How to atomically add vectors in fragment shader - opengl

i need for my fragment shader invocations to add vectors to some images atomically because more fragments can access the same texel.
So my question is, what is the best way to do this?
Each fragment should add two vectors, one should have 16 bit components and the other 8 bit components.
I thought about a spinlock, but every single spinlock i tried to use is crashing...
Another option would be to pack the data with packSnorm2x16/4x8 into 3 R32UI textures for atomicAdd, the first would contain xy of the 16 bit vector, the second would contain z of the 16 bit vector and the third texture would contain the whole 8 bit vector(packSnorm4x8), but the problem is that the sum will exceed 1.0f, but (un)packSnorm is working with signed normalized values, i don't even know if you can just add packed data and get good results.

I solved the problem by using a shader storage buffer which contains an array of floats. As mentioned in the comments i'm trying to store the vectors into 3D textures, the SSB contains one float for each component of the vectors for each texel of the 3D textures, also there's one float which is holding the number of vectors added. This is consuming much memory but it seems like there is no better solution.
I'm atomically adding each component of the vectors to the shader storage buffer, for that i'm using the NV_shader_atomic_float extension.
Then, in a compute shader, i'm using the float which holds the vector amount for averaging and writing the results in the actual 3D textures.

Related

Are there any OpenGL operations supporting colors associate with indices as opposed to vertices? [duplicate]

I have some vertex data. Positions, normals, texture coordinates. I probably loaded it from a .obj file or some other format. Maybe I'm drawing a cube. But each piece of vertex data has its own index. Can I render this mesh data using OpenGL/Direct3D?
In the most general sense, no. OpenGL and Direct3D only allow one index per vertex; the index fetches from each stream of vertex data. Therefore, every unique combination of components must have its own separate index.
So if you have a cube, where each face has its own normal, you will need to replicate the position and normal data a lot. You will need 24 positions and 24 normals, even though the cube will only have 8 unique positions and 6 unique normals.
Your best bet is to simply accept that your data will be larger. A great many model formats will use multiple indices; you will need to fixup this vertex data before you can render with it. Many mesh loading tools, such as Open Asset Importer, will perform this fixup for you.
It should also be noted that most meshes are not cubes. Most meshes are smooth across the vast majority of vertices, only occasionally having different normals/texture coordinates/etc. So while this often comes up for simple geometric shapes, real models rarely have substantial amounts of vertex duplication.
GL 3.x and D3D10
For D3D10/OpenGL 3.x-class hardware, it is possible to avoid performing fixup and use multiple indexed attributes directly. However, be advised that this will likely decrease rendering performance.
The following discussion will use the OpenGL terminology, but Direct3D v10 and above has equivalent functionality.
The idea is to manually access the different vertex attributes from the vertex shader. Instead of sending the vertex attributes directly, the attributes that are passed are actually the indices for that particular vertex. The vertex shader then uses the indices to access the actual attribute through one or more buffer textures.
Attributes can be stored in multiple buffer textures or all within one. If the latter is used, then the shader will need an offset to add to each index in order to find the corresponding attribute's start index in the buffer.
Regular vertex attributes can be compressed in many ways. Buffer textures have fewer means of compression, allowing only a relatively limited number of vertex formats (via the image formats they support).
Please note again that any of these techniques may decrease overall vertex processing performance. Therefore, it should only be used in the most memory-limited of circumstances, after all other options for compression or optimization have been exhausted.
OpenGL ES 3.0 provides buffer textures as well. Higher OpenGL versions allow you to read buffer objects more directly via SSBOs rather than buffer textures, which might have better performance characteristics.
I found a way that allows you to reduce this sort of repetition that runs a bit contrary to some of the statements made in the other answer (but doesn't specifically fit the question asked here). It does however address my question which was thought to be a repeat of this question.
I just learned about Interpolation qualifiers. Specifically "flat". It's my understanding that putting the flat qualifier on your vertex shader output causes only the provoking vertex to pass it's values to the fragment shader.
This means for the situation described in this quote:
So if you have a cube, where each face has its own normal, you will need to replicate the position and normal data a lot. You will need 24 positions and 24 normals, even though the cube will only have 8 unique positions and 6 unique normals.
You can have 8 vertexes, 6 of which contain the unique normals and 2 of normal values are disregarded, so long as you carefully order your primitives indices such that the "provoking vertex" contains the normal data you want to apply to the entire face.
EDIT: My understanding of how it works:

