ValueError: object of too small depth for desired array - python-2.7

I've searched and find out this may be a problem concerning types. But I tried to force the array to float using astype didn't work out. This must be a simple error, however im a beginner.
About the problem: im trying to form the spatial correlation matrix bewteen the signals of all mics.
R_a[k][l] = np.correlate(self.mic_list[k].delayed_signal,self.mic_list[l].delayed_signal)
where this class has a mic_list which is a list of mic, which is another class that has this method
def add_delayed_signal (self, delayed_signal):
self.delayed_signal = delayed_signal
Thanks you in advanced.

I'm guessing R_a is a 2-dimensional array. What np.correlate does is to compute the cross-correlation between two signals, and gives you a vector as a result (not a scalar).
What you're looking for is probably np.cov or np.corrcoef. These are also vectorized approaches to getting the result you want.
For example:
>>> x = np.random.randn(10)
>>> y = np.random.randn(10)
>>> X = np.vstack((x, y))
>>> X
array([[ 1.45841294, -0.16430013, -0.20782822, 0.08979425, -1.38337166,
0.36488053, -2.57135737, 0.81215918, -0.54081983, 0.30421112],
[-0.79416305, 1.14511318, -0.4962483 , -0.42647021, -0.59925241,
-0.45612051, -0.02566026, -1.7668091 , -1.63098627, 0.3761437 ]])
>>> np.cov(X)
array([[ 1.28563113, -0.20563105],
[-0.20563105, 0.74178773]])
Is this what you're looking for?

Related

Applying derivative instead of typing it

In this code, function and its derivative are intended to be type in, since Eval accepts strings:
def newton(func, deriv, x, n):
def f(x):
f =eval(func)
return f
def df(x):
df =eval(deriv)
return df
for h in range(1,n):
i = x - (f(x)/df(x))
x = i
But what if we wish the machine to advise us the derivative, making the input like:
newton(str(y),str(y.diff), 2,10)
The output is "bound method Expr.diff of x**2 + 1". Is the a way to fix this? Thank you.
Strings don't know how to calculate a derivative but (if you really want to do it this way) you need a string that represents the derivative of the function described by the string y. So create a SymPy object that knows how to take the derivative, take the derivative, then convert it back to a string:
>>> y = 'x**2 + 1'
>>> newton(y, str(S(y).diff()), 2, 10)
(Your function won't show you anything, however, without a return statement.)

how to use SymPy or other library to have a numerical solution

I was trying to solve two equations for two unknown symbols 'Diff' and 'OHs'. the equations are shown below
x = (8.67839580228369e-26*Diff + 7.245e-10*OHs**3 +
1.24402291559836e-10*OHs**2 + OHs*(-2.38073807380738e-19*Diff -
2.8607855978291e-18) - 1.01141409254177e-29)
J= (-0.00435840284294195*Diff**0.666666666666667*(1 +
3.64525434266056e-7/OHs) - 1)
solution = sym.nsolve ((x, J), (OHs, Diff), (0.000001, 0.000001))
print (solution)
is this the correct way to solve for the two unknowns?
Thanks for your help :)
Note: I edited your equation per Vialfont's comments.
I would say it is a possible way but you could do better by noticing that the J equation can be solved easily for OHs and substituted into the x equation. This will then be much easier for nsolve to solve:
>>> osol = solve(J, OHs)[0] # there is only one solution
>>> eq = x.subs(OHs,osol)
>>> dsol = nsolve(eq, 1e-5)
>>> eq.subs(Diff,dsol) # verify
4.20389539297445e-45
>>> osol.subs(Diff,dsol), dsol
(-2.08893263437131e-12, 4.76768525775849e-5)
But this is still pretty ill behaved in terms of scaling...proceed with caution. And I would suggest writing Diff**Rational(2,3) instead of Diff**0.666666666666667. Or better, then let Diff be y**3 so you are working with a polynomial in y.
>>> y = var('y', postive=True)
>>> yx=x.subs(Diff,y**3)
>>> yJ=J.subs(Diff,y**3)
>>> yosol=solve(yJ,OHs)[0]
>>> yeq = yx.subs(OHs, yosol)
Now, the solutions of eq will be where its numerator is zero so find the real roots of that:
>>> ysol = real_roots(yeq.as_numer_denom()[0])
>>> len(ysol)
1
>>> ysol[0].n()
0.0362606728976173
>>> yosol.subs(y,_)
-2.08893263437131e-12
That is consistent with our previous solution, and this time the solutions in ysol were exact (given the limitations of the coefficients). So if your OHs solution should be positive, check your numbers and equations.
Your expressions do not meet Sympy requirements, including the exponential expressions. May be it is easier to start with a simpler system to solve with two unknowns and only a square such as:
from sympy.abc import a,b,x, y
from sympy import solve,exp
eq1= a*x**2 + b*y+ exp(0)
eq2= x + y + 2
sol=solve((eq1, eq2),(x,y),dict=True)
sol includes your answers and you have access to solutions with sol[0][x] and sol[0][y]. Giving values to the parameters is done with the .sub() method:
sol[0][x].subs({a:1, b:2}) #gives -1
sol[0][y].subs({a:1, b:2}) #gives -1

