I got a really interesting question at a company, and I can't seem to find an answer at all.
#include <cstdio>
int main()
{
int num = 123456789;
int res = 0;
for (int i = 0; i<111111111; i++)
{
res=(res+num)%1000000000;
}
printf("06 %09d", res);
return 0;
}
I should declare num so the output is my mobile number, 305089171.
Any idea how to do that?
So to solve the problem we begin with units digit.
We need 1 at units digit so make num = 1.
Now we have res as 111111111.
Now we need 7 at tens digits. So we make num = (7 - 1(tens digit in step 2)) 1 = 61. (Also note that multiplying digit at tens place will only affect digts to left of it).
Now we have res as 777777771.
Now we need 1 at hundreds place. So if we make num = 461 (since 7+4 = 1)
and so on.
The mathematical reasoning I could think of is when you multiply a number by 111111111, digits at say tens place will only affect digits to left of it and not the digits to right of it.
Here is the value you need to put in num:
254197461
I got it by adding additional numbers one by one to num, i let you check what happens yourself.
I have no mathemacital explaination to that, but try putting numbers one by one into num and you may understand:.
1 / 61 / 461 / 7461...
Related
Writing a program to solve problem four of project euler: Find the largest palindrome made from the product of two 2-digit numbers. Heres my reprex:
#include <iostream>
int reverseNumber(int testNum)
{
int reversedNum, remainder = 0;
int temp = testNum;
while(temp != 0)
{
remainder = temp % 10;
reversedNum = reversedNum * 10 + remainder;
temp /= 10;
}
return reversedNum;
}
int main()
{
const int MIN = 100;
int numOne = 99;
int product = 0;
for(int numTwo = 10; numTwo < 100; numTwo++)
{
product = numOne * numTwo;
if (reverseNumber(product) == product)
{
int solution = product;
std::cout << solution << '\n';
return 0;
}
}
return 0;
}
My main thought process behind this is that the for loop will go through every number from 10 to 99 and multiply it by 99. My intended outcome is for it to print 9009 which is the largest palindrome with 2 factors of 2 digits. So what I think should happen here is the for loop will go from 10 to 99, and each loop it should go through the parameters of the if statement which reverses the number and sees if it equals itself.
I've made sure it wasn't a compiler issue, as this is recurring between different compilers. The reverseNumber() function returns the proper number every time I've tested it, so that shouldn't be the problem, however this problem only occurs when the function is involved in the logical comparison. By this I mean if that even I set it equal to a variable and put the variable in the if parameters, the issue still occurs. I'm pretty much stumped. I just hope it's not some silly mistake as I've been on this for a couple days now.
int reversedNum, remainder = 0;
You should be aware that this gives you (in an automatic variable context) a zero remainder but an arbitrary reversedNum. This is actually one of the reasons some development shops have the "one variable per declaration" rule.
In other words, it should probably be:
int reversedNum = 0, remainder;
or even:
int reversedNum = 0;
int remainder;
One other thing that often helps out is to limit the scope of variable to as small an area as possible, only bringing them into existence when needed. An example of that would be:
int reverseNumber(int testNum) {
int reversedNum = 0;
while (testNum != 0) {
int remainder = testNum % 10;
reversedNum = reversedNum * 10 + remainder;
testNum /= 10;
}
return reversedNum;
}
In fact, I'd probably go further and eliminate remainder altogether since you only use it once:
reversedNum = reversedNum * 10 + testNum % 10;
You'll notice I've gotten rid of temp there as well. There's little to gain by putting testNum into a temporary variable since it's already a copy of the original (as it was passed in by value).
And one other note, more to do with the problem rather than the code. You seem to be assuming that there is a palindrome formed that is a multiple of 99. That may be the case but a cautious programmer wouldn't rely on it - if you're allowed to assume things like that, you could just replace your entire program with:
print 9009
Hence you should probably check all possibilities.
You also get the first one you find which is not necessarily the highest one (for example, let's assume that 99 * 17 and 99 * 29 are both palindromic - you don't want the first one.
And, since you're checking all possibilities, you probably don't want to stop at the first one, even if the nested loops are decrementing instead of incrementing. That's because, if 99 * 3 and 97 * 97 are both palindromic, you want the highest, not the first.