How would I store vertex, color, and index data separately? (OpenGL)

I'm starting to learn openGL (working with version 3.3) with intent to get a small 3d falling sand simulation up, akin to this:
https://www.youtube.com/watch?v=R3Ji8J2Kprw&t=41s
I have a little experience with setting up a voxel environment like Minecraft from some Udemy tutorials for Unity, but I want to build something simple from the ground up and not deal with all the systems already laid on top of things with Unity.
The first issue I've run into comes early. I want to build a system for rendering quads, because instancing a ton of cubes is ridiculously inefficient. I also want to be efficient with storage of vertices, colors, etc. Thus far in the opengl tutorials I've worked with the way to do this is to store each vertex in a float array with both position and color data, and set up the buffer object to read every set of six entries as three floats for position and three for color, using glVertexAttribPointer. The problem is that for each neighboring quad, the same vertices will be repeated because if they are made of different "blocks" they will be different colors, and I want to avoid this.
What I want to do instead to make things more efficient is store the vertices of a cube in one int array (positions will all be ints), then add each quad out of the terrain to an indices array (which will probably turn into each chunk's mesh later on). The indices array will store each quad's position, and a separate array will store each quad's color. I'm a little confused on how to set this up since I am rather new to opengl, but I know this should be doable based on what other people have done with minecraft clones, if not even easier since I don't need textures.
I just really want to get the framework for the chunks, blocks, world, etc, up and running so that I can get to the fun stuff like adding new elements. Anyone able to verify that this is a sensible way to do this (lol) and offer guidance on how to set this up in the rendering, I would very much appreciate.
Thus far in the opengl tutorials I've worked with the way to do this is to store each vertex in a float array with both position and color data, and set up the buffer object to read every set of six entries as three floats for position and three for color, using glVertexAttribPointer. The problem is that for each neighboring quad, the same vertices will be repeated because if they are made of different "blocks" they will be different colors, and I want to avoid this.
Yes, and perhaps there's a reason for that. You seem to be trying to save.. what, a few bytes of RAM? Your graphics card has 8GB of RAM on it, what it doesn't have is a general processing unit or an unlimited bus to do random lookups in other buffers for every single rendered pixel.
The indices array will store each quad's position, and a separate array will store each quad's color.
If you insist on doing it this way, nothing's stopping you. You don't even need the quad vertices, you can synthesize them in a geometry shader.
Just fill in a buffer with X|Y|Width|Height|Color(RGB) with glVertexAttribPointer like you already know, then run a geometry shader to synthesize two triangles for each entry in your input buffer (a quad), then your vertex shader projects it to world units (you mentioned integers, so you're not in world units initially), and then your fragment shader can color each rastered pixel according to its color entry.
ridiculously inefficient
Indeed, if that sounds ridiculously inefficient to you, it's because it is. You're essentially packing your data on the CPU, transferring it to the GPU, unpacking it and then processing it as normal. You can skip at least two of the steps, and even more if you consider that vertex shader outputs get cached within rasterized primitives.
There are many more variations of this insanity, like:
store vertex positions unpacked as normal, and store an index for the colors. Then store the colors in a linear buffer of some kind (texture, SSBO, generic buffer, etc) and look up each color index. That's even more inefficient, but it's closer to the algorithm you were suggesting.
store vertex positions for one quad and set up instanced rendering with a multi-draw command and a buffer to feed individual instance data (positions and colors). If you also have textures, you can use bindless textures for each quad instance. It's still rendering multiple objects, but it's slightly more optimized by your graphics driver.
or just store per-vertex data in a buffer and render it. Done. No pre-computations, no unlimited expansions, no crazy code, you have your vertex data and you render it.

How can I draw two triangles using index buffer? [duplicate]