How to do weighted sum as tensor operation in tensorflow?

I am trying to do a weighted sum of matrices in tensorflow.
Unfortunately, my dimensions are not small and I have a problem with memory. Another option is that I doing something completely wrong
I have two tensors U with shape (B,F,M) and A with shape (C,B). I would like to do weighted sum and stacking.
Weighted sum
For each index c from C, I have vector of weights a from A, with shape (B,).
I want to use it for the weighted sum of U to get matrix U_t with shape (F, M). This is pretty same with this, where I found small help.
Concatenation
Unfortunately, I want to do this for each vector a in A to get C matrices U_tc in list. U_tc have mentioned shape (F,M). After that I concatenate all matrices in list to get super matrix with shape (C*F,M)
My values are C=2500, M=500, F=80, B=300
In the beginning, I tried the very naive approach with many loop and element selection which generate very much operation.
Now with help from this, I have following:
U = tf.Variable(tf.truncated_normal([B, F, M],stddev=1.0 ,dtype=tf.float32) #just for example
A = tf.Variable(tf.truncated_normal([C, B],stddev=1.0) ,dtype=tf.float32) #just for example
U_t = []
for ccc in xrange(C):
a = A[ccc,:]
a_broadcasted = tf.tile(tf.reshape(a,[B,1,1]), tf.stack([1,F,M]))
T_p.append(tf.reduce_sum(tf.multiply(U,a_broadcasted), axis=0))
U_tcs = tf.concat(U_t,axis=0)
Unfortunately, this is failing at memory error. I am not sure if I did something wrong, or it is because computation has a too much mathematic operation? Because I think... variables aren't too large for memory, right? At least, I had larger variables before and it was ok. (I have 16 GB GPU memory)
Am I doing that weighted sum correctly?
Any idea how to do it more effective?
I will appreciate any help. Thanks.
1. Weighted sum and Concatenation
You can use vector operations directly without loops when memory is not limited.
import tensorflow as tf
C,M,F,B=2500,500,80,300
U = tf.Variable(tf.truncated_normal([B, F, M],stddev=1.0 ,dtype=tf.float32)) #just for example
A = tf.Variable(tf.truncated_normal([C, B],stddev=1.0) ,dtype=tf.float32) #just for example
# shape=(C,B,1,1)
A_new = tf.expand_dims(tf.expand_dims(A,-1),-1)
# shape=(B,F,M)
U_t = tf.reduce_sum(tf.multiply(A_new , U),axis=1)
# shape=(C*F,M)
U_tcs = tf.reshape(U_t,(C*F,M))
2. Memory error
In fact, I also had memory errors when I ran the above code.
ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[2500,300,80,500]...
With a little modification of the above code, it works properly on my 8GB GPU memory.
import tensorflow as tf
C,M,F,B=2500,500,80,300
U = tf.Variable(tf.truncated_normal([B, F, M],stddev=1.0 ,dtype=tf.float32)) #just for example
A = tf.Variable(tf.truncated_normal([C, B],stddev=1.0) ,dtype=tf.float32) #just for example
# shape=(C,B,1,1)
A_new = tf.expand_dims(tf.expand_dims(A,-1),-1)
U_t = []
for ccc in range(C):
a = A_new[ccc,:]
a_broadcasted = tf.reduce_sum(tf.multiply(a, U),axis=0)
U_t.append(a_broadcasted)
U_tcs = tf.concat(U_t,axis=0)

