I am trying to implement Oppen's algorithm in C++.
The basic routines in this algorithm (print and scan) dispatch on a token type.
It seems natural to implement this dispatch using the visitor pattern.
The problem is: the routines are nested and the arguments to print() are enqueued in a stack during scan().
In order to avoid any memory problems, I would like to use smart pointers for the task.
So my implementation looks like this:
class Text;
class Line;
class Open;
class Close;
class Visitor {
/* Define virtual visit functions for concrete doc nodes:
*/
public:
virtual void visit(const Text&) = 0;
virtual void visit(const Line&) = 0;
virtual void visit(const Open&) = 0;
virtual void visit(const Close&) = 0;
};
class DocToken
{
protected:
explicit DocToken() {}
friend class Visitor;
public:
virtual void accept(Visitor * visitor) const = 0;
};
class Text : public DocToken {
public:
Text(std::string s) : text(s) {}
void accept(Visitor *visitor) const {
visitor -> visit (*this);
}
std::string text;
};
class Open : public DocToken { /* .. */ }
/* .. */
class Scan : public Visitor {
stream_t stream;
/* ... */
public:
void visit(const Open& x) {
/* ... */
stream.push_back(/* .. */ new Open() /* .. */);
/* ... */
}
void visit(const Text& x) {
/* ... */
stream.push_back(/* .. */ new Text(x) /* .. */);
/* ... */
}
/* .. */
}
As you can see, the Open token does not carry any data and can be constructed in place easily. The Text token does carry data (a std::string) and has to be copied in order to be pushed into the stream.
The stream needs to consist of pointers due to the common abstract base class of Open and Text.
Since on the outside, there is a smart pointer to that text token, I'd like to avoid the copying and simply use the existing smart pointer.
However, the accept method does not have access to that smart pointer.
Is there a way to implement a visitor pattern directly on smart-pointers? If not, how can I reduce the cost of copying the text token?
Technically, You can do this using std::enable_shared_from_this. (Note Pete Kirkham's excellent comment to the question, though - shared pointers indicate ownership. This is applicable to visitors that might outlive their originating documents, e.g., an ad-hoc dictionary builder, which might live after the document has been closed. Where no ownership is involved, raw pointers are the way to go.)
Below is a simplified version of your code illustrating this.
Say we start with the usual visitor-pattern forward declarations and base class definitions.
#include <memory>
#include <vector>
#include <iostream>
struct token;
struct visitor;
struct token {
virtual void accept(visitor &v) = 0;
};
struct text_token;
struct open_token;
When we define visitor, we make it accept std::shared_ptrs of the options:
struct visitor {
virtual void accept(std::shared_ptr<text_token> p) = 0;
virtual void accept(std::shared_ptr<open_token> p) = 0;
};
Now when we make concrete tokens, we:
subclass std::enable_shared_from_this
use shared_from_this to pass on the argument to accept
so the concrete tokens become:
struct text_token : public token, public std::enable_shared_from_this<text_token> {
virtual void accept(visitor &v) override {
std::shared_ptr<text_token> p{shared_from_this()};
v.accept(p);
}
};
struct open_token : public token, public std::enable_shared_from_this<open_token> {
virtual void accept(visitor &v) override {
std::shared_ptr<open_token> p{shared_from_this()};
v.accept(p);
}
};
The concrete visitor doesn't change by much:
struct scan : public visitor {
virtual void accept(std::shared_ptr<text_token>) override {
std::cout << "accepting text" << std::endl;
}
virtual void accept(std::shared_ptr<open_token>) override {
std::cout << "accepting open" << std::endl;
}
};
Now we can define a range of std::shared_ptrs to tokens
int main() {
std::vector<std::shared_ptr<token>> toks;
toks.push_back(std::make_shared<text_token>());
toks.push_back(std::make_shared<open_token>());
And call accept on them:
scan s;
for(auto p: toks)
p->accept(s);
}
When run, it prints:
$ ./a.out
accepting text
accepting open
Full Code
#include <memory>
#include <vector>
#include <iostream>
struct token;
struct visitor;
struct token {
virtual void accept(visitor &v) = 0;
};
struct text_token;
struct open_token;
struct visitor {
virtual void accept(std::shared_ptr<text_token> p) = 0;
virtual void accept(std::shared_ptr<open_token> p) = 0;
};
struct text_token : public token, public std::enable_shared_from_this<text_token> {
virtual void accept(visitor &v) override {
std::shared_ptr<text_token> p{shared_from_this()};
v.accept(p);
}
};
struct open_token : public token, public std::enable_shared_from_this<open_token> {
virtual void accept(visitor &v) override {
std::shared_ptr<open_token> p{shared_from_this()};
v.accept(p);
}
};
struct scan : public visitor {
virtual void accept(std::shared_ptr<text_token>) override {
std::cout << "accepting text" << std::endl;
}
virtual void accept(std::shared_ptr<open_token>) override {
std::cout << "accepting open" << std::endl;
}
};
int main() {
std::vector<std::shared_ptr<token>> toks;
toks.push_back(std::make_shared<text_token>());
toks.push_back(std::make_shared<open_token>());
scan s;
for(auto p: toks)
p->accept(s);
}
Related
Currently I am learning about the Visitor Pattern and try out various ideas.
