The code for my implementation of a hashmap can be found below. I'm not exactly sure why it's seg. faulting. I believe it's something to do with the constructor or destructor, but can't seem to figure exactly what.
typedef struct _node
{
char *key;
int value; /* For this, value will be of type int */
struct _node *next; /* pointer to the next node in the list */
} node;
/* HashMap class */
class HashMap
{
private:
node ** hashTable;
int numSlots;
public:
/* Initializes a hashmap given its set size */
HashMap(int size)
{
numSlots = size;
hashTable = new node*[size] ;
for (int i = 0; i < size; i++)
{
hashTable[i] = NULL;
}
}
/* Deconstructor */
~HashMap()
{
for (int i = 0; i < numSlots; i++)
{
node *temp = hashTable[i];
if (temp != NULL)
{
delete temp;
}
}
delete [] hashTable;
}
/*** Hash function. ***/
int hash(char *s)
{
int i;
int sum = 0;
for (i = 0; * (s + i) != '\0'; i++)
{
sum += *(s + i);
}
return (sum % numSlots);
}
/*
*Free all the nodes of a linked list. Helper method for *deconstructor
*/
void free_list(node *list)
{
node *temp;
char *tempKey;
int tempValue;
while (list != NULL)
{
temp = list;
tempKey = temp->key;
tempValue = temp->value;
list = list->next;
if (tempKey != NULL)
{
delete(tempKey);
}
delete(temp);
}
}
/* Create a single node. */
node *create_node(char *key, int value)
{
node *result = new node();
result->key = key;
result->value = value;
result->next = NULL;
return result;
}
/*
*Stores given key/value pair in hashmap
*returns boolean for success/failure
*/
void set (char* key, int value)
{
int keyValue = hash(key);
node *current = hashTable[keyValue];
node *original = current;
node *newNode;
if (current == NULL)
{
hashTable[keyValue] = create_node(key, value);
}
else
{
while (current != NULL)
{
current = current -> next;
}
if (current == NULL)
{
newNode = create_node(key, value);
newNode -> next = original;
hashTable[keyValue] = original;
}
}
}
/* Return a float value representing the load factor
*(item in hash map)/(size of hash map) of the data structure.
*/
float load()
{
float numUsed = 0.0;
for (int i = 0; i < numSlots; i++)
{
if (hashTable[i] != NULL)
{
numUsed++;
}
}
return (numUsed / numSlots);
}
/* Removes value corresponding to inputted key from table */
int remove (char* key)
{
int keyValue = hash(key);
node *listOfInterest = hashTable[keyValue];
if (listOfInterest == NULL)
{
return -999;
}
int toReturn = listOfInterest -> value;
delete(listOfInterest);
return toReturn;
}
/*
* Look for a key in the hash table. Return -999 if not found.
* If it is found return the associated value.
*/
int get(char *key)
{
int keyValue = hash(key);
node *listOfInterest = hashTable[keyValue];
while (listOfInterest != NULL)
{
if (listOfInterest != NULL)
{
return listOfInterest->value;
}
listOfInterest = listOfInterest -> next;
}
return -999;
}
/* Prints hash table */
void print_hash_table()
{
int i;
node *listIterator = NULL;
for (i = 0 ; i < numSlots ; i++)
{
listIterator = hashTable[i];
while (listIterator != NULL)
{
printf("%s %d\n", listIterator->key, listIterator -> value);
listIterator = listIterator -> next;
}
}
}
};
One likely crash is caused by create_node which stores an arbitrary pointer to a string via
result->key = key;
I'll be that you call it with some pointer to char that is destined to be soon inappropriately out of scope. Perhaps struct node should use a std::string to make it more likely to work. Or at least copy the string and create a destructor for node to dispose of that memory if you prefer C-style pointers.
Also, try Valgrind. I'm pretty sure that the problem will be noted.
Related
so i want to implement a queue data structure in c++ and use some special methods like the delete_at() putting into consideration the constraints of the queue data structure, so I made it using the dequeue method and took all the data that are not equal to the index the user want to delete and stored in array in order to enqueue it all back in but without the index that the user want to delete, however nothing gets deleted , so here is the code :
#include <list>
using namespace std;
class Queue{
private:
struct node {
int data;
struct node *next;
};
struct node* front = NULL;
struct node* rear = NULL;
public:
void Enqueue(int d) {
struct node* tmp=new node;
if (rear == NULL) {
tmp->next = NULL;
tmp->data = d;
rear=tmp;
front = rear;
}
else {
rear->next = tmp;
tmp->data = d;
tmp->next = NULL;
rear = tmp;
}
}
int Dequeue() {
struct node* tmp = front;
int data=front->data;
if (front == NULL) {
return 0;
}
else{
if (tmp->next != NULL) {
tmp=front;
front = front->next;
delete tmp;
}
else {
tmp=front;
delete tmp;
front = NULL;
rear = NULL;
}
}
return data;
}
void Display() {
struct node* temp = front;
if (front == NULL) {
cout<<"Queue is empty"<<endl;
return;
}
while (temp != NULL) {
cout<<temp->data<<"\n";
temp = temp->next;
}
}
int Size() {
struct node* temp = front;
int cnt=0;
while (temp != NULL) {
cnt++;
temp = temp->next;
}
return cnt;
}
void Delete_at(int index){
int i=0;
int ar_size=Size();
int data_arr[ar_size-1];
if(index > Size()){
cout<<"\n"<<"Error: out of bounds !";
return;
}
while(i<ar_size){
if (i==(index-1)){
Dequeue();
}
else{
data_arr[i]=Dequeue();
}
i++;
}
i=0;
while(i<ar_size){
Enqueue(data_arr[i]);
i++;
}
}
};
int main() {
int i=0;
Queue q;
q.Enqueue(2);
q.Enqueue(6);
q.Enqueue(7);
q.Enqueue(1);
q.Enqueue(2);
q.Enqueue(4);
q.Delete_at(2);
q.Display();
return 0;
}
You have a two primary problems with your code generally, and Delete_at() cannot simply call Dequeue(). As a general note, your code contains duplicated expressions that can simply be consolidated. For example, Enqueue() can be written succinctly as:
void Enqueue(int d) {
struct node *tmp = new node;
tmp->next = nullptr;
tmp->data = d;
if (rear == nullptr) {
front = rear = tmp;
size = 1;
}
else {
rear->next = tmp;
rear = tmp;
size += 1;
}
}
Your Dequeue() function will segfault checking front->data BEFORE checking if front == nullptr. You must check before you dereference, e.g.
int Dequeue() {
struct node *tmp = front;
int data;
if (front == nullptr) { /* (must check before dereference (front->data) */
return 0;
}
data = front->data;
size -= 1;
if (tmp->next != nullptr) {
front = front->next;
}
else {
front = nullptr;
rear = nullptr;
}
delete tmp;
return data;
}
Your Delete_at() function must remove the node at a specific index. This requires that you maintain your ->next links throughout your list, updating the prev->next before the deleted node to point to the node after the one you are deleting. You do that by iterating with both the address of the node and a pointer to node. When you reach the index to remove, you simply replace what is currently at the address of that node with the next node and delete the current, see: Linus on Understanding Pointers
void Delete_at (size_t index) {
struct node *pnode = front, /* pointer to node */
**ppnode = &front; /* address of node */
if (index >= Size()) { /* validate with >= Size() */
std::cerr << '\n' << "Error: out of bounds !";
return;
}
while (index--) { /* loop index times */
ppnode = &pnode->next; /* address of next node */
pnode = pnode->next; /* pointer to next node */
}
*ppnode = pnode->next; /* replace struct at address with next */
delete pnode; /* delete removed node */
size -= 1;
}
Your Size() function simply reduces to a "getter" function:
size_t Size() {
return size;
}
Updating your example a bit and being mindful of Why is “using namespace std;” considered bad practice? your full code could now be:
#include <list>
#include <iostream>
class Queue{
private:
struct node {
int data;
struct node *next;
};
struct node *front = nullptr;
struct node *rear = nullptr;
size_t size;
public:
void Enqueue(int d) {
struct node *tmp = new node;
tmp->next = nullptr;
tmp->data = d;
if (rear == nullptr) {
front = rear = tmp;
size = 1;
}
else {
rear->next = tmp;
rear = tmp;
size += 1;
}
}
int Dequeue() {
struct node *tmp = front;
int data;
if (front == nullptr) { /* (must check before dereference (front->data) */
return 0;
}
data = front->data;
size -= 1;
if (tmp->next != nullptr) {
front = front->next;
}
else {
front = nullptr;
rear = nullptr;
}
delete tmp;
return data;
}
void Display() {
struct node *temp = front;
if (front == nullptr) {
std::cout << "Queue is empty" << '\n';
return;
}
while (temp != nullptr) {
std::cout << temp->data << '\n';
temp = temp->next;
}
}
size_t Size() {
return size;
}
void Delete_at (size_t index) {
struct node *pnode = front, /* pointer to node */
**ppnode = &front; /* address of node */
if (index >= Size()) { /* validate with >= Size() */
std::cerr << '\n' << "Error: out of bounds !";
return;
}
while (index--) { /* loop index times */
ppnode = &pnode->next; /* address of next node */
pnode = pnode->next; /* pointer to next node */
}
*ppnode = pnode->next; /* replace struct at address with next */
delete pnode; /* delete removed node */
size -= 1;
}
};
int main() {
Queue q;
q.Enqueue(2);
q.Enqueue(6);
q.Enqueue(7);
q.Enqueue(1);
q.Enqueue(2);
q.Enqueue(4);
q.Display();
std::cout << "\nq.Delete_at(2)\n\n";
q.Delete_at(2);
q.Display();
}
Example Use/Output
$ ./bin/queue_delete_at
2
6
7
1
2
4
q.Delete_at(2)
2
6
1
2
4
Look things over and let me know if you have further questions.
Edit With Additional Constraints From Comments
Per you comments, you have constraints of only being able to use Dequeue() and Enqueue() in Delete_at() and no pointers, etc... You can do that, but understand it will be horribly inefficient compared to simply removing the node at the index. You will essentially have to save (Dequeue()) your entire queue data in an allocated block of memory, omitting the index to remove. You will then need to iterate over all saved values calling Enqueue() to repopulated your list.
You can do that as:
void Delete_at (size_t index) {
if (index >= Size()) { /* validate with >= Size() */
std::cerr << '\n' << "Error: out of bounds !";
return;
}
size_t nelem = Size();
int *arr = new int [nelem],
n = 0;
for (size_t i = 0; i < nelem; i++) {
int tmp = Dequeue();
if (i != index && tmp)
arr[n++] = tmp;
}
for (size_t i = 0; i < (size_t)n; i++)
Enqueue (arr[i]);
delete[] arr;
}
(same output)
For a less readable more C++'ized presentation, you can replace the first loop with:
for (int i = 0, j = Dequeue(); j; i++, j = Dequeue())
if (static_cast<size_t>(i) != index)
arr[n++] = j;
It would be nice to have utilized at least a separate list pointer, so you could build the new list while simultaneously deleting the old, but your class/struct isn't setup to use additional pointers. So you are basically left with buffering all values except the index to remove and then recreating your queue.
So my assignment requires us to use doubly linked lists to add or multiply numbers together and print them out. I was able to get it to work for whole numbers, but I can't figure out what to change to make it work for decimal numbers as well. Here's what I've got so far. I know it's not the most efficient or cleanest code, but I can try to clarify stuff if it doesn't make sense to you
For example this program will work fine if I do 50382+9281 or 482891*29734,but I need to get it to work for something like 4.9171+49.2917 or 423.135*59
EDIT: Pretend the int values are doubles. I changed it on my actual code, but the result when I do the math is still giving me a whole number so I need to figure out how to insert the decimal at the right place
#include <iostream>
#include <fstream>
#include <string>
#include <stdio.h>
#include <cstdlib>
#include <cstring>
using namespace std;
// A recursive program to add two linked lists
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <string.h>
// A linked List Node
struct node
{
int data;
node* next;
node *prev;
};
typedef struct node node;
class LinkedList{
// public member
public:
// constructor
LinkedList(){
int length = 0;
head = NULL; // set head to NULL
node *n = new node;
n->data = -1;
n->prev = NULL;
head = n;
tail = n;
}
// This prepends a new value at the beginning of the list
void addValue(int val){
node *n = new node(); // create new Node
n->data = val; // set value
n->prev = tail; // make the node point to the next node.
// head->next = n;
// head = n;
// tail->next = n; // If the list is empty, this is NULL, so the end of the list --> OK
tail = n; // last but not least, make the head point at the new node.
}
void PrintForward(){
node* temp = head;
while(temp->next != NULL){
cout << temp->data;
temp = temp->next;
}
cout << '\n';
}
void PrintReverse(){
node* temp = tail;
while(temp->prev != NULL){
cout << temp->data;
temp = temp->prev;
}
cout << '\n';
}
void PrintReverse(node* in){
node* temp = in;
if(temp->prev== NULL){
if(temp->data == -1)
cout << temp->data << '\n';
}
else{
cout << temp->data << '\n';
temp = temp->prev;
PrintReverse(temp);
}
}
// returns the first element in the list and deletes the Node.
// caution, no error-checking here!
int popValue(){
node *n = head;
int ret = n->data;
head = head->next;
delete n;
return ret;
}
void swapN(node** a, node**b){
node*t = *a;
*a = *b;
*b = t;
}
node *head;
node *tail;
// Node *n;
};
/* A utility function to insert a node at the beginning of linked list */
void push(struct node** head_ref, int new_data)
{
/* allocate node */
struct node* new_node = (struct node*) malloc(sizeof(struct node));
/* put in the data */
new_node->data = new_data;
/* link the old list off the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
/* A utility function to print linked list */
void printList(struct node *node)
{
while (node != NULL)
{
printf("%d", node->data);
node = node->next;
}
// printf("\n");
}
// A utility function to swap two pointers
void swapPointer( node** a, node** b )
{
node* t = *a;
*a = *b;
*b = t;
}
/* A utility function to get size of linked list */
int getSize(struct node *node)
{
int size = 0;
while (node != NULL)
{
node = node->next;
size++;
}
return size;
}
// Adds two linked lists of same size represented by head1 and head2 and returns
// head of the resultant linked list. Carry is propagated while returning from
// the recursion
node* addSameSize(node* head1, node* head2, int* carry)
{
// Since the function assumes linked lists are of same size,
// check any of the two head pointers
if (head1 == NULL)
return NULL;
int sum;
// Allocate memory for sum node of current two nodes
node* result = (node *)malloc(sizeof(node));
// Recursively add remaining nodes and get the carry
result->next = addSameSize(head1->next, head2->next, carry);
// add digits of current nodes and propagated carry
sum = head1->data + head2->data + *carry;
*carry = sum / 10;
sum = sum % 10;
// Assigne the sum to current node of resultant list
result->data = sum;
return result;
}
// This function is called after the smaller list is added to the bigger
// lists's sublist of same size. Once the right sublist is added, the carry
// must be added toe left side of larger list to get the final result.
void addCarryToRemaining(node* head1, node* cur, int* carry, node** result)
{
int sum;
// If diff. number of nodes are not traversed, add carry
if (head1 != cur)
{
addCarryToRemaining(head1->next, cur, carry, result);
sum = head1->data + *carry;
*carry = sum/10;
sum %= 10;
// add this node to the front of the result
push(result, sum);
}
}
// The main function that adds two linked lists represented by head1 and head2.
// The sum of two lists is stored in a list referred by result
void addList(node* head1, node* head2, node** result)
{
node *cur;
// first list is empty
if (head1 == NULL)
{
*result = head2;
return;
}
// second list is empty
else if (head2 == NULL)
{
*result = head1;
return;
}
int size1 = getSize(head1);
int size2 = getSize(head2) ;
int carry = 0;
// Add same size lists
if (size1 == size2)
*result = addSameSize(head1, head2, &carry);
else
{
int diff = abs(size1 - size2);
// First list should always be larger than second list.
// If not, swap pointers
if (size1 < size2)
swapPointer(&head1, &head2);
// move diff. number of nodes in first list
for (cur = head1; diff--; cur = cur->next);
// get addition of same size lists
*result = addSameSize(cur, head2, &carry);
// get addition of remaining first list and carry
addCarryToRemaining(head1, cur, &carry, result);
}
// if some carry is still there, add a new node to the fron of
// the result list. e.g. 999 and 87
if (carry)
push(result, carry);
}
node* reverse_list(node *m)
{
node *next = NULL;
node *p = m;
node *prev;
while (p != NULL) {
prev = p->prev;
p->prev = next;
next = p;
p = prev;
}
return prev;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void Multiply2(node* n1, node* n2);
int digitsPerNode = 2;
node* result;
node* resultp = result;
node* resultp2 = result;
void Multiply(node* n1, node* n2)
{
if (n2->prev != NULL)
{
Multiply(n1, n2->prev);
}
Multiply2(n1, n2);
resultp2 = resultp = resultp->prev;
}
void Multiply2(node* n1, node* n2)
{
if (n1->prev != NULL)
{
Multiply2(n1->prev, n2);
}
if (resultp2 == NULL)
{
resultp2->data = 0;
result = resultp = resultp2;
}
int m = n1->data * n2->data + resultp2->data;
int carryon = (int)(m / pow(10, digitsPerNode));
resultp2->data = m % (int)pow(10, digitsPerNode);
if (carryon > 0)
{
if (resultp2->prev == NULL)
{
resultp2->prev->data = carryon;
}
else
{
resultp2->prev->data += carryon;
}
}
resultp2 = resultp2->prev;
}
/* int* buffer;
int lenBuffer = 0;
void multiplyHelper(int v, node* , int o);
void addToBuffer(int v, int i);
node* multiply(node* num1, node* num2)
{
if (num1 == NULL || num2 == NULL) return NULL;
int length1 = getSize(num1);
int length2 = getSize(num2);
if (length1 > length2) return multiply(num2, num1);
// initialize buffer
lenBuffer = length1 + length2;
buffer = new int[lenBuffer];
memset(buffer, 0, sizeof(int) * lenBuffer);
// multiply
int offset = 0;
node* anode = num1;
while (anode && anode->data!= -1)
{
multiplyHelper(anode->data, num2, offset);
anode = anode->prev;
offset++;
}
// transfer buffer to a linked list
node* h;
int pos = 0;
while (pos < lenBuffer && buffer[pos] == 0) pos++;
if (pos < lenBuffer)
{
node* temp;
temp->data = buffer[pos++];
h = temp;
anode = h;
while (pos < lenBuffer)
{
node* temp;
temp->data = buffer[pos++];
anode->prev = temp;
anode = anode->prev;
}
}
delete buffer;
lenBuffer = 0;
buffer = NULL;
cout << h->data << endl;
return h;
}
// multiply a single digit with a number
// called by multiply()
void multiplyHelper(int value, node* head, int offset)
{
// assert(value >= 0 && value <= 9 && head != NULL);
if (value == 0) return;
node* anode = head;
int pos = 0;
while (anode != NULL)
{
int temp = value * anode->data;
int ones = temp % 10;
if (ones != 0) addToBuffer(ones, offset + pos + 1);
int tens = temp / 10;
if (tens != 0) addToBuffer(tens, offset + pos);
anode = anode->prev;
cout << anode->data;
pos++;
}
}
// add a single digit to the buffer at place of index
// called by multiplyHelper()
void addToBuffer(int value, int index)
{
// assert(value >= 0 && value <= 9);
while (value > 0 && index >= 0)
{
int temp = buffer[index] + value;
buffer[index] = temp % 10;
value = temp / 10;
index--;
}
}*/
// Driver program to test above functions
int main(int argc, char *argv[])
{
char filename[50];
string name= argv[1];
string dig;
name.erase(0,9);//Parse input to only get input file.
ifstream file;
int digits;
for(int i = 0; i < name.length(); i++){
if(name.at(i) == ';'){
// dig = name.substr(0,name.length()-i);
name = name.substr(0,name.length()-i);
}
}
//cout << dig << endl;
//file.open("input.txt");
file.open(name.c_str());
digits = 2;
///////
///////////////////////////////////////////////////////////////////////
int words = 0;
int numbers = 0;
while(!file.eof()) //Goes through whole file until no more entries to input
{
string word;
getline(file,word); //Inputs next element as a string
// word << file;
//cout << word << '\n';
int x = 0;
node *head1 = NULL, *head2 = NULL, *result = NULL;
int counter = 0;
int t1index = 0; //keep tracks of nodes to multiply
int t2index = 0;
char operatorX;
LinkedList tempList1;
LinkedList tempList2;
while(x<word.length()) //Loops through each string input
{
//if(x<word.length()&&isalpha(word.at(x))) //Checks that x is in bounds and that char at position x is a letter
if(x<word.length()&&isdigit(word.at(x))) //Checks that x is in bounds and that char at position x is a number/digit
{
int start = x;
while(x<word.length()&&isdigit(word.at(x))) //Loops past the number portion
{
x++;
}
string temp = word.substr(start, x).c_str();
// cout << temp << '\n';
for(int i = 0; i < temp.length();i++){
tempList1.addValue(atoi(temp.substr(i, 1).c_str()));
// push(&head1, atoi(temp.substr(i, 1).c_str()));
counter++;
t1index++;
}
//search for the operator
while(x<word.length()){
if(x<word.length()&& (!isspace(word.at(x)) && !isdigit(word.at(x))))
{
while(x<word.length()&&(!isspace(word.at(x)) && !isdigit(word.at(x)))) //Loops past the letter portion
{
// cout << (word.at(x))<< '\n';
operatorX = word.at(x);
x++;
}
//search second value
while(x<word.length()){ //second value find
//start
if(x<word.length()&&isdigit(word.at(x))) //Checks that x is in bounds and that char at position x is a number/digit
{
int start = x;
while(x<word.length()&&isdigit(word.at(x))) //Loops past the number portion
{
x++;
}
string temp = word.substr(start, x).c_str();
for(int i = 0; i < temp.length();i++){
tempList2.addValue(atoi(temp.substr(i, 1).c_str()));
// push(&head2, atoi(temp.substr(i, 1).c_str()));
// cout << atoi(temp.substr(i, 1).c_str());
counter++;
}
//////START READING NUMBERS BACKWARDS
LinkedList finalList;
node* tempA = tempList1.tail;
node* tempB = tempList2.tail;
// multiply(tempA, tempB);
//ADDITION
while(tempA != NULL){
if(tempA->data != -1){
push(&head1,tempA->data);
// cout << tempA->data;
}
tempA = tempA->prev;
}
while(tempB != NULL){
if(tempB->data != -1){
push(&head2, tempB->data);
// cout << tempB->data;
}
tempB = tempB->prev;
}
// multiply(head1, head2);
// result = multiply(head1, head2);
// tempList1.PrintReverse();
addList(head1, head2, &result);
printList(head1);
cout << operatorX;
printList(head2);
cout << "=";
printList(result);
cout << endl;
}
else{
x++;
}
//end
}
}
else{
x++;
}
}
}
else //If char at position x is neither number or letter skip over it
{
x++;
}
}
}
}
Since you're working in C++, use a template/overloaded operators. Cast your ints to a floating point type as necessary. See e.g.:
C++ Template problem adding two data types
I'm writing a function that counts the leaf nodes of a height balanced tree using struct and pointers. The function takes 3 arguments: the tree, pointer to an array and the maximum depth of the tree. The length of the array is the maximum depth. When function is called the array is initialized to zero. The function recursively follows the tree structure,
keeping track of the depth, and increments the right counter whenever it reaches a leaf. The function does not follow any pointer deeper than maxdepth. The function returns 0 if there was no leaf at depth greater than maxdepth, and 1 if there was some pointer togreater depth. What is wrong with my code. Thanks.
typedef int object;
typedef int key;
typedef struct tree_struct { key key;
struct tree_struct *left;
struct tree_struct *right;
int height;
} tree_n;
int count_d (tree_n *tr, int *count, int mdepth)
{
tree_n *tmp;
int i;
if (*(count + 0) == NULL){
for (i =0; i<mdepth; i++){
*(count + i) = 0;
}
}
while (medepth != 0)
{
if (tr == NULL) return;
else if ( tree-> left == NULL || tree->right == NULL){
return (0);
}
else {
tmp = tr;
*(count + 0) = 1;
int c = 1;
while(tmp->left != NULL && tmp->right != NULL){
if(tmp-> left){
*(count + c) = 2*c;
tmp = tmp->left;
return count_d(tmp, count , mdepth);
}
else if(tmp->right){
*(count + c + 1) = 2*c + 1;
tmp = tmp->right;
return count_d(tmp,count, mdepth);
}
c++;
mpth--;
}
}
}
What is wrong with my code
One thing I noticed is that you are missing return in the recursive calls.
return count_d(tmp, count , mdepth);
// ^^^ Missing
There are two such calls. Make sure to add return to both of them.
Disclaimer: Fixing this may not fix all your problems.
Correct Function To Insert,Count All Nodes and Count Leaf Nodes
#pragma once
typedef int itemtype;
#include<iostream>
typedef int itemtype;
#include<iostream>
#include<conio.h>
#include<string>
using namespace std;
class Node
{
public:
Node* left;
Node* right;
itemtype data;
};
class BT
{
private:
int count = 0;
Node* root;
void insert(itemtype d, Node* temp);//Override Function
public:
BT();//Constructor
bool isEmpty();
Node* newNode(itemtype d);
Node* getroot();
void insert(itemtype d);//Function to call in main
int countLeafNodes(Node * temp);
int countAllNodes();//to count all nodes
}
BT::BT()//constructor
{
root = NULL;
}
bool BT::isEmpty()
{
if (root == NULL)
return true;
else
return false;
}
Node* BT::newNode(itemtype d)
{
Node* n = new Node;
n->left = NULL;
n->data = d;
n->right = NULL;
return n;
}
void BT::insert(itemtype d)//Function to call in main
{
if (isEmpty())
{
Node* temp = newNode(d);
root = temp;
}
else
{
Node* temp = root;
insert(d, temp);
}
count++;//to count number of inserted nodes
}
void BT::insert(itemtype d, Node* temp)//Private Function which is overrided
{
if (d <= temp->data)
{
if (temp->left == NULL)
{
Node* n = newNode(d);
temp->left = n;
}
else
{
temp = temp->left;
insert(d, temp);
}
}
else
{
if (temp->right == NULL)
{
temp->right = newNode(d);
}
else
{
temp = temp->right;
insert(d, temp);
}
}
}
int BT::countAllNodes()
{ return count; }
int BT::countLeafNodes(Node* temp)
{
int leaf = 0;
if (temp == NULL)
return leaf;
if (temp->left == NULL && temp->right == NULL)
return ++leaf;
else
{
leaf = countLeafNodes(temp->left) + countLeafNodes(temp->right);
return leaf;
}
}
void main()
{
BT t;
t.insert(7);
t.insert(2);
t.insert(3);
t.insert(15);
t.insert(11);
t.insert(17);
t.insert(18);
cout<<"Total Number Of Nodes:" <<t.countAllNodes() <<endl;
cout << "Leaf Nodes:" << t.countLeafNodes(t.getroot()) << endl;
_getch();
}
Output:
Ouput
I'm trying to create a Hash-table by using an array on linked-nodes (making a linked list).
But I'm having difficulties inserting a value into the Hash-table. When I run it, I get this:
http://gyazo.com/3a28a70e66b3ea34e08223e5948f49c0.png
Here is my code:
#include <iostream>
using namespace std;
class Node {
public:
int num;
Node * next;
};
class intHashTable {
private:
int size;
Node ** table;
public:
intHashTable(int size); // construct a new hash table with size elements
~intHashTable(); // delete the memory for all internal components
void insert(int num); // insert num into the hash table, no effect
// if num is already in table
void remove(int num); // remove num from the hash table, no effect if not in table
int lookup(int num); // return 1 if num is already in table, 0 otherwise
void print(void); // print the elements of the hash table to the screen
};
// construct a new hash table with nelements elements
intHashTable::intHashTable(int nelements)
{
size = nelements;
table = new Node*[size];
for ( int i = 0; i < size; i++ ) {
table[i] = NULL;
}
}
intHashTable::~intHashTable()
{
for(int i=0; i<size; i++)
{
Node* temp = table[i];
while(temp != NULL)
{
Node* next = temp->next;
delete temp;
temp = next;
}
}
size = 0;
delete[] table;
}
void intHashTable::insert(int num){
int location = ((unsigned)num) % size;
Node *runner = table[location];
if(runner == NULL ){
runner->num = num;
}else{
while(runner != NULL ){
runner = runner->next;
}
runner->num = num;
}
}
int main(){
intHashTable a (10);
a.insert(2);
return 0;
}
After construction of intHashTable, all the elements of table are still NULL. However, in the function insert, one element is dereferenced:
Node *runner = table[location];
runner = runner->next;
This makes the program crash, because it is illegal to dereference a null pointer.
the logic here is wrong
int location = ((unsigned)num) % size;
Node *runner = table[location];
if(runner == NULL ) // if null u dereference it!
{
runner->num = num;
}
else
{
while(runner != NULL ) { // u loop until null
runner = runner->next;
}
runner->num = num; // once u reach null u dereference it!
}
i would suggest instead:
first a ctor for your Node
class Node {
public:
int num;
Node * next;
Node( int _n ) : num(_n), next(NULL) { }
};
and then
if ( runner != NULL )
{
while ( runner->next != NULL )
{
runner = runner->next;
}
runner->next = new Node( num );
}
else
{
table[location] = new Node( num );
}
This code certainly won't work:
if(runner == NULL ){
runner->num = num;
If runner is NULL, then you should never dereference it (using * or -> on it).
Node *runner = table[location];
runner = runner->next;
if(runner == NULL )
You never verified whether table[location] is null. But during construction of your hashtable, there are no nodes inside the node table (you set yourself every entry to null).
The problem with your code is that you never think about allocating your node. You should be doing
Node* toInsert = new Node;
toInsert->next= NULL;
toInsert->num = num;
if(table[location]==NULL){
table[location] = toInsert;
}
else{
Node *runner = table[location];
while(runner->next != NULL){
runner = runner->next;
}
runner->next = toInsert;
}
I have searched through the other questions and none of them seem to apply
exactly.
I am writing a program that finds a route through a maze,
the only real thing im having a problem with is this one compiler error.
It has to do with the one function I have the returns a Node ( struct).
Header file: (I cut the define stuff off)
#include <iostream>
#include <string>
using namespace std;
class Graph {
private:
struct Node {
int id; //int id
Node * north; //north path node
Node * south; //south path node
Node * east; //east path node
Node * west; //went path node
bool visited; // visited bool
};
//this struct holds the path that is found.
struct Elem {
int id; //The id of the node
string last; //the door that it passed through
Elem * back; //back one path
Elem * next; //forward one path
};
//This is a graph with a very smart struct
//This is the main node that makes up the graph.
Node * start;
Node ** initArr;
int arrLen;
Elem * head;
Elem * tail;
int path;
public:
Graph();
//Constructs empty graph
Graph(const Graph &v);
//copy constructor
~Graph();
//destructor
Graph & operator = (const Graph &v);
//assignment operator
void output(ostream & s) const;
//Prints the graph
void input(istream & s);
//input and creates the graph
Node * find(int id);
//finds the node in the graph
void makePath();
//makes a path through the maze
bool findPath(Node* cur, string room);
//worker function for recursion
void pathOut(ostream & s) const;
//Outputs the found path
void removeTail();
//Removes the last element
void addTail(Node* n, string door);
//Adds the element to the tail
//Mutators
void setId(Node* n ,int x);
void setVisited(Node* n, bool v);
//Elem Mutator
void seteId(Elem* e, int x);
//Elem Accessor
int geteId(Elem* e);
//Accessors
int getId(Node* n);
bool getVisited(Node* n);
};
And my actual code file.
#include <iostream>
#include "graph.h"
using namespace std;
//Constructs empty graph
Graph::Graph()
{
start = 0;
head = tail = 0;
path = 0;
}
//copy constructor
Graph::Graph(const Graph &v)
{
//not implemented
}
//destructor
Graph::~Graph()
{
for(int i = 0; i < arrLen + 1; i++)
{
delete initArr[i];
}
while(head != 0)
{
Elem* p = head;
head = head->next;
delete p;
}
delete[] initArr;
}
//assignment operator
Graph & Graph::operator = (const Graph &v)
{
//not implemented
}
//Prints the graph
void Graph::output(ostream & s) const
{
s<<"Node"<<'\t'<<"North"<<'\t'<<"East"<<'\t'<<"South"<<'\t'<<"West"<<'\n';
for(int i = 1; i < arrLen + 1; i++)
{
Node* temp = initArr[i];
s<<temp->id<<'\t';
if(temp->north != 0)
s<<temp->north->id<<'\t';
else
s<<"--"<<'\n';
if(temp->east != 0)
s<<temp->east->id<<'\t';
else
s<<"--"<<'\n';
if(temp->south != 0)
s<<temp->south->id<<'\t';
else
s<<"--"<<'\n';
if(temp->west != 0)
s<<temp->west->id<<'\t';
else
s<<"--"<<'\n';
s<<'\n';
}
}
//input and creates the graph
void Graph::input(istream & s)
{
int length = 0;
s>>length;
arrLen = length;
if(s)
{
//define array
initArr = new Node*[length + 1];
int temp = 0;
for(int i = 1; i < length + 1; i++)
{
//Create node
s>>temp;
Node* n = new Node;
n->id = temp;
n->visited = false;
//Add to array
initArr[i] = n;
}
//Make Exit Node
Node *x = new Node;
x->id = 0;
x->visited = false;
initArr[0] = x;
//Loop through all of the node input
int tn = 0;
for(int f = 0; f < length; f++)
{
//Set Pointers
s>>tn;
Node* curNode = find(tn);
int n = 0;
int e = 0;
int st = 0;
int w = 0;
s>>n>>e>>st>>w;
curNode->north = find( n );
curNode->east = find( e );
curNode->south = find( st );
curNode->west = find( w );
}
//set Entry point to graph
int last = 0;
s>>last;
start = find(last);
}
}
//finds the node in the array
Node* Graph::find(int id)
{
if( id == 0)
{
return initArr[0];
}
if(id == -1)
{
return 0;
}
else
{
for(int i = 1; i < arrLen + 1; i++)
{
if(initArr[i]->id == id)
{
return initArr[i];
}
}
cerr<<"NOT FOUND IN GRAPH";
return 0;
}
}
//makes a path through the maze
void Graph::makePath()
{
if(findPath(start->north, "north") == true)
{
path = 1;
return;
}
else if( findPath(start->east, "east") == true)
{
path = 1;
return;
}
else if( findPath(start->south, "south") == true)
{
path = 1;
return;
}
else if( findPath(start->west, "west") == true)
{
path = 1;
return;
}
return;
}
//finds a path to the outside
bool Graph::findPath(Node* cur, string room)
{
addTail(cur, room);
if(cur = initArr[0])
{
return true;
}
if(cur->north != 0 && cur->north->visited == false)
{
cur->visited = true;
findPath(cur->north, "north");
}
else if(cur->east != 0 && cur->east->visited == false)
{
cur->visited = true;
findPath(cur->north, "east");
}
else if(cur->south !=0 && cur->south->visited == false)
{
cur->visited = true;
findPath(cur->north, "south");
}
else if(cur->west != 0 && cur->west->visited == false)
{
cur->visited = true;
findPath(cur->north, "west");
}
else
{
cur->visited = false;
removeTail();
}
}
//Outputs the found path
void Graph::pathOut(ostream & s) const
{
if(path == 1)
{
Elem *p;
p = head->next;
while(p != 0)
{
s<<p->id<<"--> "<<p->last;
p= p->next;
}
}
else if(path == 0)
{
}
}
//Removes the last element in the chain
void Graph::removeTail()
{
Elem* temp = 0;
temp = tail;
tail = tail->back;
delete temp;
}
//Adds the element to the tail
void Graph::addTail(Node* n, string door)
{
if(head != 0)
{
Elem* temp = new Elem;
temp->id = n->id;
tail->next = temp;
tail->last = door;
temp->back = tail;
temp->next = 0;
tail = 0;
}
else
{
Elem *p = new Elem;
p->last = "";
p->back = 0;
p->next = 0;
head = p;
tail = p;
}
}
//Mutators
void Graph::setId(Node *n ,int x)
{
n->id = x;
}
void Graph::setVisited(Node *n, bool v)
{
n->visited = v;
}
//Elem Mutator
void Graph::seteId(Elem *e, int x)
{
e->id = x;
}
//Elem Accessor
int Graph::geteId(Elem *e)
{
return e->id;
}
//Accessors
int Graph::getId(Node *n)
{
return n-> id;
}
bool Graph::getVisited(Node *n)
{
return n->visited;
}
/*
//This is a graph with a very smart struct
//This is the main node that makes up the graph.
struct Node {
int id; //int id
Node *north; //north path node
Node *south; //south path node
Node *east; //east path node
Node *west; //went path node
bool visited; // visited bool
};
//this struct holds the path that is found.
struct Elem {
int id; //The id of the node
string last; //the door that it passed through
Elem* back; //back one path
Elem* next; //forward one path
};
Node* Start;
Node ** initArr;
Elem* head;
Elem* tail;
*/
//outputs using named operation
ostream & operator << (ostream &s, const Graph & v)
{
v.output(s);
return s;
}
The error is occurring on the find function.
In the cpp file, Node is not in global scope. It's nested inside Graph as such, you need to qualify it in a return type:
Graph::Node* Graph::find(int id){
// ...
}
Inside the function, you're in the scope of Graph again, as such you do not need to qualify it.
You have both Node and Element defined as structs inside the class Graph. It would be better to define them outside the class Graph. You can define a separate Node class and store the element struct as its private members. The error happens because Node is a private member of Graph, which can be accessed as Graph::Node. E.g. Graph::Node* find(...).