I have some vertex data. Positions, normals, texture coordinates. I probably loaded it from a .obj file or some other format. Maybe I'm drawing a cube. But each piece of vertex data has its own index. Can I render this mesh data using OpenGL/Direct3D?
In the most general sense, no. OpenGL and Direct3D only allow one index per vertex; the index fetches from each stream of vertex data. Therefore, every unique combination of components must have its own separate index.
So if you have a cube, where each face has its own normal, you will need to replicate the position and normal data a lot. You will need 24 positions and 24 normals, even though the cube will only have 8 unique positions and 6 unique normals.
Your best bet is to simply accept that your data will be larger. A great many model formats will use multiple indices; you will need to fixup this vertex data before you can render with it. Many mesh loading tools, such as Open Asset Importer, will perform this fixup for you.
It should also be noted that most meshes are not cubes. Most meshes are smooth across the vast majority of vertices, only occasionally having different normals/texture coordinates/etc. So while this often comes up for simple geometric shapes, real models rarely have substantial amounts of vertex duplication.
GL 3.x and D3D10
For D3D10/OpenGL 3.x-class hardware, it is possible to avoid performing fixup and use multiple indexed attributes directly. However, be advised that this will likely decrease rendering performance.
The following discussion will use the OpenGL terminology, but Direct3D v10 and above has equivalent functionality.
The idea is to manually access the different vertex attributes from the vertex shader. Instead of sending the vertex attributes directly, the attributes that are passed are actually the indices for that particular vertex. The vertex shader then uses the indices to access the actual attribute through one or more buffer textures.
Attributes can be stored in multiple buffer textures or all within one. If the latter is used, then the shader will need an offset to add to each index in order to find the corresponding attribute's start index in the buffer.
Regular vertex attributes can be compressed in many ways. Buffer textures have fewer means of compression, allowing only a relatively limited number of vertex formats (via the image formats they support).
Please note again that any of these techniques may decrease overall vertex processing performance. Therefore, it should only be used in the most memory-limited of circumstances, after all other options for compression or optimization have been exhausted.
OpenGL ES 3.0 provides buffer textures as well. Higher OpenGL versions allow you to read buffer objects more directly via SSBOs rather than buffer textures, which might have better performance characteristics.
I found a way that allows you to reduce this sort of repetition that runs a bit contrary to some of the statements made in the other answer (but doesn't specifically fit the question asked here). It does however address my question which was thought to be a repeat of this question.
I just learned about Interpolation qualifiers. Specifically "flat". It's my understanding that putting the flat qualifier on your vertex shader output causes only the provoking vertex to pass it's values to the fragment shader.
This means for the situation described in this quote:
So if you have a cube, where each face has its own normal, you will need to replicate the position and normal data a lot. You will need 24 positions and 24 normals, even though the cube will only have 8 unique positions and 6 unique normals.
You can have 8 vertexes, 6 of which contain the unique normals and 2 of normal values are disregarded, so long as you carefully order your primitives indices such that the "provoking vertex" contains the normal data you want to apply to the entire face.
EDIT: My understanding of how it works:

Texture coords per element instead of per vertex in GLSL? [duplicate]

I have some vertex data. Positions, normals, texture coordinates. I probably loaded it from a .obj file or some other format. Maybe I'm drawing a cube. But each piece of vertex data has its own index. Can I render this mesh data using OpenGL/Direct3D?
In the most general sense, no. OpenGL and Direct3D only allow one index per vertex; the index fetches from each stream of vertex data. Therefore, every unique combination of components must have its own separate index.
So if you have a cube, where each face has its own normal, you will need to replicate the position and normal data a lot. You will need 24 positions and 24 normals, even though the cube will only have 8 unique positions and 6 unique normals.
Your best bet is to simply accept that your data will be larger. A great many model formats will use multiple indices; you will need to fixup this vertex data before you can render with it. Many mesh loading tools, such as Open Asset Importer, will perform this fixup for you.
It should also be noted that most meshes are not cubes. Most meshes are smooth across the vast majority of vertices, only occasionally having different normals/texture coordinates/etc. So while this often comes up for simple geometric shapes, real models rarely have substantial amounts of vertex duplication.
GL 3.x and D3D10
For D3D10/OpenGL 3.x-class hardware, it is possible to avoid performing fixup and use multiple indexed attributes directly. However, be advised that this will likely decrease rendering performance.
The following discussion will use the OpenGL terminology, but Direct3D v10 and above has equivalent functionality.
The idea is to manually access the different vertex attributes from the vertex shader. Instead of sending the vertex attributes directly, the attributes that are passed are actually the indices for that particular vertex. The vertex shader then uses the indices to access the actual attribute through one or more buffer textures.
Attributes can be stored in multiple buffer textures or all within one. If the latter is used, then the shader will need an offset to add to each index in order to find the corresponding attribute's start index in the buffer.
Regular vertex attributes can be compressed in many ways. Buffer textures have fewer means of compression, allowing only a relatively limited number of vertex formats (via the image formats they support).
Please note again that any of these techniques may decrease overall vertex processing performance. Therefore, it should only be used in the most memory-limited of circumstances, after all other options for compression or optimization have been exhausted.
OpenGL ES 3.0 provides buffer textures as well. Higher OpenGL versions allow you to read buffer objects more directly via SSBOs rather than buffer textures, which might have better performance characteristics.
I found a way that allows you to reduce this sort of repetition that runs a bit contrary to some of the statements made in the other answer (but doesn't specifically fit the question asked here). It does however address my question which was thought to be a repeat of this question.
I just learned about Interpolation qualifiers. Specifically "flat". It's my understanding that putting the flat qualifier on your vertex shader output causes only the provoking vertex to pass it's values to the fragment shader.
This means for the situation described in this quote:
So if you have a cube, where each face has its own normal, you will need to replicate the position and normal data a lot. You will need 24 positions and 24 normals, even though the cube will only have 8 unique positions and 6 unique normals.
You can have 8 vertexes, 6 of which contain the unique normals and 2 of normal values are disregarded, so long as you carefully order your primitives indices such that the "provoking vertex" contains the normal data you want to apply to the entire face.
EDIT: My understanding of how it works:

Indexing non continuous texture coordinates in the same mesh in opengl [duplicate]

I have some vertex data. Positions, normals, texture coordinates. I probably loaded it from a .obj file or some other format. Maybe I'm drawing a cube. But each piece of vertex data has its own index. Can I render this mesh data using OpenGL/Direct3D?
In the most general sense, no. OpenGL and Direct3D only allow one index per vertex; the index fetches from each stream of vertex data. Therefore, every unique combination of components must have its own separate index.
So if you have a cube, where each face has its own normal, you will need to replicate the position and normal data a lot. You will need 24 positions and 24 normals, even though the cube will only have 8 unique positions and 6 unique normals.
Your best bet is to simply accept that your data will be larger. A great many model formats will use multiple indices; you will need to fixup this vertex data before you can render with it. Many mesh loading tools, such as Open Asset Importer, will perform this fixup for you.
It should also be noted that most meshes are not cubes. Most meshes are smooth across the vast majority of vertices, only occasionally having different normals/texture coordinates/etc. So while this often comes up for simple geometric shapes, real models rarely have substantial amounts of vertex duplication.
GL 3.x and D3D10
For D3D10/OpenGL 3.x-class hardware, it is possible to avoid performing fixup and use multiple indexed attributes directly. However, be advised that this will likely decrease rendering performance.
The following discussion will use the OpenGL terminology, but Direct3D v10 and above has equivalent functionality.
The idea is to manually access the different vertex attributes from the vertex shader. Instead of sending the vertex attributes directly, the attributes that are passed are actually the indices for that particular vertex. The vertex shader then uses the indices to access the actual attribute through one or more buffer textures.
Attributes can be stored in multiple buffer textures or all within one. If the latter is used, then the shader will need an offset to add to each index in order to find the corresponding attribute's start index in the buffer.
Regular vertex attributes can be compressed in many ways. Buffer textures have fewer means of compression, allowing only a relatively limited number of vertex formats (via the image formats they support).
Please note again that any of these techniques may decrease overall vertex processing performance. Therefore, it should only be used in the most memory-limited of circumstances, after all other options for compression or optimization have been exhausted.
OpenGL ES 3.0 provides buffer textures as well. Higher OpenGL versions allow you to read buffer objects more directly via SSBOs rather than buffer textures, which might have better performance characteristics.
I found a way that allows you to reduce this sort of repetition that runs a bit contrary to some of the statements made in the other answer (but doesn't specifically fit the question asked here). It does however address my question which was thought to be a repeat of this question.
I just learned about Interpolation qualifiers. Specifically "flat". It's my understanding that putting the flat qualifier on your vertex shader output causes only the provoking vertex to pass it's values to the fragment shader.
This means for the situation described in this quote:
So if you have a cube, where each face has its own normal, you will need to replicate the position and normal data a lot. You will need 24 positions and 24 normals, even though the cube will only have 8 unique positions and 6 unique normals.
You can have 8 vertexes, 6 of which contain the unique normals and 2 of normal values are disregarded, so long as you carefully order your primitives indices such that the "provoking vertex" contains the normal data you want to apply to the entire face.
EDIT: My understanding of how it works: