "less accurate" parameters compensate for the other "less accurate" parameters.
If the accuracy of reconstruction is important to you, you need to have a systematic approach to reducing it. Building an uncertainty model, thanks to the mathematical model, is easy and can write a few lines of code to build that for you. Say you want to see if the 3d point is 2 meters away, at a particular angle to the camera system, and you have a specific uncertainty on the 2d projections of the 3d point, it's easy to backproject the uncertainty to the 3d space around your 3d point. By adding uncertainty to the other parameters of the system then you can see which ones are more important and need to have lower uncertainty.
This inaccuracy is inherent in the problem and the method you're using.
First if you model the uncertainty you will see the reconstructed 3d points further away from the center of cameras have a much higher uncertainty. The reason is that the angle <left-camera, 3d-point, right-camera> is narrower. I remember the MVG book had a good description of this with a figure.
Second, if you look at the implementation of triangulatePoints you see that the pseudo-inverse method is implemented using SVD to construct the 3d point. That can lead to many issues, which you probably remember from linear algebra.
Update:
But I consistently get larger distance near edges and several times
the magnitude of the uncertainty caused by the angle.
That's the result of using pseudo-inverse, a numerical method. You can replace that with a geometrical method. One easy method is to back-project the 2d-projections to get 2 rays in 3d space. Then you want to find where the intersect, which doesn't happen due to the inaccuracies. Instead you want to find the point where the 2 rays have the least distance. Without considering the uncertainty you will consistently favor a point from the set of feasible solutions. That's why with pseudo inverse you don't see any fluctuation but a gross error.
Regarding the general optimization, yes, you can run an iterative LM optimization on all the parameters. This is the method used in applications like SLAM for autonomous vehicles where accuracy is very important. You can find some papers by googling bundle adjustment slam.

Camera pose estimation

I am trying to write a program from scratch that can estimate the pose of a camera. I am open to any programming language and using inbuilt functions/methods for feature detection...
I have been exploring different ways of estimating pose like SLAM, PTAM, DTAM etc... but I don't really need need tracking and mapping, I just need the pose.
Can any of you suggest an approach or any resource that can help me ? I know what pose is and a rough idea of how to estimate it but I am unable to find any resources that explain how it can be done.
I was thinking of starting with a video recorded, extracting features from the video and then using these features and geometry to estimate the pose.
(Please forgive my naivety, I am not a computer vision person and am fairly new to all of this)
In order to compute a camera pose, you need to have a reference frame that is given by some known points in the image.
These known points come for example from a calibration pattern, but can also be some known landmarks in your images (for example, the 4 corners of teh base of Gizeh pyramids).
The problem of estimating the pose of the camera given known landmarks seen by the camera (ie, finding 3D position from 2D points) is classically known as PnP.
OpenCV provides you a ready-made solver for this problem.
However, you need first to calibrate your camera, ie, you need to determine what makes it unique.
The parameters that you need to estimate are called intrinsic parameters, because they will depend on the camera focal length, sensor size... but not on the camera location or orientation.
These parameters will mathematically explain how world points are projected onto your camera sensor frame.
You can estimate them from known planar patterns (again, OpenCV has some ready-made functions for that).
Generally, you can extract the pose of a camera only relative to a given reference frame.
It is quite common to estimate the relative pose between one view of a camera to another view.
The most general relationship between two views of the same scene from two different cameras, is given by the fundamental matrix (google it).
You can calculate the fundamental matrix from correspondences between the images. For example look in the Matlab implementation:
http://www.mathworks.com/help/vision/ref/estimatefundamentalmatrix.html
After calculating this, you can use a decomposition of the fundamental matrix in order to get the relative pose between the cameras. (Look here for example: http://www.daesik80.com/matlabfns/function/DecompPMatQR.m).
You can work a similar procedure in case you have a calibrated camera, and then you need the Essential matrix instead of fundamnetal.

OpenCV Image stiching when camera parameters are known

We have pictures taken from a plane flying over an area with 50% overlap and is using the OpenCV stitching algorithm to stitch them together. This works fine for our version 1. In our next iteration we want to look into a few extra things that I could use a few comments on.
Currently the stitching algorithm estimates the camera parameters. We do have camera parameters and a lot of information available from the plane about camera angle, position (GPS) etc. Would we be able to benefit anything from this information in contrast to just let the algorithm estimate everything based on matched feature points?
These images are taken in high resolution and the algorithm takes up quite amount of RAM at this point, not a big problem as we just spin large machines up in the cloud. But I would like to in our next iteration to get out the homography from down sampled images and apply it to the large images later. This will also give us more options to manipulate and visualize other information on the original images and be able to go back and forward between original and stitched images.
If we in question 1 is going to take apart the stitching algorithm to put in the known information, is it just using the findHomography method to get the info or is there better alternatives to create the homography when we actually know the plane position and angles and the camera parameters.
I got a basic understanding of opencv and is fine with c++ programming so its not a problem to write our own customized stitcher, but the theory is a bit rusty here.
Since you are using homographies to warp your imagery, I assume you are capturing areas small enough that you don't have to worry about Earth curvature effects. Also, I assume you don't use an elevation model.
Generally speaking, you will always want to tighten your (homography) model using matched image points, since your final output is a stitched image. If you have the RAM and CPU budget, you could refine your linear model using a max likelihood estimator.
Having a prior motion model (e.g. from GPS + IMU) could be used to initialize the feature search and match. With a good enough initial estimation of the feature apparent motion, you could dispense with expensive feature descriptor computation and storage, and just go with normalized crosscorrelation.
If I understand correctly, the images are taken vertically and overlap by a known amount of pixels, in that case calculating homography is a bit overkill: you're just talking about a translation matrix, and using more powerful algorithms can only give you bad conditioned matrixes.
In 2D, if H is a generalised homography matrix representing a perspective transformation,
H=[[a1 a2 a3] [a4 a5 a6] [a7 a8 a9]]
then the submatrixes R and T represent rotation and translation, respectively, if a9==1.
R= [[a1 a2] [a4 a5]], T=[[a3] [a6]]
while [a7 a8] represents the stretching of each axis. (All of this is a bit approximate since when all effects are present they'll influence each other).
So, if you known the lateral displacement, you can create a 3x3 matrix having just a3, a6 and a9=1 and pass it to cv::warpPerspective or cv::warpAffine.
As a criteria of matching correctness you can, f.e., calculate a normalized diff between pixels.

Target Detection - Algorithm suggestions

I am trying to do image detection in C++. I have two images:
Image Scene: 1024x786
Person: 36x49
And I need to identify this particular person from the scene. I've tried to use Correlation but the image is too noisy and therefore doesn't give correct/accurate results.
I've been thinking/researching methods that would best solve this task and these seem the most logical:
Gaussian filters
Convolution
FFT
Basically, I would like to move the noise around the images, so then I can use Correlation to find the person more effectively.
I understand that an FFT will be hard to implement and/or may be slow especially with the size of the image I'm using.
Could anyone offer any pointers to solving this? What would the best technique/algorithm be?
In Andrew Ng's Machine Learning class we did this exact problem using neural networks and a sliding window:
train a neural network to recognize the particular feature you're looking for using data with tags for what the images are, using a 36x49 window (or whatever other size you want).
for recognizing a new image, take the 36x49 rectangle and slide it across the image, testing at each location. When you move to a new location, move the window right by a certain number of pixels, call it the jump_size (say 5 pixels). When you reach the right-hand side of the image, go back to 0 and increment the y of your window by jump_size.
Neural networks are good for this because the noise isn't a huge issue: you don't need to remove it. It's also good because it can recognize images similar to ones it has seen before, but are slightly different (the face is at a different angle, the lighting is slightly different, etc.).
Of course, the downside is that you need the training data to do it. If you don't have a set of pre-tagged images then you might be out of luck - although if you have a Facebook account you can probably write a script to pull all of yours and your friends' tagged photos and use that.
A FFT does only make sense when you already have sort the image with kd-tree or a hierarchical tree. I would suggest to map the image 2d rgb values to a 1d curve and reducing some complexity before a frequency analysis.
I do not have an exact algorithm to propose because I have found that target detection method depend greatly on the specific situation. Instead, I have some tips and advices. Here is what I would suggest: find a specific characteristic of your target and design your code around it.
For example, if you have access to the color image, use the fact that Wally doesn't have much green and blue color. Subtract the average of blue and green from the red image, you'll have a much better starting point. (Apply the same operation on both the image and the target.) This will not work, though, if the noise is color-dependent (ie: is different on each color).
You could then use correlation on the transformed images with better result. The negative point of correlation is that it will work only with an exact cut-out of the first image... Not very useful if you need to find the target to help you find the target! Instead, I suppose that an averaged version of your target (a combination of many Wally pictures) would work up to some point.
My final advice: In my personal experience of working with noisy images, spectral analysis is usually a good thing because the noise tend to contaminate only one particular scale (which would hopefully be a different scale than Wally's!) In addition, correlation is mathematically equivalent to comparing the spectral characteristic of your image and the target.