solve a system of nonlinear equations with c++ - c++

I want to solve a system of equations in c++. Is there any tool/package that provides a solver? My system looks like
(x-a)^2 + (y-b)^2 = d1
(x-c)^2 + (y-d)^2 = d2
In that case I know a,..,d, d1,d2.
For know i took a spacial case (a,b,d = 0, and c not 0) but I want a solution in all cases.
Anybody an idea?

If you need general support for solving nonlinear equations Ceres, PetSC, dlib all have nonlinear solvers that you can use from C++ to solve the problems you describe. Though you are much more likely to find better support for this type of work in Matlab or even python's scipy. Particularly if you are not really interested in performance, and only need to solve small scale equations with ease.
If all you need is to solve the system you posted, there is a simple closed form solution:
Subtract eq2 from eq1 and express x = f(y) [s1]
Substitute x with f(y) in one of the equations and solve for y
Substitute y back in [s1] to find x

I suggest you read 'Numerical Recipes'.
This book has a chapter on equations solving, and their preface usually gives a very good overview in simple enough terms on all the subject.
please note, that solving equations numerically has many fine details, and using any package without handling the details may lead to a bad solution (or maybe just slow, or not good enough).

In geometrical sense, the system of equations(SOE)
represent two circles. The first one a circle whose
center is at (a,b) and of raduis sqrt(d1), and the
second one a circle at (c,d) with radius of sqrt(d2).
There are three cases to consider
the first case is if the two circles do not
intersect. In this case the equation does not have a
solution.
The second case is if the two circles intersect at
two points. In such case the equations will have two
solutions. i.e two possible values for (x,y)
In third case the two circles intersect at exactly
two points. In this case the SOE has exactly one
solution. i.e one pair of solution (x,y).
So how do we check if the SOE, has a solution. well we
check if the two circles intersect.
The two circles intersect iff:
The distance between the two circles is less than or
equal to the sum of their radii.
sqrt( (a-c)^2 + (b-d)^2 ) <= sqrt(d1) + sqrt(d2).
if the equality holds then the two circles intersect in
exactly one point and therfore the SOE has exactly one
solution.
I can continue explaining but I will leave you with the
equation. Check this out:
https://math.stackexchange.com/questions/256100/how-can-i-find-the-points-at-which-two-circles-intersect#256123

Yes, this one supports nonlinear systems and overloaded ^ operator.
Here is an example: https://github.com/ohhmm/NonLinearSystem

Related

Least Squares Solution of Overdetermined Linear Algebraic Equation Ax = By

I have a linear algebraic equation of the form Ax=By. Where A is a matrix of 6x5, x is vector of size 5, B a matrix of 6x6 and y vector of size 6. A, B and y are known variables and their values are accessed in real time coming from the sensors. x is unknown and has to find. One solution is to find Least Square Estimation that is x = [(A^T*A)^-1]*(A^T)B*y. This is conventional solution of linear algebraic equations. I used Eigen QR Decomposition to solve this as below
matrixA = getMatrixA();
matrixB = getMatrixB();
vectorY = getVectorY();
//LSE Solution
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> dec1(matrixA);
vectorX = dec1.solve(matrixB*vectorY);//
Everything is fine until now. But when I check the errore = Ax-By, its not zero always. Error is not very big but even not ignorable. Is there any other type of decomposition which is more reliable? I have gone through one of the page but could not understand the meaning or how to implement this. Below are lines from the reference how to solve the problem. Could anybody suggest me how to implement this?
The solution of such equations Ax = Byis obtained by forming the error vector e = Ax-By and the finding the unknown vector x that minimizes the weighted error (e^T*W*e), where W is a weighting matrix. For simplicity, this weighting matrix is chosen to be of the form W = K*S, where S is a constant diagonal scaling matrix, and K is scalar weight. Hence the solution to the equation becomes
x = [(A^T*W*A)^-1]*(A^T)*W*B*y
I did not understand how to form the matrix W.
Your statement " But when I check the error e = Ax-By, its not zero always. " almost always will be true, regardless of your technique, or what weighting you choose. When you have an over-described system, you are basically trying to fit a straight line to a slew of points. Unless, by chance, all the points can be placed exactly on a single perfectly straight line, there will be some error. So no matter what technique you use to choose the line, (weights and so on) you will always have some error if the points are not colinear. The alternative would be to use some kind of spline, or in higher dimensions to allow for warping. In those cases, you can choose to fit all the points exactly to a more complicated shape, and hence result with 0 error.
So the choice of a weight matrix simply changes which straight line you will use by giving each point a slightly different weight. So it will not ever completely remove the error. But if you had a few particular points that you care more about than the others, you can give the error on those points higher weight when choosing the least square error fit.
For spline fitting see:
http://en.wikipedia.org/wiki/Spline_interpolation
For the really nicest spline curve interpolation you can use Centripital Catmull-Rom, which in addition to finding a curve to fit all the points, will prevent unnecessary loops and self intersections that can sometimes come up during abrupt changes in the data direction.
Catmull-rom curve with no cusps and no self-intersections

Finding an optimal solution to a system of linear equations in c++

Here's the problem:
I am currently trying to create a control system which is required to find a solution to a series of complex linear equations without a unique solution.
My problem arises because there will ever only be six equations, while there may be upwards of 20 unknowns (usually way more than six unknowns). Of course, this will not yield an exact solution through the standard Gaussian elimination or by changing them in a matrix to reduced row echelon form.
However, I think that I may be able to optimize things further and get a more accurate solution because I know that each of the unknowns cannot have a value smaller than zero or greater than one, but it is free to take on any value in between them.
Of course, I am trying to create code that would find a correct solution, but in the case that there are multiple combinations that yield satisfactory results, I would want to minimize Sum of (value of unknown * efficiency constant) over all unknowns, i.e. Sigma[xI*eI] from I=0 to n, but finding an accurate solution is of a greater priority.
Performance is also important, due to the fact that this algorithm may need to be run several times per second.
So, does anyone have any ideas to help me on implementing this?
Edit: You might just want to stick to linear programming with equality and inequality constraints, but here's an interesting exact solution that does not incorporate the constraint that your unknowns are between 0 and 1.
Here's a powerpoint discussing your problem: http://see.stanford.edu/materials/lsoeldsee263/08-min-norm.pdf
I'll translate your problem into math to make things a bit easier to figure out:
you have a 6x20 matrix A and a vector x with 20 elements. You want to minimize (x^T)e subject to Ax=y. According to the slides, if you were just minimizing the sum of x, then the answer is A^T(AA^T)^(-1)y. I'll take another look at this as soon as I get the chance and see what the solution is to minimizing (x^T)e (ie your specific problem).
Edit: I looked in the powerpoint some more and near the end there's a slide entitled "General norm minimization with equality constraints". I am going to switch the notation to match the slide's:
Your problem is that you want to minimize ||Ax-b||, where b = 0 and A is your e vector and x is the 20 unknowns. This is subject to Cx=d. Apparently the answer is:
x=(A^T A)^-1 (A^T b -C^T(C(A^T A)^-1 C^T)^-1 (C(A^T A)^-1 A^Tb - d))
it's not pretty, but it's not as bad as you might think. There's really aren't that many calculations. For example (A^TA)^-1 only needs to be calculated once and then you can reuse the answer. And your matrices aren't that big.
Note that I didn't incorporate the constraint that the elements of x are within [0,1].
It looks like the solution for what I am doing is with Linear Programming. It is starting to come back to me, but if I have other problems I will post them in their own dedicated questions instead of turning this into an encyclopedia.

Two point boundary with odeint

I am trying to solve two point boundary problem with odeint. My equation has the form of
y'' + a*y' + b*y + c = 0
It is pretty trivial when I have boundary conditions of y(x_1) = y_1 , y'(x_2) = y_2, but when boundary conditions are y(x_1) = y_1 , y(x_2) = y_2 I am lost. Does anybody know the way to deal with problems like this with odeint or other scientific library?
In this case you need a shooting method. odeint does not have such a method, it solved the initial value problem (IVP) which is your first case. I think in the Numerical Recipies this method is explained and you can use Boost.Odeint to do the time stepping.
An alternative and more efficient method to solve this type of problem is finite differences or finite elements method. For finite differences you can check Numerical Recipes. For finite elements I recommend dealii library.
Another approach is to use b-splines: Assuming you do know the initial x0 and final xfinal points of integration, then you can expand the solution y(x) in a b-spline basis, defined over (x0,xfinal), i.e.
y(x)= \sum_{i=1}^n A_i*B_i(x),
where A_i are constant coefficients to be determined, and B_i(x) are b-spline basis (well defined polynomial functions, that can be differentiated numerically). For scientific applications you can find an implementation of b-splines in GSL.
With this substitution the boundary value problem is reduced to a linear problem, since (am using Einstein summation for repeated indices):
A_i*[ B_i''(x) + a*B_i'(x) + b*B_i(x)] + c =0
You can choose a set of points x and create a linear system from the above equation. You can find information for this type of method in the following review paper "Applications of B-splines in Atomic and Molecular Physics" - H Bachau, E Cormier, P Decleva, J E Hansen and F Martín
http://iopscience.iop.org/0034-4885/64/12/205/
I do not know of any library solving directly this problem, but there are several libraries for B-splines (I recommend GSL for your needs), that will allow you to form the linear system. See this stackoverflow question:
Spline, B-Spline and NURBS C++ library

Weighted linear least square for 2D data point sets

My question is an extension of the discussion How to fit the 2D scatter data with a line with C++. Now I want to extend my question further: when estimating the line that fits 2D scatter data, it would be better if we can treat each 2D scatter data differently. That is to say, if the scatter point is far away from the line, we can give the point a low weighting, and vice versa. Therefore, the question then becomes: given an array of 2D scatter points as well as their weighting factors, how can we estimate the linear line that passes them? A good implementation of this method can be found in this article (weighted least regression). However, the implementation of the algorithm in that article is too complicated as it involves matrix calculation. I am therefore trying to find a method without matrix calculation. The algorithm is an extension of simple linear regression, and in order to illustrate the algorithm, I wrote the following MATLAB codes:
function line = weighted_least_squre_for_line(x,y,weighting);
part1 = sum(weighting.*x.*y)*sum(weighting(:));
part2 = sum((weighting.*x))*sum((weighting.*y));
part3 = sum( x.^2.*weighting)*sum(weighting(:));
part4 = sum(weighting.*x).^2;
beta = (part1-part2)/(part3-part4);
alpha = (sum(weighting.*y)-beta*sum(weighting.*x))/sum(weighting);
a = beta;
c = alpha;
b = -1;
line = [a b c];
In the above codes, x,y,weighting represent the x-coordinate, y-coordinate and the weighting factor respectively. I test the algorithm with several examples but still not sure whether it is right or not as this method gets a different result with Polyfit, which relies on matrix calculation. I am now posting the implementation here and for your advice. Do you think it is a right implementation? Thanks!
If you think it is a good idea to downweight points that are far from the line, you might be attracted by http://en.wikipedia.org/wiki/Least_absolute_deviations, because one way of calculating this is via http://en.wikipedia.org/wiki/Iteratively_re-weighted_least_squares, which will give less weight to points far from the line.
If you think all your points are "good data", then it would be a mistake to weight them naively according to their distance from your initial fit. However, it's a fairly common practice to discard "outliers": if a few data points are implausibly far from the fit, and you have reason to believe that there's an error mechanism that could generate a small subset of "bad" datapoints, you could simply remove the implausible points from the dataset to get a better fit.
As far as the math is concerned, I would recommend biting the bullet and trying to figure out the matrix math. Perhaps you could find a different article, or a book which has a better presentation. I will not comment on your Matlab code, except to say that it looks like you will have some precision problems when subtracting part4 from part3, and probably part2 from part1 as well.
Not exactly what you are asking for, but you should look into robust regression. MATLAB has the function robustfit (requires Statistics Toolbox).
There is even an interactive demo you can play with to compare regular linear regression vs. robust regression:
>> robustdemo
This shows that in the presence of outliers, robust regression tends to give better results.

Removing unsolvable equations from an underdetermined system

My program tries to solve a system of linear equations. In order to do that, it assembles matrix coeff_matrix and vector value_vector, and uses Eigen to solve them like:
Eigen::VectorXd sol_vector = coeff_matrix
.colPivHouseholderQr().solve(value_vector);
The problem is that the system can be both over- and under-determined. In the former case, Eigen either gives a correct or uncorrect solution, and I check the solution using coeff_matrix * sol_vector - value_vector.
However, please consider the following system of equations:
a + b - c = 0
c - d = 0
c = 11
- c + d = 0
In this particular case, Eigen solves the three latter equations correctly but also gives solutions for a and b.
What I would like to achieve is that only the equations which have only one solution would be solved, and the remaining ones (the first equation here) would be retained in the system.
In other words, I'm looking for a method to find out which equations can be solved in a given system of equations at the time, and which cannot because there will be more than one solution.
Could you suggest any good way of achieving that?
Edit: please note that in most cases the matrix won't be square. I've added one more row here just to note that over-determination can happen too.
I think what you want to is the singular value decomposition (SVD), which will give you exact what you want. After SVD, "the equations which have only one solution will be solved", and the solution is pseudoinverse. It will also give you the null space (where infinite solutions come from) and left null space (where inconsistency comes from, i.e. no solution).
Based on the SVD comment, I was able to do something like this:
Eigen::FullPivLU<Eigen::MatrixXd> lu = coeff_matrix.fullPivLu();
Eigen::VectorXd sol_vector = lu.solve(value_vector);
Eigen::VectorXd null_vector = lu.kernel().rowwise().sum();
AFAICS, the null_vector rows corresponding to single solutions are 0s while the ones corresponding to non-determinate solutions are 1s. I can reproduce this throughout all my examples with the default treshold Eigen has.
However, I'm not sure if I'm doing something correct or just noticed a random pattern.
What you need is to calculate the determinant of your system. If the determinant is 0, then you have an infinite number of solutions. If the determinant is very small, the solution exists, but I wouldn't trust the solution found by a computer (it will lead to numerical instabilities).
Here is a link to what is the determinant and how to calculate it: http://en.wikipedia.org/wiki/Determinant
Note that Gaussian elimination should also work: http://en.wikipedia.org/wiki/Gaussian_elimination
With this method, you end up with lines of 0s if there are an infinite number of solutions.
Edit
In case the matrix is not square, you first need to extract a square matrix. There are two cases:
You have more variables than equations: then you have either no solution, or an infinite number of them.
You have more equations than variables: in this case, find a square sub-matrix of non-null determinant. Solve for this matrix and check the solution. If the solution doesn't fit, it means you have no solution. If the solution fits, it means the extra equations were linearly-dependant on the extract ones.
In both case, before checking the dimension of the matrix, remove rows and columns with only 0s.
As for the gaussian elimination, it should work directly with non-square matrices. However, this time, you should check that the number of non-empty row (i.e. a row with some non-0 values) is equal to the number of variable. If it's less you have an infinite number of solution, and if it's more, you don't have any solutions.