Below I have the code of my current setup, which I would like to get functioning somehow.
I would like to have two visitors, one that counts instances of Red and Blu separately and one that counts anything (one can assume, it's a Color)
This is of course solvable by simply implementing the second visitor analogously to the first one, however not using separate variables for counting, but just one.
I think however this is unnecessary - if I had for example many, many different colours, the code would be very repetitive: All functions in that visitor would be same, they would simply increment one variable. Surely, there is an easier way, but how?
According to the standard Visitor Pattern I have to implement for every color class a visit functions, thus this does not seem to be the right approach.
How would someone solve this problem?
#include <iostream>
class Color
{
public:
virtual void accept(class Visitor*) = 0;
};
class Red: public Color
{
public:
/*virtual*/
void accept(Visitor*);
void eye()
{
std::cout << "Red::eye\n";
}
};
class Blu: public Color
{
public:
/*virtual*/
void accept(Visitor*);
void sky()
{
std::cout << "Blu::sky\n";
}
};
class Visitor
{
public:
virtual void visit(Red*) = 0;
virtual void visit(Blu*) = 0;
};
class CountVisitor: public Visitor
{
public:
CountVisitor()
{
m_num_red = m_num_blu = 0;
}
/*virtual*/
void visit(Red*)
{
++m_num_red;
}
/*virtual*/void visit(Blu*)
{
++m_num_blu;
}
void report_num()
{
std::cout << "Reds " << m_num_red << ", Blus " << m_num_blu << '\n';
}
private:
int m_num_red, m_num_blu;
};
class TemplateVisitor: public Visitor
{
public:
TemplateVisitor() : num_of_colours(0) {}
/*virtual*/
template<class C>
void visit(C* c)
{
++num_of_colours;
}
void report_num()
{
std::cout << "Colours " << num_of_colours << '\n';
}
private:
int num_of_colours;
};
void Red::accept(Visitor *v)
{
v->visit(this);
}
void Blu::accept(Visitor *v)
{
v->visit(this);
}
int main()
{
Color *set[] =
{
new Red, new Blu, new Blu, new Red, new Red, nullptr
};
CountVisitor count_operation;
TemplateVisitor template_visitor;
for (int i = 0; set[i]; i++)
{
set[i]->accept(&count_operation);
set[i]->accept(&template_visitor);
}
count_operation.report_num();
template_visitor.report_num();
}
Unfortunately, virtual methods and template methods can't match.
I mean... if your base class Visitor require
virtual void visit(Red*) = 0;
virtual void visit(Blu*) = 0;
the implementation of two virtual methods in derived classes, you can't solve this obligation with a single template method
template<class C>
void visit(C* c)
{
++num_of_colours;
}
You have to write two methods, absolutely not template, with the exact signature. Maybe adding also override, to reduce the risk of mistakes.
void visit (Red * r) override
{ ++num_of_colours; }
void visit (Blu * b) override
{ ++num_of_colours; }
Obviously you can define a template method (maybe with another name, but also visit() if you want) that is called by both virtual overrided methods
template <typename C>
void visit (C * c)
{ ++num_of_colours; }
void visit (Red * r) override
{ visit<Red>(r); }
void visit (Blu * b) override
{ visit<Blu>(b); }
This way, you can implement the logic of the visitor in a single template method and call it by all virtual methods
Why not just use a map and add some function to color to use as an identifier?
class Color
{
public:
virtual void accept(class Visitor*) = 0;
virtual std::string color_name() = 0;
};
class Visitor
{
public:
virtual void visit(Color* c);
};
class CountVisitor: public Visitor
{
std::unordered_map<std::string, int> map;
public:
/*virtual*/
void visit(Color* c)
{
map[c.color_name()]++;
}
};
I've recently come across a couple of situations that I think could be cleaned up with a different design, but I don't know of any patterns that would fit.
In all of these situations, I have a few classes that partially share an API. For example, a logger class:
struct ILogger { virtual void log(string msg) = 0; };
struct StdOutLogger : public ILogger {
void log(string msg) override; // Log to stdout
};
struct FileLogger : public ILogger {
void log(string msg) override; // Log to file
};
struct GuiLogger : public ILogger {
void log(string msg) override; // Log to GUI
void draw();
void clear();
};
or perhaps:
struct Graphic {
virtual void draw();
virtual void setPosition();
// etc.
};
struct AnimatedGraphic : public Graphic {
void draw() override;
void start();
void stop();
void setLooping(bool loop);
};
Now, depending on who owns these objects, I might have a container of references/pointers to a common interface:
class LogManager {
std::vector<std::unique_ptr<ILogger>> _loggers;
// ...
};
Or I might keep the types separated and choose at runtime which one to use:
// This is already starting to get messy
class SomethingWithGraphic {
std::unique_ptr<Graphic> _graphic;
std::unique_ptr<AnimatedGraphic> _animatedGraphic;
// ...
};
The first solution is fine until I need to start using the functionality that is not part of the common interface. The second solution allows me to choose the one I need, but it is error prone and requires ugly branches everywhere.
I've come up with a couple of alternative solutions, but I haven't found one that really feels right.
Keep one owning container, and create additional containers that point to the owned objects, but through a different interface. (Requires that the containers be kept in sync)
Add all functions to interface, but leave implementations empty for objects that don't need the extra functions. (Those functions don't really belong as part of that interface)
Store variants of all potential types. (Feels like a hack, requires visitors everywhere)
Using the logger example:
//// 1 ////
struct IDrawable {
virtual void draw() = 0;
virtual void clear() = 0;
};
std::vector<std::unique_ptr<ILogger>> _loggers;
std::vector<IDrawable*> _drawableLoggers;
//// 2 ////
struct ILogger {
virtual void log(string msg) = 0;
virtual void draw() {};
virtual void clear() {};
};
struct StdOutLogger : public ILogger {
void log(string msg) override; // Log to stdout
};
struct FileLogger : public ILogger {
void log(string msg) override; // Log to file
};
struct GuiLogger : public ILogger {
void log(string msg) override; // Log to GUI
void draw() override;
void clear() override;
};
//// 3 ////
std::vector<std::variant<StdOutLogger, FileLogger, GuiLogger>> _loggers;
#1 seems the most correct I think, but still not the greatest.
Does anyone know of any patterns or structures that could clean this up?
A viable approach: you can use a vector of pointers or references to your interface and implement the visitor pattern for all those cases in which you want to get out of one instance its actual type and call a method that isn't part of the common interface.
Here is a minimal, working example:
#include<iostream>
#include<memory>
#include<vector>
struct Visitor;
struct Interface {
virtual void method() = 0;
virtual void accept(Visitor &) = 0;
};
struct A: Interface {
void method() override { std::cout << "A::method" << std::endl; }
void f() { std::cout << "A::f" << std::endl; }
void accept(Visitor &) override;
};
struct B: Interface {
void method() override { std::cout << "B::method" << std::endl; }
void g() { std::cout << "B::g" << std::endl; }
void accept(Visitor &) override;
};
struct Visitor {
void visit(A &a) { a.f(); }
void visit(B &b) { b.g(); }
};
void A::accept(Visitor &v) { v.visit(*this); }
void B::accept(Visitor &v) { v.visit(*this); }
int main() {
std::vector<std::unique_ptr<Interface>> vec;
vec.push_back(std::make_unique<A>());
vec.push_back(std::make_unique<B>());
Visitor visitor;
for(auto &&i: vec) {
i->method();
i->accept(visitor);
}
}
Please consider the following (simplified) class hierarchy and processing functions:
struct msgBase
{
virtual int msgType() const=0;
};
struct msgType1:public msgBase
{
virtual int msgType() const{return 1;}
};
struct msgType2:public msgBase
{
virtual int msgType() const {return 2;}
};
void process(const msgType1& mt1)
{
// processing for message type 1
}
void process(const msgType2& mt2)
{
// processing for message type 2
}
void process(const msgBase& mbase)
{
switch(mbase.msgType())
{
case 1:
process(static_cast<const msgType1&>(mbase));
break;
case 2:
process(static_cast<const msgType2&>(mbase));
break;
}
}
In an integrated design, msgBase would be given a virtual "process" method, to avoid needing to iterate over the types.
If it's not possible or desirable to modify any of the classes, are there any alternatives to iterating over the types?
I've experimented with a decorator/factory pattern where a parallel hierarchy of classes encapsulates the given classes, and implements the necessary virtual functions, but this results in an awful lot of boilerplate, and the factory function still needs to iterate over the types!
I could replace the switch statement with a series of dyamic_casts, but that still leaves the same weaknesses.
As requested by Simon, here is what I mean by CRTP:
typedef <class Derived>
struct msgBase
{
virtual void process(){
// redirect the call to the derived class's process()
static_cast<Derived*>(this) -> process();
};
struct msgType1:public msgBase<msgType1>
{
void process(){
// process as per type-1
}
};
struct msgType2:public msgBase<msgType1>
{
void process(){
// process as per type-2
}
};
What's happening here? Consider this case:
msgBase* msg = new msgType1();
msg->process();
normally (without CRTP) this would only call msgBase::process(). But now, msgBase "knows" about msgType1 using the template, so it is redirected to msgType1::process at compile time.
Something like this could work:
These classes are used to do the casting automatically:
struct dispatcher_base {
virtual void process(const msgBase&) = 0;
};
template <class T>
struct dispatcher_impl : dispatcher_base {
void process(const msgBase& b) override {
::process(static_cast<const T&>(b));
}
};
We'll store them in a map:
auto g_table = std::map<int, std::unique_ptr<dispatcher_base>>{};
But now you have to initialize this table somewhere:
template <class T>
void register_msg() {
g_table[T{}.msgType()].reset(new dispatcher_impl<T>{});
}
...
register_msg<msgType1>();
register_msg<msgType2>();
You can add an assert to register_msg to make sure that msgTypes are unique.
Your process function will look like this:
void process(const msgBase& b) {
assert(g_table.find(b.msgType()) != g_table.end());
g_table[b.msgType()]->process(b);
}
You can replace assert with any other logic of course.
If you can't modify the classes then you can use decorators to get polymorphic type deduction.
struct DecorBase {
DecorBase(msgBase& b) : b_(b) {}
virtual ~DecorBase() {}
virtual void process() = 0;
msgBase& b_;
};
struct DecorType1 : public DecorBase {
DecorType1(msgType1& t1) : DecorBase(t1) {}
void process() override {
std::cout << "Processing Type 1" << std::endl;
}
};
struct DecorType2 : public DecorBase {
DecorType2(msgType2& t2) : DecorBase(t2) {}
void process() override {
std::cout << "Processing Type 2" << std::endl;
}
};
And use it like this:
msgType1 t1;
msgType2 t2;
DecorType1 dt1(t1); // Wrap objects in respective decorator.
DecorType2 dt2(t2);
DecorBase& base = dt2;
base.process(); // Uses polymorphism to call function in derived type.
This will require you to write a decorator for every derived type but at least you don't have to iterate over all types during the function call.
Edit: Per some comments, by simple I mean a) less code, b) easy to maintain, and c) hard to get wrong.
Edit #2: Also, using containment instead of private inheritance is not objectionable if it does indeed simplify the implementation of InterfaceImpl.
Currently, the only way I know to do this is to have the implementer define the abstract method and delegate the call to the target base type's method. Example:
#include <iostream>
#include <memory>
class Interface
{
public:
virtual void method1() = 0;
virtual void method2(int x) = 0;
};
class MethodOneImpl
{
private:
void method1(int x)
{ std::cout << "MethodOneImpl::method1() " << x << std::endl; }
public:
void method1() { method1(0); }
};
class MethodTwoImpl
{
public:
void myFunc(int x)
{ std::cout << "MethodTwoImpl::myFunc(x)" << x << std::endl; }
};
class InterfaceImpl : public Interface
, private MethodOneImpl
, private MethodTwoImpl
{
public:
virtual void method1() { MethodOneImpl::method1(); }
virtual void method2(int x) { MethodTwoImpl::myFunc(x); }
};
int main()
{
std::unique_ptr<Interface> inf;
inf.reset(new InterfaceImpl);
inf->method1();
inf->method2(0);
// This should be disallowed!
// std::unique_ptr<MethodOneImpl> moi;
// moi.reset(new InterfaceImpl);
}
At first, I thought that perhaps this might solve the problem:
class InterfaceImpl : public Interface
, private MethodOneImpl
, private MethodTwoImpl
{
public:
using MethodOneImpl::method1;
// Obviously this wouldn't work as the method names don't match.
//using MethodTwoImpl::???
};
The first using statement will make both MethodOneImpl::method1 methods be public, but it actually doesn't fulfill the contract with Interface, and it modifies the accessibility of MethodOneImpl::method1(int). And obviously we couldn't use this solution with method2 as the names don't match up.
FWIW, I have what I think is a solution, but it is not part of the standard at all (in other words it won't compile). I was thinking of making a proposal to the C++ committee; if anyone has any advice, I'd appreciate any comments below (but please dont' submit the advice as an answer).
An other option (at least if using MS VC++) is to use virtual inheritance:
struct MyInterface
{
virtual void Method1() = 0;
virtual void Method2() = 0;
};
class Method1Impl : public virtual MyInterface
{
virtual void Method1() { _tprintf( _T("Method1\n") ); }
};
class Method2Impl : public virtual MyInterface
{
virtual void Method2() { _tprintf( _T("Method2\n") ); }
};
class InterfaceImpl : public virtual MyInterface,
private Method1Impl,
private Method2Impl
{
};
void TestWeirdInterfaceImpl()
{
MyInterface* pItf = new InterfaceImpl();
pItf->Method1();
pItf->Method2();
}
While this seems to work and satisfy what you are looking for (asside from C4250 warning that you will have to suppress with a #pragma), this wouldn't be my approach. (I believe virtual inheritance is still not something that supported across all compilers, but I could be wrong).
