Probabilistic ifelse statement in JAGS - if-statement

I want a variable inside a JAGS model to be assigned a value with probability p[i] and another value with probability 1-p[i]. p[i] is a variable in the model.
I have tried the following but I am not sure it is appropriate. I am afraid a single value (0 or 1) will be attributed to subject i and this value will always stay the same: for a given subject i, the values in the vector a[i] will always be equal to 20 or to 30. What I would like to get instead is a vector containing 20s and 30s, with the probability of 20 being equal to p[i].
for (i in 1:n) {
m[i] ~ dbin(p[i],1)
a[i] <- ifelse(m[i]==1, 20, 30)
}

You could do something like.
for(i in 1:n){
m[i] ~ dbern(p[i])
a[i] <- (m[i] * 20) + ((1 - m[i]) * 30)
}
When the Bernoulli trail takes a 1 at probability p, a becomes 20. When it takes a 0 it becomes 30.

Related

Sieve of Eratosthenes on a segment

Sieve of Eratosthenes on the segment:
Sometimes you need to find all the primes that are in the range
[L...R] and not in [1...N], where R is a large number.
Conditions:
You are allowed to create an array of integers with size
(R−L+1).
Implementation:
bool isPrime[r - l + 1]; //filled by true
for (long long i = 2; i * i <= r; ++i) {
for (long long j = max(i * i, (l + (i - 1)) / i * i); j <= r; j += i) {
isPrime[j - l] = false;
}
}
for (long long i = max(l, 2); i <= r; ++i) {
if (isPrime[i - l]) {
//then i is prime
}
}
What is the logic behind setting the lower limit of 'j' in second for loop??
Thanks in advance!!
Think about what we want to find. Ignore the i*i part. We have only
(L + (i - 1)) / i * i) to consider. (I wrote the L capital since l and 1 look quite similar)
What should it be? Obviously it should be the smallest number within L..R that is divisible by i. That's when we want to start to sieve out.
The last part of the formula, / i * i finds the next lower number that is divisible by i by using the properties of integer division.
Example: 35 div 4 * 4 = 8 * 4 = 32, 32 is the highest number that is (equal or) lower than 35 which is divisible by 4.
The L is where we want to start, obviously, and the + (i-1) makes sure that we don't find the highest number equal or lower than but the smallest number equal or bigger than L that is divisible by i.
Example: (459 + (4-1)) div 4 * 4 = 462 div 4 * 4 = 115 * 4 = 460.
460 >= 459, 460 | 4, smallest number with that property
(the max( i*i, ...) is only so that i is not sieved out itself if it is within L..R, I think, although I wonder why it's not 2 * i)
For reasons of readability, I'd made this an inline function next_divisible(number, divisor) or the like. And I'd make it clear that integer division is used. If not, somebody clever might change it to regular division, with which it wouldn't work.
Also, I strongly recommend to wrap the array. It is not obvious to the outside that the property for a number X is stored at position X - L. Something like a class RangedArray that does that shift for you, allowing you a direct input of X instead of X - L, could easily take the responsibility. If you don't do that, at least make it a vector, outside of a innermost class, you shouldn't use raw arrays in C++.

Find the smallest integer whose sum of squares of digits add to the given number

Example:
Input: | Output:
5 –> 12 (1^2 + 2^2 = 5)
500 -> 18888999 (1^2 + 8^2 + 8^2 + 8^2 + 9^2 + 9^2 + 9^2 = 500)
I have written a pretty simple brute-force solution, but it has big performance problems:
#include <iostream>
using namespace std;
int main() {
int n;
bool found = true;
unsigned long int sum = 0;
cin >> n;
int i = 0;
while (found) {
++i;
if (n == 0) { //The code below doesn't work if n = 0, so we assign value to sum right away (in case n = 0)
sum = 0;
break;
}
int j = i;
while (j != 0) { //After each iteration, j's last digit gets stripped away (j /= 10), so we want to stop right when j becomes 0
sum += (j % 10) * (j % 10); //After each iteration, sum gets increased by *(last digit of j)^2*. (j % 10) gets the last digit of j
j /= 10;
}
if (sum == n) { //If we meet our problem's requirements, so that sum of j's each digit squared is equal to the given number n, loop breaks and we get our result
break;
}
sum = 0; //Otherwise, sum gets nullified and the loops starts over
}
cout << i;
return 0;
}
I am looking for a fast solution to the problem.
Use dynamic programming. If we knew the first digit of the optimal solution, then the rest would be an optimal solution for the remainder of the sum. As a result, we can guess the first digit and use a cached computation for smaller targets to get the optimum.
def digitsum(n):
best = [0]
for i in range(1, n+1):
best.append(min(int(str(d) + str(best[i - d**2]).strip('0'))
for d in range(1, 10)
if i >= d**2))
return best[n]
Let's try and explain David's solution. I believe his assumption is that given an optimal solution, abcd..., the optimal solution for n - a^2 would be bcd..., therefore if we compute all the solutions from 1 to n, we can rely on previous solutions for numbers smaller than n as we try different subtractions.
So how can we interpret David's code?
(1) Place the solutions for the numbers 1 through n, in order, in the table best:
for i in range(1, n+1):
best.append(...
(2) the solution for the current query, i, is the minimum in an array of choices for different digits, d, between 1 and 9 if subtracting d^2 from i is feasible.
The minimum of the conversion to integers...
min(int(
...of the the string, d, concatenated with the string of the solution for n - d^2 previously recorded in the table (removing the concatenation of the solution for zero):
str(d) + str(best[i - d**2]).strip('0')
Let's modify the last line of David's code, to see an example of how the table works:
def digitsum(n):
best = [0]
for i in range(1, n+1):
best.append(min(int(str(d) + str(best[i - d**2]).strip('0'))
for d in range(1, 10)
if i >= d**2))
return best # original line was 'return best[n]'
We call, digitsum(10):
=> [0, 1, 11, 111, 2, 12, 112, 1112, 22, 3, 13]
When we get to i = 5, our choices for d are 1 and 2 so the array of choices is:
min([ int(str(1) + str(best[5 - 1])), int(str(2) + str(best[5 - 4])) ])
=> min([ int( '1' + '2' ), int( '2' + '1' ) ])
And so on and so forth.
So this is in fact a well known problem in disguise. The minimum coin change problem in which you are given a sum and requested to pay with minimum number of coins. Here instead of ones, nickels, dimes and quarters we have 81, 64, 49, 36, ... , 1 cents.
Apparently this is a typical example to encourage dynamic programming. In dynamic programming, unlike in recursive approach in which you are expected to go from top to bottom, you are now expected to go from bottom to up and "memoize" the results those will be required later. Thus... much faster..!
So ok here is my approach in JS. It's probably doing a very similar job to David's method.
function getMinNumber(n){
var sls = Array(n).fill(),
sct = [], max;
sls.map((_,i,a) => { max = Math.min(9,~~Math.sqrt(i+1)),
sct = [];
while (max) sct.push(a[i-max*max] ? a[i-max*max].concat(max--)
: [max--]);
a[i] = sct.reduce((p,c) => p.length < c.length ? p : c);
});
return sls[sls.length-1].reverse().join("");
}
console.log(getMinNumber(500));
What we are doing is from bottom to up generating a look up array called sls. This is where memoizing happens. Then starting from from 1 to n we are mapping the best result among several choices. For example if we are to look for 10's partitions we will start with the integer part of 10's square root which is 3 and keep it in the max variable. So 3 being one of the numbers the other should be 10-3*3 = 1. Then we look up for the previously solved 1 which is in fact [1] at sls[0] and concat 3 to sls[0]. And the result is [3,1]. Once we finish with 3 then one by one we start over the same job with one smaller, up until it's 1. So after 3 we check for 2 (result is [2,2,1,1]) and then for 1 (result is [1,1,1,1,1,1,1,1,1,1]) and compare the length of the results of 3, 2 and 1 for the shortest, which is [3,1] and store it at sls[9] (a.k.a a[i]) which is the place for 10 in our look up array.
(Edit) This answer is not correct. The greedy approach does not work for this problem -- sorry.
I'll give my solution in a language agnostic fashion, i.e. the algorithm.
I haven't tested but I believe this should do the trick, and the complexity is proportional to the number of digits in the output:
digitSquared(n) {
% compute the occurrences of each digit
numberOfDigits = [0 0 0 0 0 0 0 0 0]
for m from 9 to 1 {
numberOfDigits[m] = n / m*m;
n = n % m*m;
if (n==0)
exit loop;
}
% assemble the final output
output = 0
powerOfTen = 0
for m from 9 to 1 {
for i from 0 to numberOfDigits[m] {
output = output + m*10^powerOfTen
powerOfTen = powerOfTen + 1
}
}
}

How to calculate the minimum cost to convert all n numbers in an array to m?

I have been given the following assignment:
Given N integers in the form of A(i) where 1≤i≤N, make each number
A(i) in the N numbers equal to M. To convert a number A(i) to M, it
will cost |M−Ai| units. Find out the minimum cost to convert all the N
numbers to M, so you should choose the best M to get the minimum cost.
Given:
1 <= N <= 10^5
1 <= A(i) <= 10^9
My approach was to calculate the sum of all numbers and find avg = sum / n and then subtract each number by avg to get the minimum cost.
But this fails in many test cases. How can I find the optimal solution for this?
You should take the median of the numbers (or either of the two numbers nearest the middle if the list has even length), not the mean.
An example where the mean fails to minimize is: [1, 2, 3, 4, 100]. The mean is 110 / 5 = 22, and the total cost is 21 + 20 + 19 + 18 + 78 = 156. Choosing the median (3) gives total cost: 2 + 1 + 0 + 1 + 97 = 101.
An example where the median lies between two items in the list is [1, 2, 3, 4, 5, 100]. Here the median is 3.5, and it's ok to either use M=3 or M=4. For M=3, the total cost is 2 + 1 + 0 + 1 + 2 + 97 = 103. For M=4, the total cost is 3 + 2 + 1 + 0 + 1 + 96 = 103.
A formal proof of correctness can be found on Mathematics SE, although you may convince yourself of the result by noting that if you nudge M a small amount delta in one direction (but not past one of the data points) -- and for example's sake let's say it's in the positive direction, the total cost increases by delta times the number of points to the left of M minus delta times the number of points to the right of M. So M is minimized when the number of points to its left and the right are equal in number, otherwise you could move it a small amount one way or the other to decrease the total cost.
#PaulHankin already provided a perfect answer. Anyway, when thinking about the problem, I didn't think of the median being the solution. But even if you don't know about the median, you can come up with a programming solution.
I made similar observations as #PaulHankin in the last paragraph of his last answer. This made me realize, that I have to eliminate outliers iteratively in order to find m. So I wrote a program that first sorts the input array (vector) A and then analyzes the minimum and maximum values.
The idea is to move the minimum values towards the second smallest values and the maximum values towards the second largest values. You always move either the minimum or maximum values, depending on whether you have less minimum values than maximum values or not. If all array items end up being the same value, then you found your m:
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;
int getMinCount(vector<int>& A);
int getMaxCount(vector<int>& A);
int main()
{
// Example as given by #PaulHankin
vector<int> A;
A.push_back(1);
A.push_back(2);
A.push_back(3);
A.push_back(4);
A.push_back(100);
sort(A.begin(), A.end());
int minCount = getMinCount(A);
int maxCount = getMaxCount(A);
while (minCount != A.size() && maxCount != A.size())
{
if(minCount <= maxCount)
{
for(int i = 0; i < minCount; i++)
A[i] = A[minCount];
// Recalculate the count of the minium value, because we changed the minimum.
minCount = getMinCount(A);
}
else
{
for(int i = 0; i < maxCount; i++)
A[A.size() - 1 - i] = A[A.size() - 1 - maxCount];
// Recalculate the count of the maximum value, because we changed the maximum.
maxCount = getMaxCount(A);
}
}
// Print out the one and only remaining value, which is m.
cout << A[0] << endl;
return 0;
}
int getMinCount(vector<int>& A)
{
// Count how often the minimum value exists.
int minCount = 1;
int pos = 1;
while (pos < A.size() && A[pos++] == A[0])
minCount++;
return minCount;
}
int getMaxCount(vector<int>& A)
{
// Count how often the maximum value exists.
int maxCount = 1;
int pos = A.size() - 2;
while (pos >= 0 && A[pos--] == A[A.size() - 1])
maxCount++;
return maxCount;
}
If you think about the algorithm, then you will come to the conclusion, that it actually calculates the median of the values in the array A. As example input I took the first example given by #PaulHankin. As expected, the code provides the correct result (3) for it.
I hope my approach helps you to understand how to tackle such kind of problems even if you don't know the correct solution. This is especially helpful when you are in an interview, for example.

Counting the basic operations of a given program

I am looking at the following: Operations Counting Example
Which is supposed to present the operations count of the following pseudocode:
Algorithm prefixAverages(A)
Input array A of n numbers
Output array B of n numbers such that B[i] is the average
of elements A[0], A[1], … , A[i]
for i = 0 to n - 1 do
b = 0
for j = 0 to i do
b = b + A[j]
j++;
B[i] = b / (i + 1)
return B
But I don't see how the counts on the inner for loop are reached. It says that for case i=0; j=0; the inner for loop runs twice? But it strikes me that it should only run once to see that 0 < 0. Can anyone provide insight into where the given operations count comes from or provide their own operations count?
This is under the assumption that primitive operations are:
Assignment
Array access
Mathematical operators (+, -, /, *)
Comparison
Increment/Decrement (math in disguise)
Return statements
Let me know if anything is unclear or you need more information
When the article you are following says "for var <- 0 to var2", it is like "for (var = 0; var <= var2; var++), so yes, when i = 0, it enters the "for" twice (once when i = 0, and again when i = 1, then it goes out).
(Sorry if bad english)
Edit and improve: When I calculate the complexity of a program, the only thing that interest me is the big O complexity; in this case, you have that the 'i' loop run 'n' times, and the 'j' loop run 'i' times, so the 'i' loop runs (1+2+3+...+n) times, that is n(n+1)/2 times, and that is an O(n**2) complexity.
In the first line, you have an assignament (i = something), and a comparison (i <= n-1) ("2 operations") for each i value, and as the last value is i=n, it does those 2 operations since i=0, until i=n, and as those are n+1 values (from 0 to n), this line do 2(n+1) operations.
The second line is a little obvious, as it enters the loop n times (since i=0, until i=n-1).
On the second loop, it do 2 things, an assignament, and a comparison (just as the first loop), and it do this i+2 times (for example, when i=0, it enters the loop 1 time, but it has to do the i=1 assignament, and the 1<=0 comparison, so its 2 times in total), so it do this calculus 2(i+2) times, but it do this since i=0, until i=n-1, so to calculate all of this, we have to do the sum (sum from i=0 until i=n-1: 2(i+2)) = 2((sum of i from 0 to n-1) + (sum of 2 from i=0 to i=n-1)) = 2((n(n-1)/2) + 2n) = n(n-1) + 4n = n"2 - n + 4n = n"2 + 3n.
I'll continue this later, I hope my answer so far is helpful for you. (again, sorry if some bad english)

Calculating Binomial Coefficient (nCk) for large n & k

I just saw this question and have no idea how to solve it. can you please provide me with algorithms , C++ codes or ideas?
This is a very simple problem. Given the value of N and K, you need to tell us the value of the binomial coefficient C(N,K). You may rest assured that K <= N and the maximum value of N is 1,000,000,000,000,000. Since the value may be very large, you need to compute the result modulo 1009.
Input
The first line of the input contains the number of test cases T, at most 1000. Each of the next T lines consists of two space separated integers N and K, where 0 <= K <= N and 1 <= N <= 1,000,000,000,000,000.
Output
For each test case, print on a new line, the value of the binomial coefficient C(N,K) modulo 1009.
Example
Input:
3
3 1
5 2
10 3
Output:
3
10
120
Notice that 1009 is a prime.
Now you can use Lucas' Theorem.
Which states:
Let p be a prime.
If n = a1a2...ar when written in base p and
if k = b1b2...br when written in base p
(pad with zeroes if required)
Then
(n choose k) modulo p = (a1 choose b1) * (a2 choose b2) * ... * (ar choose br) modulo p.
i.e. remainder of n choose k when divided by p is same as the remainder of
the product (a1 choose b1) * .... * (ar choose br) when divided by p.
Note: if bi > ai then ai choose bi is 0.
Thus your problem is reduced to finding the product modulo 1009 of at most log N/log 1009 numbers (number of digits of N in base 1009) of the form a choose b where a <= 1009 and b <= 1009.
This should make it easier even when N is close to 10^15.
Note:
For N=10^15, N choose N/2 is more than
2^(100000000000000) which is way
beyond an unsigned long long.
Also, the algorithm suggested by
Lucas' theorem is O(log N) which is
exponentially faster than trying to
compute the binomial coefficient
directly (even if you did a mod 1009
to take care of the overflow issue).
Here is some code for Binomial I had written long back, all you need to do is to modify it to do the operations modulo 1009 (there might be bugs and not necessarily recommended coding style):
class Binomial
{
public:
Binomial(int Max)
{
max = Max+1;
table = new unsigned int * [max]();
for (int i=0; i < max; i++)
{
table[i] = new unsigned int[max]();
for (int j = 0; j < max; j++)
{
table[i][j] = 0;
}
}
}
~Binomial()
{
for (int i =0; i < max; i++)
{
delete table[i];
}
delete table;
}
unsigned int Choose(unsigned int n, unsigned int k);
private:
bool Contains(unsigned int n, unsigned int k);
int max;
unsigned int **table;
};
unsigned int Binomial::Choose(unsigned int n, unsigned int k)
{
if (n < k) return 0;
if (k == 0 || n==1 ) return 1;
if (n==2 && k==1) return 2;
if (n==2 && k==2) return 1;
if (n==k) return 1;
if (Contains(n,k))
{
return table[n][k];
}
table[n][k] = Choose(n-1,k) + Choose(n-1,k-1);
return table[n][k];
}
bool Binomial::Contains(unsigned int n, unsigned int k)
{
if (table[n][k] == 0)
{
return false;
}
return true;
}
Binomial coefficient is one factorial divided by two others, although the k! term on the bottom cancels in an obvious way.
Observe that if 1009, (including multiples of it), appears more times in the numerator than the denominator, then the answer mod 1009 is 0. It can't appear more times in the denominator than the numerator (since binomial coefficients are integers), hence the only cases where you have to do anything are when it appears the same number of times in both. Don't forget to count multiples of (1009)^2 as two, and so on.
After that, I think you're just mopping up small cases (meaning small numbers of values to multiply/divide), although I'm not sure without a few tests. On the plus side 1009 is prime, so arithmetic modulo 1009 takes place in a field, which means that after casting out multiples of 1009 from both top and bottom, you can do the rest of the multiplication and division mod 1009 in any order.
Where there are non-small cases left, they will still involve multiplying together long runs of consecutive integers. This can be simplified by knowing 1008! (mod 1009). It's -1 (1008 if you prefer), since 1 ... 1008 are the p-1 non-zero elements of the prime field over p. Therefore they consist of 1, -1, and then (p-3)/2 pairs of multiplicative inverses.
So for example consider the case of C((1009^3), 200).
Imagine that the number of 1009s are equal (don't know if they are, because I haven't coded a formula to find out), so that this is a case requiring work.
On the top we have 201 ... 1008, which we'll have to calculate or look up in a precomputed table, then 1009, then 1010 ... 2017, 2018, 2019 ... 3026, 3027, etc. The ... ranges are all -1, so we just need to know how many such ranges there are.
That leaves 1009, 2018, 3027, which once we've cancelled them with 1009's from the bottom will just be 1, 2, 3, ... 1008, 1010, ..., plus some multiples of 1009^2, which again we'll cancel and leave ourselves with consecutive integers to multiply.
We can do something very similar with the bottom to compute the product mod 1009 of "1 ... 1009^3 - 200 with all the powers of 1009 divided out". That leaves us with a division in a prime field. IIRC that's tricky in principle, but 1009 is a small enough number that we can manage 1000 of them (the upper limit on the number of test cases).
Of course with k=200, there's an enormous overlap which could be cancelled more directly. That's what I meant by small cases and non-small cases: I've treated it like a non-small case, when in fact we could get away with just "brute-forcing" this one, by calculating ((1009^3-199) * ... * 1009^3) / 200!
I don't think you want to calculate C(n,k) and then reduce mod 1009. The biggest one, C(1e15,5e14) will require something like 1e16 bits ~ 1000 terabytes
Moreover executing the loop in snakiles answer 1e15 times seems like it might take a while.
What you might use is, if
n = n0 + n1*p + n2*p^2 ... + nd*p^d
m = m0 + m1*p + m2*p^2 ... + md*p^d
(where 0<=mi,ni < p)
then
C(n,m) = C(n0,m0) * C(n1,m1) *... * C(nd, nd) mod p
see, eg http://www.cecm.sfu.ca/organics/papers/granville/paper/binomial/html/binomial.html
One way would be to use pascal's triangle to build a table of all C(m,n) for 0<=m<=n<=1009.
psudo code for calculating nCk:
result = 1
for i=1 to min{K,N-K}:
result *= N-i+1
result /= i
return result
Time Complexity: O(min{K,N-K})
The loop goes from i=1 to min{K,N-K} instead of from i=1 to K, and that's ok because
C(k,n) = C(k, n-k)
And you can calculate the thing even more efficiently if you use the GammaLn function.
nCk = exp(GammaLn(n+1)-GammaLn(k+1)-GammaLn(n-k+1))
The GammaLn function is the natural logarithm of the Gamma function. I know there's an efficient algorithm to calculate the GammaLn function but that algorithm isn't trivial at all.
The following code shows how to obtain all the binomial coefficients for a given size 'n'. You could easily modify it to stop at a given k in order to determine nCk. It is computationally very efficient, it's simple to code, and works for very large n and k.
binomial_coefficient = 1
output(binomial_coefficient)
col = 0
n = 5
do while col < n
binomial_coefficient = binomial_coefficient * (n + 1 - (col + 1)) / (col + 1)
output(binomial_coefficient)
col = col + 1
loop
The output of binomial coefficients is therefore:
1
1 * (5 + 1 - (0 + 1)) / (0 + 1) = 5
5 * (5 + 1 - (1 + 1)) / (1 + 1) = 15
15 * (5 + 1 - (2 + 1)) / (2 + 1) = 15
15 * (5 + 1 - (3 + 1)) / (3 + 1) = 5
5 * (5 + 1 - (4 + 1)) / (4 + 1) = 1
I had found the formula once upon a time on Wikipedia but for some reason it's no longer there :(