Read array from input file and optimise variables Python

I have a simple Python code which reads two matrices in from a file, and each matrix element contains two undefined variables, A and B. After being read in, A and B are assigned values and the string is evaluated using eval() (I am aware of the security issues with this, but this code will only ever be used by me). A numpy array is formed for each of the matrices and the general eigenvalue problem is solved using both matrices. The code is as follows:
from __future__ import division
from scipy.linalg import eigh
import numpy as np
Mat_size = 4 ## Define matrix size
## Input the two matrices from each side of the generalised eigenvalue problem
HHfile = "Matrix_4x4HH.mat" ## left
SSfile = "Matrix_4x4SS.mat" ## right
## Read matrix files
f1 = open(HHfile, 'r')
HH_data = f1.read()
f2 = open(SSfile, 'r')
SS_data = f2.read()
# Define dictionary of variables
trans = {'A':2.1,
'B':3,
}
HHmat = eval(HH_data, trans)
SSmat = eval(SS_data, trans)
## Convert to numpy array
HHmat2 = np.array(HHmat)
SSmat2 = np.array(SSmat)
## Form correct matrix dimensions
shape = ( Mat_size, Mat_size )
HH = HHmat2.reshape( shape )
SS = SSmat2.reshape( shape )
ev, ew = eigh(HH,SS)
## solve eigenvalue problem
eigenValues,eigenVectors = eigh(HH,SS)
print("Eigenvalue:",eigenValues[0])
This works and outputs an answer. However I wish to vary the parameters A and B to minimise the value that it gives me. (Something like e.g.):
def func_min(x):
A, B = x
ev, ew=eigh(HH,SS)
return ev[0]
x0 = np.array([2.1, 3]) # Preliminary guess
minimize(func_min, x0)
I am having an issue with the fact that A and B have to be defined in order for the eval call to work; thus disallowing the optimisation routine as A and B cannot be varied since they have specified values. I have tried a few different methods of reading in the files (pandas, csv, np.genfromtxt etc...) but always seem to be left with the same issue. Is there a better way, or a modification to the current code to implement this?
Here are the inputs from the files. I was unsure of how to include them, but I can use a file upload service if that is better.
Input from Matrix_4x4HH.mat
-.7500000000000000/B**3*A**5/(A+B)**6-4.500000000000000/B**2*A**4/(A+B)**6-12./B*A**3/(A+B)**6-19.50000000000000*A**2/(A+B)**6-118.5000000000000*B*A/(A+B)**6-19.50000000000000*B**2/(A+B)**6-12.*B**3/A/(A+B)**6-4.500000000000000*B**4/A**2/(A+B)**6-.7500000000000000*B**5/A**3/(A+B)**6+2./B**3*A**4/(A+B)**6+13./B**2*A**3/(A+B)**6+36./B*A**2/(A+B)**6+165.*A/(A+B)**6+165.*B/(A+B)**6+36.*B**2/A/(A+B)**6+13.*B**3/A**2/(A+B)**6+2.*B**4/A**3/(A+B)**6,-.3750000000000000/B**3*A**5/(A+B)**6-2.125000000000000/B**2*A**4/(A+B)**6-4.750000000000000/B*A**3/(A+B)**6-23.87500000000000*A**2/(A+B)**6-1.750000000000000*B*A/(A+B)**6-23.87500000000000*B**2/(A+B)**6-4.750000000000000*B**3/A/(A+B)**6-2.125000000000000*B**4/A**2/(A+B)**6-.3750000000000000*B**5/A**3/(A+B)**6-1.500000000000000/B**2*A**3/(A+B)**6-5.500000000000000/B*A**2/(A+B)**6-25.*A/(A+B)**6-25.*B/(A+B)**6-5.500000000000000*B**2/A/(A+B)**6-1.500000000000000*B**3/A**2/(A+B)**6,1.500000000000000/B**3*A**6/(A+B)**7+10.12500000000000/B**2*A**5/(A+B)**7+29.12500000000000/B*A**4/(A+B)**7+45.25000000000000*A**3/(A+B)**7-135.1250000000000*B*A**2/(A+B)**7+298.7500000000000*B**2*A/(A+B)**7+14.87500000000000*B**3/(A+B)**7-5.750000000000000*B**4/A/(A+B)**7-2.375000000000000*B**5/A**2/(A+B)**7-.3750000000000000*B**6/A**3/(A+B)**7-4./B**3*A**5/(A+B)**7-27./B**2*A**4/(A+B)**7-76.50000000000000/B*A**3/(A+B)**7-9.500000000000000*A**2/(A+B)**7-305.*B*A/(A+B)**7-362.*B**2/(A+B)**7-14.50000000000000*B**3/A/(A+B)**7-1.500000000000000*B**4/A**2/(A+B)**7,-.3750000000000000/B**3*A**6/(A+B)**7-2.375000000000000/B**2*A**5/(A+B)**7-5.750000000000000/B*A**4/(A+B)**7+14.87500000000000*A**3/(A+B)**7+298.7500000000000*B*A**2/(A+B)**7-135.1250000000000*B**2*A/(A+B)**7+45.25000000000000*B**3/(A+B)**7+29.12500000000000*B**4/A/(A+B)**7+10.12500000000000*B**5/A**2/(A+B)**7+1.500000000000000*B**6/A**3/(A+B)**7-1.500000000000000/B**2*A**4/(A+B)**7-14.50000000000000/B*A**3/(A+B)**7-362.*A**2/(A+B)**7-305.*B*A/(A+B)**7-9.500000000000000*B**2/(A+B)**7-76.50000000000000*B**3/A/(A+B)**7-27.*B**4/A**2/(A+B)**7-4.*B**5/A**3/(A+B)**7,-.3750000000000000/B**3*A**5/(A+B)**6-2.125000000000000/B**2*A**4/(A+B)**6-4.750000000000000/B*A**3/(A+B)**6-23.87500000000000*A**2/(A+B)**6-1.750000000000000*B*A/(A+B)**6-23.87500000000000*B**2/(A+B)**6-4.750000000000000*B**3/A/(A+B)**6-2.125000000000000*B**4/A**2/(A+B)**6-.3750000000000000*B**5/A**3/(A+B)**6-1.500000000000000/B**2*A**3/(A+B)**6-5.500000000000000/B*A**2/(A+B)**6-25.*A/(A+B)**6-25.*B/(A+B)**6-5.500000000000000*B**2/A/(A+B)**6-1.500000000000000*B**3/A**2/(A+B)**6,-1.500000000000000/B**3*A**5/(A+B)**6-10.50000000000000/B**2*A**4/(A+B)**6-35./B*A**3/(A+B)**6-101.5000000000000*A**2/(A+B)**6-343.*B*A/(A+B)**6-101.5000000000000*B**2/(A+B)**6-35.*B**3/A/(A+B)**6-10.50000000000000*B**4/A**2/(A+B)**6-1.500000000000000*B**5/A**3/(A+B)**6+2./B**3*A**4/(A+B)**6+16./B**2*A**3/(A+B)**6+45./B*A**2/(A+B)**6+201.*A/(A+B)**6+201.*B/(A+B)**6+45.*B**2/A/(A+B)**6+16.*B**3/A**2/(A+B)**6+2.*B**4/A**3/(A+B)**6,.7500000000000000/B**3*A**6/(A+B)**7+5.625000000000000/B**2*A**5/(A+B)**7+18.87500000000000/B*A**4/(A+B)**7+19.62500000000000*A**3/(A+B)**7+170.3750000000000*B*A**2/(A+B)**7+73.87500000000000*B**2*A/(A+B)**7+57.62500000000000*B**3/(A+B)**7+4.875000000000000*B**4/A/(A+B)**7+.3750000000000000*B**5/A**2/(A+B)**7+1.500000000000000/B**2*A**4/(A+B)**7+7.500000000000000/B*A**3/(A+B)**7-1.*A**2/(A+B)**7+39.*B*A/(A+B)**7+47.50000000000000*B**2/(A+B)**7+1.500000000000000*B**3/A/(A+B)**7,.3750000000000000/B**2*A**5/(A+B)**7+4.875000000000000/B*A**4/(A+B)**7+57.62500000000000*A**3/(A+B)**7+73.87500000000000*B*A**2/(A+B)**7+170.3750000000000*B**2*A/(A+B)**7+19.62500000000000*B**3/(A+B)**7+18.87500000000000*B**4/A/(A+B)**7+5.625000000000000*B**5/A**2/(A+B)**7+.7500000000000000*B**6/A**3/(A+B)**7+1.500000000000000/B*A**3/(A+B)**7+47.50000000000000*A**2/(A+B)**7+39.*B*A/(A+B)**7-1.*B**2/(A+B)**7+7.500000000000000*B**3/A/(A+B)**7+1.500000000000000*B**4/A**2/(A+B)**7,1.500000000000000/B**3*A**6/(A+B)**7+10.12500000000000/B**2*A**5/(A+B)**7+29.12500000000000/B*A**4/(A+B)**7+45.25000000000000*A**3/(A+B)**7-135.1250000000000*B*A**2/(A+B)**7+298.7500000000000*B**2*A/(A+B)**7+14.87500000000000*B**3/(A+B)**7-5.750000000000000*B**4/A/(A+B)**7-2.375000000000000*B**5/A**2/(A+B)**7-.3750000000000000*B**6/A**3/(A+B)**7-4./B**3*A**5/(A+B)**7-27./B**2*A**4/(A+B)**7-76.50000000000000/B*A**3/(A+B)**7-9.500000000000000*A**2/(A+B)**7-305.*B*A/(A+B)**7-362.*B**2/(A+B)**7-14.50000000000000*B**3/A/(A+B)**7-1.500000000000000*B**4/A**2/(A+B)**7,.7500000000000000/B**3*A**6/(A+B)**7+5.625000000000000/B**2*A**5/(A+B)**7+18.87500000000000/B*A**4/(A+B)**7+19.62500000000000*A**3/(A+B)**7+170.3750000000000*B*A**2/(A+B)**7+73.87500000000000*B**2*A/(A+B)**7+57.62500000000000*B**3/(A+B)**7+4.875000000000000*B**4/A/(A+B)**7+.3750000000000000*B**5/A**2/(A+B)**7+1.500000000000000/B**2*A**4/(A+B)**7+7.500000000000000/B*A**3/(A+B)**7-1.*A**2/(A+B)**7+39.*B*A/(A+B)**7+47.50000000000000*B**2/(A+B)**7+1.500000000000000*B**3/A/(A+B)**7,-5.250000000000000/B**3/(A+B)**8*A**7-40.50000000000000/B**2/(A+B)**8*A**6-138.7500000000000/B/(A+B)**8*A**5-280.7500000000000/(A+B)**8*A**4-629.7500000000000*B/(A+B)**8*A**3+770.2500000000000*B**2/(A+B)**8*A**2-836.7500000000000*B**3/(A+B)**8*A-180.2500000000000*B**4/(A+B)**8-52.*B**5/(A+B)**8/A-12.75000000000000*B**6/(A+B)**8/A**2-1.500000000000000*B**7/(A+B)**8/A**3+14./B**3/(A+B)**8*A**6+107./B**2/(A+B)**8*A**5+355./B/(A+B)**8*A**4+778./(A+B)**8*A**3+284.*B/(A+B)**8*A**2+597.*B**2/(A+B)**8*A+911.*B**3/(A+B)**8+100.*B**4/(A+B)**8/A+20.*B**5/(A+B)**8/A**2+2.*B**6/(A+B)**8/A**3,.7500000000000000/B**3/(A+B)**8*A**7+5.625000000000000/B**2/(A+B)**8*A**6+18.25000000000000/B/(A+B)**8*A**5+52.50000000000000/(A+B)**8*A**4+397.*B/(A+B)**8*A**3-2356.250000000000*B**2/(A+B)**8*A**2+397.