I would probably go with containment and once boilerplate code is identifier, wrap it into some kind of macro map (similar to maps in ATL or MFC) that would make it really, really difficult to ever screw it up.
So this would be my macro approach:
struct MyInterface
{
virtual float Method1( int x ) = 0;
virtual int Method2( float a, float b ) = 0;
virtual void Method3( const TCHAR* sz ) = 0;
};
class Method1Impl
{
public:
float Method1( int x ) {
_tprintf( _T("Method1: %d\n"), x ); return 5.0;
}
};
class Method2and3Impl
{
public:
int Method2( float a, float b ) {
_tprintf( _T("Method2: %f, %f\n"), a, b ); return 666;
}
void Method3( const TCHAR* sz ) {
_tprintf( _T("Method3: %s"), sz );
}
};
#define DECLARE_METHOD0( MethodName, Obj, R ) \
virtual R MethodName() { return Obj.MethodName(); }
#define DECLARE_METHOD1( MethodName, Obj, R, A1 ) \
virtual R MethodName( A1 a1 ) { return Obj.MethodName( a1 ); }
#define DECLARE_METHOD2( MethodName, Obj, R, A1, A2 ) \
virtual R MethodName( A1 a1, A2 a2 ) { return Obj.MethodName( a1, a2 ); }
class InterfaceImpl : public MyInterface
{
public:
DECLARE_METHOD1( Method1, m_method1Impl, float, int );
DECLARE_METHOD2( Method2, m_method2and3Impl, int, float, float );
DECLARE_METHOD1( Method3, m_method2and3Impl, void, const TCHAR* );
private:
Method1Impl m_method1Impl;
Method2and3Impl m_method2and3Impl;
};
void TestWeirdInterfaceImpl()
{
MyInterface* pItf = new InterfaceImpl();
pItf->Method1( 86 );
pItf->Method2( 42.0, 24.0 );
pItf->Method3( _T("hi") );
}
Until C++ gods grace us with variadic macros, you'll have to declare one for each number of parameters you have. Also if you used multiple inheritance, potentially you wouldn't need the second "Obj" param, but as I've said before, I'd avoid multiple inheritance if there's another solution, which in this case is one extra param.
Yet a third option could be something that authors of Pragmatic Programmer seem to advocate a lot. If you have a ton of cookie cutter code that you don't want to repeat because, as you pointed out, it introduces human error. Define your own language and write a code generator script (python, perl...) to auto-create the actual code. In this case you could almost point at an interface, and have the script write the text out for you. I haven't tried doing this kind of thing myself, but lately have been wanting to use it somewhere just to see and evaluate the outcome.
This is sort of ugly and may bloat the executable size, but what about
#include <iostream>
class Interface
{
public:
virtual void method1() = 0;
virtual void method2(int x) = 0;
};
template<typename T>
class MethodOneImpl : public T
{
private:
void method1(int x)
{ std::cout << "MethodOneImpl::method1() " << x << std::endl; }
public:
void method1() { method1(0); }
};
template<typename T>
class MethodTwoImpl : public T
{
public:
void method2(int x)
{ std::cout << "MethodTwoImpl::myFunc(x)" << x << std::endl; }
};
class InterfaceImpl : public MethodTwoImpl<MethodOneImpl<Interface> >
{
};
int main()
{
InterfaceImpl impl;
impl.method1();
impl.method2(0);
}
class AbsInterface
{
// this is a simple interface class.
public:
virtual void Method1() = 0;
virtual void Method2() = 0;
};
class Functor1
{
public:
void operator () ()
{
printf("This Is Void Functor1");
}
};
class Functor2
{
public:
void operator () ()
{
printf("This Is void Functor2");
}
};
template <class T1, class T2>
class DerivedTemplateClass : public AbsInterface
{
public:
virtual void Method1() { T1()(); }
virtual void Method2() { T2()(); }
};
void main()
{
DerivedTemplateClass<Stratege1, Stratege2> instance;
instance.Method1();
instance.Method2();
}
as you can see, I used Functor.
You could work with template and functor.
It seems impossible to bring MethodOneImpl / MethodTwoImpl into the scope of Interface without having them inherit from Interface because they will not fill the Virtual Table if they don't. C++ misses something like the keyword implements from other languages.
So you are stuck with the virtual inheritence thing unless realize/accept that what you are looking for is just a bridge pattern, which does not satisfy requirement a) (you shall write more code), midly b) (code not necessarly difficult to maintain) and may satisfy c).
Here (another) possible solution (with only method though to reduce bloat)
class Interface
{ public:
virtual void method1() {return impl_->method1();}
private:
Interface() {}
protected:
struct Impl {
virtual void method1() = 0; };
std::shared_ptr<Impl> impl_;
Interface(const std::shared_ptr<Impl> &impl) : impl_(impl) {}
};
class InterfaceImpl : public Interface
{
struct Impl : public Interface::Impl {
void method1() { std::cout << "InterfaceImpl::method1() " << std::endl; } } ;
public:
InterfaceImpl() : Interface(std::shared_ptr<Impl> (new Impl)) {}
};
template <class T>
class GenericInterfaceImpl : public Interface {
struct Impl : public Interface::Impl {
Impl( T &t) : t_(t) {}
void method1() { t_.method1() ; }
T t_; };
public:
GenericInterfaceImpl() : Interface(std::shared_ptr<Impl> (new Impl(T()))) {}
};
struct AMethod1Impl {
void method1() { std::cout << "AMethod1Impl::method1() " << std::endl; } } ;
struct AnotherMethod1Impl_not_working {
void method1_not_present() { std::cout << "AnotherMethod1Impl_not_working ::method1_not_present() " << std::endl; } } ;
int main() {
// compilation of next line would fail
// (lame attempt to simulate ompilation fail when pure function not implemented)
// Interface inf;
std::unique_ptr<Interface> inf;
inf.reset(new InterfaceImpl);
inf->method1();
inf.reset(new GenericInterfaceImpl<AMethod1Impl>() );
inf->method1();
// compilation of next line would fail
// inf.reset(new GenericInterfaceImpl<AnotherMethod1Impl_not_working>() );
}
Does this serve your purpose?
It maintains the interface relationship and gives you maintainable code without having any consideration of client code.
Separating each method in functionoid and giving you the power to control the prototype of each method of the different base class.
#include <iostream>
#include <memory>
using namespace std;
//No Control over this.
class MethodOneImpl
{
private:
void method1(int x)
{ std::cout << "MethodOneImpl::method1() " << x << std::endl; }
public:
void method1() { method1(0); }
};
class MethodTwoImpl
{
public:
void myFunc(int x)
{ std::cout << "MethodTwoImpl::myFunc(x)" << x << std::endl; }
};
//*************************//
class Interface
{
public:
virtual void method1() = 0;
virtual void method2(int x) = 0;
};
//This is what i would do. //
class BaseFuncType
{
//no pure virtual
void Call()
{
throw "error";
}
void Call(int x)
{
throw "error";
}
};
class Method1: public BaseFuncType
{
auto_ptr<MethodOneImpl> MethodPtr;
public:
Method1()
{
MethodPtr.reset(new MethodOneImpl());
}
virtual int Call()
{
MethodPtr->method1();
}
};
class Method2: public BaseFuncType
{
auto_ptr<MethodTwoImpl> MethodPtr;
public:
Method2()
{
MethodPtr.reset(new MethodTwoImpl());
}
virtual int Call(int x)
{
MethodPtr->myFunc(x);
}
};
template <class T1>
class MethodFactory
{
private:
T1 methodObj;
public:
void CallMethod()
{
methodObj.Call();
}
void CallMethod(int x)
{
methodObj.Call(x);
}
};
class InterfaceImpl : public Interface
{
auto_ptr<MethodFactory> factory;
public:
virtual void method1()
{
factory.reset(new MethodFactory<Method1>());
factory->CallMethod();
}
virtual void method2(int x)
{
factory.reset(new MethodFactory<Method2>());
factory->CallMethod(x);
}
};
int main()
{
auto_ptr<Interface> inf;
inf.reset(new InterfaceImpl);
inf->method1();
inf->method2(10);
// This should be disallowed!
// std::unique_ptr<MethodOneImpl> moi;
// moi.reset(new InterfaceImpl);
}
Suppose I have the following classes:
class BaseObject {
public:
virtual int getSomeCommonProperty();
};
class Object1: public BaseObject {
public:
virtual int getSomeCommonProperty(); // optional
int getSomeSpecificProperty();
};
class BaseCollection {
public:
virtual void someCommonTask();
};
class Collection1: public BaseCollection {
public:
virtual void someCommonTask(); // optional
void someSpecificTask();
};
Each collection, derived from BaseCollection, deals with a specific object type (and only one type). But BaseCollection should be able to perform some tasks that are common to all objects, using only common object properties in BaseObject.
Currently, I have potentially three solutions in mind:
1) Store the objects list in BaseCollection, such as:
class BaseCollection {
vector<BaseObject*> objects;
};
The problem with this solution is that when I need to perform object-specific task in Collection1, I need a dynamic_cast<>, because I don't want to use virtual inherance for specific properties, applying to only one type of object. Considering that dynamic_cast<> could potentially get called millions of time per second, this seems an issue for a performance critical application.
2) Store the objects list in Collection1, such as:
class Collection1: public BaseCollection {
vector<Object1*> objects;
}
But then I need some way to access this object list in BaseCollection, to be able to perform some common tasks on them, ideally through an iterator. I would need to create a function that return a vector for the BaseCollection, but again, this does not seem very efficient, because the only way to do that is to create a new vector (potentially containing thousands of objects)...
3) Store the objects list in BaseCollection AND Collection1:
class BaseCollection {
public:
void someCommonTask(); // Use baseObjects
virtual void addObject() = 0;
protected:
vector<BaseObject*> baseObjects;
};
class Collection1: public BaseCollection {
vector<Object1*> objects;
public:
virtual void addObject() {
Object1* obj = new Object1;
objects.push_back(obj);
baseObjects.push_back(obj);
}
void someSpecificTask(); // Use objects, no need of dynamic_cast<>
}
Where the two lists actually contain the same objects. Is that as ugly as it sounds like?
I am looking for the right/correct/best design pattern for this type of problem and none of the 3 solutions exposed above really satisfies me...
Maybe it is possible to solve that problem with templates, but then I don't see a way to store a list of polymorphic collections like this:
vector<BaseCollection*> collections;
You can store all your objects of base and derived classes in one collection through the base class (smart) pointer. Using visitor design pattern and double dispatch mechanism you can call a function only on objects of a specific type without having to expose that function in the base class interface. For example:
#include <boost/intrusive_ptr.hpp>
#include <boost/bind.hpp>
#include <vector>
#include <algorithm>
#include <stdio.h>
struct Visitor { // Visitor design patter
virtual void visit(struct BaseObject&) {}
virtual void visit(struct Object1&) {}
};
struct BaseObject {
unsigned ref_count_; // intrusive_ptr support
BaseObject() : ref_count_() {}
virtual ~BaseObject() {}
virtual void accept(Visitor& v) { v.visit(*this); } // Visitor's double dispatch
virtual void getSomeCommonProperty() { printf("%s\n", __PRETTY_FUNCTION__); }
};
void intrusive_ptr_add_ref(BaseObject* p) { // intrusive_ptr support
++p->ref_count_;
}
void intrusive_ptr_release(BaseObject* p) { // intrusive_ptr support
if(!--p->ref_count_)
delete p;
}
struct Object1 : BaseObject {
virtual void accept(Visitor& v) { v.visit(*this); } // Visitor's double dispatch
virtual void getSomeCommonProperty() { printf("%s\n", __PRETTY_FUNCTION__); }
void getSomeSpecificProperty() { printf("%s\n", __PRETTY_FUNCTION__); }
};
template<class T, class Functor>
struct FunctorVisitor : Visitor {
Functor f_;
FunctorVisitor(Functor f) : f_(f) {}
void visit(T& t) { f_(t); } // apply to T objects only
template<class P> void operator()(P const& p) { p->accept(*this); }
};
template<class T, class Functor>
FunctorVisitor<T, Functor> apply_to(Functor f)
{
return FunctorVisitor<T, Functor>(f);
}
int main()
{
typedef boost::intrusive_ptr<BaseObject> BaseObjectPtr;
typedef std::vector<BaseObjectPtr> Objects;
Objects objects;
objects.push_back(BaseObjectPtr(new BaseObject));
objects.push_back(BaseObjectPtr(new Object1));
for_each(
objects.begin()
, objects.end()
, boost::bind(&BaseObject::getSomeCommonProperty, _1)
);
for_each(
objects.begin()
, objects.end()
, apply_to<BaseObject>(boost::bind(&BaseObject::getSomeCommonProperty, _1))
);
for_each(
objects.begin()
, objects.end()
, apply_to<Object1>(boost::bind(&Object1::getSomeSpecificProperty, _1))
);
}
Output:
$ ./test
virtual void BaseObject::getSomeCommonProperty()
virtual void Object1::getSomeCommonProperty()
virtual void BaseObject::getSomeCommonProperty()
void Object1::getSomeSpecificProperty()
I think you should go for option 1 but use a static cast instead. After all the derived collection knows the type of the member variable for sure.
This answer explains it very well.
Id use nested adapter as in below example. You have to specialize it for every class you want to do a fancy update
!The example has memory leak - allocated A, B, Q objects are not deleted!
#include <iostream>
#include <vector>
#include <algorithm>
class Q
{
public:
virtual void Foo()
{
std::cout << "Q::Foo()" << std::endl;
}
};
class A
{
public:
virtual void Foo()
{
std::cout << "A::Foo()" << std::endl;
}
};
class B : public A
{
public:
virtual void Foo()
{
std::cout << "B::Foo()" << std::endl;
}
virtual void BFoo()
{
std::cout << "B::BFoo()" << std::endl;
}
};
template <typename ElementType>
class C
{
public:
template <typename T>
void add(T* ptr){m_Collection.push_back(std::unique_ptr<Adapter>(new ConcreteAdapter<T>(ptr)));}
void updateAll()
{
std::for_each(m_Collection.begin(), m_Collection.end(), [&](std::unique_ptr<Adapter> &adapter)->void{adapter->update();});
}
private:
class Adapter
{
public:
virtual ElementType* get() = 0;
virtual void update(){get()->Foo();}
};
template <typename T>
class ConcreteAdapter : public Adapter
{
public:
ConcreteAdapter(T* ptr) : m_Ptr(ptr){}
virtual T* get(){return m_Ptr;}
protected:
T* m_Ptr;
};
template <>
class ConcreteAdapter<B> : public Adapter
{
public:
ConcreteAdapter(B* ptr) : m_Ptr(ptr){}
virtual B* get(){return m_Ptr;}
virtual void update()
{
get()->Foo();
get()->BFoo();
}
private:
B* m_Ptr;
};
std::vector<std::unique_ptr<Adapter>> m_Collection;
};
int main()
{
C<A> c;
c.add(new A());
c.add(new B());
//c.add(new Q()); //error - correct
c.updateAll();
return 0;
}
Maybe this will do the trick here ?
class CollectionManipulator {
public:
void someCommonTask(BaseCollection& coll) {
for(unsigned int i = 0; i < coll.size(); i++)
someCommonTask(coll.getObj(i));
}
private:
void someCommonTask(BaseObject*); // Use baseObjects
};
class BaseCollection {
friend class CollectionManipulator;
private:
virtual BaseObject* getObj(unsigned int) = 0;
virtual unsigned int size() const = 0;
};
class Collection1 : public BaseCollection {
vector<Object1*> objects;
public:
virtual void addObject() {
Object1* obj = new Object1;
objects.push_back(obj);
baseObjects.push_back(obj);
}
void someSpecificTask(); // Use objects, no need of dynamic_cast<>
private:
BaseObject* getObj(unsigned int value) {
return object[value];
}
unsigned int size() const {
return objects.size();
}
}
If you want abstract your container in Collection1 (like using list instead using vector), to use it in Manipulator, create an abstract iterator...
I think the solution should be a mix of factory method pattern and template method pattern. Take a look at those to refine your design.
Edit: Here is a sample code. GenericProduct is the BaseObject, it provides two methods, one that is general (though it could be overridden), and a specific method which does nothing, it is not a pure virtual so this class can be instantiated. SpecificProduct is a subclass, which implements the specific method in some way.
Now, Factory class is an abstract class that defines an interface for creating specific products by specific factories, it defines a pure virtual method createProduct which creates the product. Two concrete factories are created GenericFactory and SpecificFactory which create specific products.
Finally, the Consumer abstract class (which corresponds to BaseCollection in your code), it defines a pure virtual method for creating a factory createFactory in order to force subclasses to create their own concrete factories (and hence, the correct products). The class also define a method fillArray (prototype pattern) to fill the array with products created by the factory.
#include <iostream>
#include <vector>
using namespace std;
class GenericProduct{
public:
virtual void getSomeCommonProperty()
{
cout<<"Common Property\n";
}
virtual void getSomeSpecificProperty()
{
cout<<"Generic Has Nothing Specific\n";
}
};
class SpecificProduct : public GenericProduct{
public:
virtual void getSomeSpecificProperty()
{
cout<<"Specific Product Has a Specific Property\n";
}
};
class Factory
{
public:
virtual GenericProduct* createProduct() = 0;
};
class GenericFactory : public Factory
{
public:
virtual GenericProduct* createProduct()
{
return new GenericProduct();
}
};
class SpecificFactory : public Factory
{
public:
virtual GenericProduct* createProduct()
{
return new SpecificProduct();
}
};
class Consumer
{
protected:
vector<GenericProduct*> gp;
Factory* factory;
protected:
virtual void createFactory() = 0;
public:
void fillArray()
{
createFactory();
for(int i=0; i<10; i++)
{
gp.push_back(factory->createProduct());
}
}
virtual void someCommonTask()
{
cout<<"Performaing a Common Task ...\n";
for(int i=0; i<10; i++)
{
gp[i]->getSomeCommonProperty();
}
}
virtual void someSpecificTask()
{
cout<<"Performaing a Specific Task ...\n";
for(int i=0; i<10; i++)
{
gp[i]->getSomeSpecificProperty();
}
}
};
class GenericConsumer : public Consumer
{
virtual void createFactory()
{
factory = new GenericFactory();
}
};
class SpecificConsumer : public Consumer
{
virtual void createFactory()
{
factory = new SpecificFactory();
}
};
int main()
{
Consumer* c = new GenericConsumer();
c->fillArray();
c->someCommonTask();
return 0;
}