So a better approach may be to start high and do an exhaustive search, while also ensuring you ignore the palindrome check of candidates that are smaller that your current maximum, something like (pseudo-code)
# Current highest palindrome.
high = -1
# Check in reverse order, to quickly get a relatively high one.
for num1 in 99 .. 0 inclusive:
# Only need to check num2 values <= num1: if there was a
# better palindrome at (num2 * num1), we would have
# already found in with (num1 * num2).
for num2 in num1 .. 0 inclusive:
mult = num1 * num2
# Don't waste time doing palindrome check if it's
# not greater than current maximum - we can't use
# it then anyway. Also, if we find one, it's the
# highest possible for THIS num1 value (since num2
# is decreasing), so we can exit the num2 loop
# right away.
if mult > high:
if mult == reversed(mult):
high = mult
break
if high >= 0:
print "Solution is ", high
else:
print "No solution"
In addition to properly initializing your variables, if you want the largest palindrome, you should switch the direction of your for loop -- like:
for(int numTwo = 100; numTwo > 10; numTwo--) {
...
}
or else you are just printing the first palindrome within your specified range
input : integer ( i'll call it N ) and (1 <= N <= 5,000,000 )
output : integer, multiple of N and only contains 0,7
Ex.
Q1 input : 1 -> output : 7 ( 7 mod 1 == 0 )
Q2 input : 2 -> output : 70 ( 70 mod 2 == 0 )
#include <string>
#include <iostream>
using namespace std;
typedef long long ll;
int remaind(string num, ll m)
{
ll mod = 0;
for (int i = 0; i < num.size(); i++) {
int digit = num[i] - '0';
mod = mod * 10 + digit;
mod = mod % m;
}
return mod;
}
int main()
{
int n;
string ans;
cin >> n;
ans.append(n, '7');
for (int i = ans.length() - 1; i >= 0; i--)
{
if (remaind(ans, n) == 0)
{
cout << ans;
return 0;
}
ans.at(i) = '0';
}
return 0;
}
is there a way to lessen the time complexity?
i just tried very hard and it takes little bit more time to run while n is more than 1000000
ps. changed code
ps2. changed code again because of wrong code
ps3. optimize code again
ps4. rewrite post
Your approach is wrong, let's say you divide "70" by 5. Then you result will be 2 which is not right (just analyze your code to see why that happens).
You can really base your search upon numbers like 77777770000000, but think more about that - which numbers you need to add zeros and which numbers you do not.
Next, do not use strings! Think of reminder for a * b if you know reminder of a and reminder of b. When you program it, be careful with integer size, use 64 bit integers.
Now, what about a + b?
Finally, find reminders for numbers 10, 100, 1000, 10000, etc (once again, do not use strings and still try to find reminder for any power of 10).
Well, if you do all that, you'll be able to easily solve the whole problem.
May I recommend any of the boost::bignum integer classes?
I suspect uint1024_t (or whatever... they also have 128, 256, and 512, bit ints already typedefed, and you can declare your own easily enough) will meet your needs, allowing you to perform a single %, rather than one per iteration. This may outweigh the performance lost when using bignum vs c++'s built-in ints.
2^1024 ~= 1.8e+308. Enough to represent any 308 digit number. That's probably excessive.
2^512 ~= 1.34e+154. Good for any 154 digit number.
etc.
I suspect you should first write a loop that went through n = 4e+6 -> 5e+6 and wrote out which string got the longest, then size your uint*_t appropriately. If that longest string length is more than 308 characters, you could just whip up your own:
typedef number<cpp_int_backend<LENGTH, LENGTH, unsigned_magnitude, unchecked, void> > myReallyUnsignedBigInt;
The modulo operator is probably the most expensive operation in that inner loop. Performing once per iteration on the outer loop rather than at the inner loop (O(n) vs O(n^2)) should save you quite a bit of time.
Will that plus the whole "not going to and from strings" thing pay for bignum's overhead? You'll have to try it and see.
i'm going to learn C++ at the very beginning and struggling with some challenges from university.
The task was to calculate the cross sum and to use modulo and divided operators only.
I have the solution below, but do not understand the mechanism..
Maybe anyone could provide some advice, or help to understand, whats going on.
I tried to figure out how the modulo operator works, and go through the code step by step, but still dont understand why theres need of the while statement.
#include <iostream>
using namespace std;
int main()
{
int input;
int crossSum = 0;
cout << "Number please: " << endl;
cin >> input;
while (input != 0)
{
crossSum = crossSum + input % 10;
input = input / 10;
}
cout << crossSum << endl;
system ("pause");
return 0;
}
Lets say my input number is 27. cross sum is 9
frist step: crossSum = crossSum + (input'27' % 10 ) // 0 + (modulo10 of 27 = 7) = 7
next step: input = input '27' / 10 // (27 / 10) = 2.7; Integer=2 ?
how to bring them together, and what does the while loop do? Thanks for help.
Just in case you're not sure:
The modulo operator, or %, divides the number to its left by the number to its right (its operands), and gives the remainder. As an example, 49 % 5 = 4.
Anyway,
The while loop takes a conditional statement, and will do the code in the following brackets over and over until that statement becomes false. In your code, while the input is not equal to zero, do some stuff.
To bring all of this together, every loop, you modulo your input by 10 - this will always return the last digit of a given Base-10 number. You add this onto a running sum (crossSum), and then divide the number by 10, basically moving the digits over by one space. The while loop makes sure that you do this until the number is done - for example, if the input is 104323959134, it has to loop 12 times until it's got all of the digits.
It seems that you are adding the digits present in the input number. Let's go through it with the help of an example, let input = 154.
Iteration1
crossSum= 0 + 154%10 = 4
Input = 154/10= 15
Iteration2
crossSum = 4 + 15%10 = 9
Input = 15/10 = 1
Iteration3
crossSum = 9 + 1%10 = 10
Input = 1/10 = 0
Now the while loop will not be executed since input = 0. Keep a habit of dry running through your code.
#include <iostream>
using namespace std;
int main()
{
int input;
int crossSum = 0;
cout << "Number please: " << endl;
cin >> input;
while (input != 0) // while your input is not 0
{
// means that when you have 123 and want to have the crosssum
// you first add 3 then 2 then 1
// mod 10 just gives you the most right digit
// example: 123 % 10 => 3
// 541 % 10 => 1 etc.
// crosssum means: crosssum(123) = 1 + 2 + 3
// so you need a mechanism to extract each digit
crossSum = crossSum + input % 10; // you add the LAST digit to your crosssum
// to make the number smaller (or move all digits one to the right)
// you divide it by 10 at some point the number will be 0 and the iteration
// will stop then.
input = input / 10;
}
cout << crossSum << endl;
system ("pause");
return 0;
}
but still dont understand why theres need of the while statement
Actually, there isn't need (in literal sense) for, number of digits being representable is limited.
Lets consider signed char instead of int: maximum number gets 127 then (8-bit char provided). So you could do:
crossSum = number % 10 + number / 10 % 10 + number / 100;
Same for int, but as that number is larger, you'd need 10 summands (32-bit int provided)... And: You'd always calculate the 10 summands, even for number 1, where actually all nine upper summands are equal to 0 anyway.
The while loop simplifies the matter: As long as there are yet digits left, the number is unequal to 0, so you continue, and as soon as no digits are left (number == 0), you stop iteration:
123 -> 12 -> 1 -> 0 // iteration stops, even if data type is able
^ ^ ^ // to store more digits
Marked digits form the summands for the cross sum.
Be aware that integer division always drops the decimal places, wheras modulo operation delivers the remainder, just as in your very first math lessons in school:
7 / 3 = 2, remainder 1
So % 10 will give you exactly the last (base 10) digit (the least significant one), and / 10 will drop this digit afterwards, to go on with next digit in next iteration.
You even could calculate the cross sum according to different bases (e. g. 16; base 2 would give you the number of 1-bits in binary representation).
Loop is used when we want to repeat some statements until a condition is true.
In your program, the following statements are repeated till the input becomes 0.
Retrieve the last digit of the input. (int digit = input % 10;)
Add the above retrieved digit to crosssum. (crosssum = crosssum + digit;)
Remove the last digit from the input. (input = input / 10;)
The above statements are repeated till the input becomes zero by repeatedly dividing it by 10. And all the digits in input are added to crosssum.
Hence, the variable crosssum is the sum of the digits of the variable input.
Drazil is playing a math game with Varda.
Let's define for positive integer x as a product of factorials of its
digits. For example, f(135) = 1! * 3! * 5! = 720.
First, they choose a decimal number a consisting of n digits that
contains at least one digit larger than 1. This number may possibly
start with leading zeroes. Then they should find maximum positive
number x satisfying following two conditions:
x doesn't contain neither digit 0 nor digit 1.
= f(x) = f(a)
Help friends find such number.
Input The first line contains an integer n (1 ≤ n ≤ 15) — the number
of digits in a.
The second line contains n digits of a. There is at least one digit in
a that is larger than 1. Number a may possibly contain leading zeroes.
Output Output a maximum possible integer satisfying the conditions
above. There should be no zeroes and ones in this number decimal
representation.
Examples
input
4
1234
output
33222
input
3
555
output
555
Here is the solution,
#include <bits/stdc++.h>
#include <algorithm>
using namespace std;
int main()
{
map<char, string> mp;
mp['0'] = mp['1'] = "";
mp['2'] = "2";
mp['3'] = "3";
mp['4'] = "223";
mp['5'] = "5";
mp['6'] = "35";
mp['7'] = "7";
mp['8'] = "2227";
mp['9'] = "2337";
int n;
string str;
cin>>n>>str;
string res;
for(int i = 0; i < str.size(); ++i)
res += mp[str[i]];
sort(res.rbegin(), res.rend());
cout<<res;
return 0;
}
I'd like if someone explains the reason why were the digits transformed into other form of digits rather than just with some way to compute the number with..sadly brute force would give a TLE(Time limit exceeded) in this question cause of the 15 digit thing so that's a big number to brute force to,so I kindly hope that someone can explain the "proof" below, cause idk what theory says that these numbers can be transformed to those numbers for example 4 to 223 and stuff.
Thanks in advance.
Picture: What the proof says
The theory behind these transformations is the following (Ill use 4 as an example):
4! = 3! * 2! * 2!
A longer sequence of digits will always produce a larger number than a shorter sequence (at least for positive integers). Thus this code produces a longer sequence where possible. With the above example we get:
4! = 3! * 4
We can't reduce the 3! any further, since 3 is a prime. 4 on the other hand is simply 2²:
4 = 2² = 2! * 2!
Thus we have found the optimal replacement for 4 in the number-sequence as "322". This can be done for all numbers, but prime-numbers aren't factorisable and will thus always be the best replacement available for them self.
And thanks to the fact that we're using prime factorization we also know that we have the only (and longest possible) string of digits that can replace a certain digit.
i have written a c++ code for generating first and last k digits of a number as large as 10^9. (k<=9).
cin>>n>>k;
cout << (unsigned long)floor(pow(10.0, modf(n*log10((double)n), &dummy) + k - 1)) << " "; // code that prints the first k digits
long long int ans = foo(n,k); // function that prints the last k digits
if(ans==0)
{
for(int i=0;i<k;i++) cout << "0";
}
else{
stringstream ss;
string s;
ss<<ans;
ss>>s;
if(s.size()!=k)
{
for(int i=0;i<(k-s.size());i++)
s="0"+s;
}
cout<<s;
}
where function foo() is:
long long int foo(int n, int k) // code of the function
{
long long int m=1;
for(; k > 0; k--) m*=10;
long long int r=1, t=n % m;
while(n)
{
if (n % 2)
r = r * t % m;
t = t * t % m;
n >>= 1;
}
return r;
}
this gives me output as:
if given 9 and 3 as inputs, it gives first and last 3 digits of 9 to the power 9 (9^9) i.e. 387 and 489. But I m still missing out some test cases.
Can anyone please help me finding out the test case for which my code wouldn't work ?
1 ≤ n ≤ 109, 1 ≤ k ≤ 9
the problem statement: http://www.codechef.com/problems/MARCHA4/
If n^n <= 10^9, in which case your code seems to work fine. However, if you allow bigger n, say 11^11, and ask for the last 4 digits of that, which are 0611, your code will only print 611. Basically, it doesn't print any leading zeroes when it should.
This doesn't really answer the question, and its almost trivially easy, but I figure it might be worth sharing. If there were a "long comment" capability I'd be using it.
EDIT: just noticed using str instead of repr will eliminate the L on its own
def firstAndLastDig(k, num):
s = str(num)
return (s[:k], s[-k:])
def firstAndLastDigSelfExp(k,n):
return firstAndLastDig(k,n**n)
Overflow is not an issue (the only thing is dealing with the L if you use repr instead of str),
firstAndLastDigSelfExp(6,12)
('891610', '448256')
firstAndLastDigSelfExp(42,491)
('209417336844579728122309696211520194012462', '160453713040914743773217804810667483135091')
And neither are leading zeroes
>>> firstAndLastDigSelfExp(4,9)
('3874', '0489')
This isn't do say the modular logs and stuff aren't cool - on the contrary I really liked reading about how you did this without generating the entire number. I didn't know about modf at all until reading OP's question and the body of foo is very interesting.
I think the problem is using floating point. Finding the first digit of a number actually requires perfect precision.
Unfortunately, the contest judge evidently doesn't understand that "number of significant digits" != "number of correct digits".
Perhaps there is some clever way to exactly compute (n*n, n = 10*9) without exhausting memory, but finding the first digits of a very good estimate is simply not the same as finding the first digits of the answer.
Assume that k = 9. Now, m = 1e9, and t <= 1e9 - 1.
t * t then may be as high as 1e18 - 2e9 + 1, which needs ... 59.8 bits.
Ok, not a problem with a 64-bit long long int, which has 63 bits of magnitude (and 1 of sign), but I'll leave this here so others don't repeat the same analysis.
Are you told that n is a positive integer? For example, (-8)^(-8) is perfectly well expressible in decimal but your program can't handle it.