*B**3/(A+B)**8*A+52.50000000000000*B**4/(A+B)**8+18.25000000000000*B**5/(A+B)**8/A+5.625000000000000*B**6/(A+B)**8/A**2+.7500000000000000*B**7/(A+B)**8/A**3+1.500000000000000/B**2/(A+B)**8*A**5+10.50000000000000/B/(A+B)**8*A**4-276.5000000000000/(A+B)**8*A**3+1848.500000000000*B/(A+B)**8*A**2+1848.500000000000*B**2/(A+B)**8*A-276.5000000000000*B**3/(A+B)**8+10.50000000000000*B**4/(A+B)**8/A+1.500000000000000*B**5/(A+B)**8/A**2,-.3750000000000000/B**3*A**6/(A+B)**7-2.375000000000000/B**2*A**5/(A+B)**7-5.750000000000000/B*A**4/(A+B)**7+14.87500000000000*A**3/(A+B)**7+298.7500000000000*B*A**2/(A+B)**7-135.1250000000000*B**2*A/(A+B)**7+45.25000000000000*B**3/(A+B)**7+29.12500000000000*B**4/A/(A+B)**7+10.12500000000000*B**5/A**2/(A+B)**7+1.500000000000000*B**6/A**3/(A+B)**7-1.500000000000000/B**2*A**4/(A+B)**7-14.50000000000000/B*A**3/(A+B)**7-362.*A**2/(A+B)**7-305.*B*A/(A+B)**7-9.500000000000000*B**2/(A+B)**7-76.50000000000000*B**3/A/(A+B)**7-27.*B**4/A**2/(A+B)**7-4.*B**5/A**3/(A+B)**7,.3750000000000000/B**2*A**5/(A+B)**7+4.875000000000000/B*A**4/(A+B)**7+57.62500000000000*A**3/(A+B)**7+73.87500000000000*B*A**2/(A+B)**7+170.3750000000000*B**2*A/(A+B)**7+19.62500000000000*B**3/(A+B)**7+18.87500000000000*B**4/A/(A+B)**7+5.625000000000000*B**5/A**2/(A+B)**7+.7500000000000000*B**6/A**3/(A+B)**7+1.500000000000000/B*A**3/(A+B)**7+47.50000000000000*A**2/(A+B)**7+39.*B*A/(A+B)**7-1.*B**2/(A+B)**7+7.500000000000000*B**3/A/(A+B)**7+1.500000000000000*B**4/A**2/(A+B)**7,.7500000000000000/B**3/(A+B)**8*A**7+5.625000000000000/B**2/(A+B)**8*A**6+18.25000000000000/B/(A+B)**8*A**5+52.50000000000000/(A+B)**8*A**4+397.*B/(A+B)**8*A**3-2356.250000000000*B**2/(A+B)**8*A**2+397.*B**3/(A+B)**8*A+52.50000000000000*B**4/(A+B)**8+18.25000000000000*B**5/(A+B)**8/A+5.625000000000000*B**6/(A+B)**8/A**2+.7500000000000000*B**7/(A+B)**8/A**3+1.500000000000000/B**2/(A+B)**8*A**5+10.50000000000000/B/(A+B)**8*A**4-276.5000000000000/(A+B)**8*A**3+1848.500000000000*B/(A+B)**8*A**2+1848.500000000000*B**2/(A+B)**8*A-276.5000000000000*B**3/(A+B)**8+10.50000000000000*B**4/(A+B)**8/A+1.500000000000000*B**5/(A+B)**8/A**2,-1.500000000000000/B**3/(A+B)**8*A**7-12.75000000000000/B**2/(A+B)**8*A**6-52./B/(A+B)**8*A**5-180.2500000000000/(A+B)**8*A**4-836.7500000000000*B/(A+B)**8*A**3+770.2500000000000*B**2/(A+B)**8*A**2-629.7500000000000*B**3/(A+B)**8*A-280.7500000000000*B**4/(A+B)**8-138.7500000000000*B**5/(A+B)**8/A-40.50000000000000*B**6/(A+B)**8/A**2-5.250000000000000*B**7/(A+B)**8/A**3+2./B**3/(A+B)**8*A**6+20./B**2/(A+B)**8*A**5+100./B/(A+B)**8*A**4+911./(A+B)**8*A**3+597.*B/(A+B)**8*A**2+284.*B**2/(A+B)**8*A+778.*B**3/(A+B)**8+355.*B**4/(A+B)**8/A+107.*B**5/(A+B)**8/A**2+14.*B**6/(A+B)**8/A**3
Input from Matrix_4x4SS.mat
1./B**3*A**3/(A+B)**6+6./B**2*A**2/(A+B)**6+15./B*A/(A+B)**6+84./(A+B)**6+15.*B/A/(A+B)**6+6.*B**2/A**2/(A+B)**6+1.*B**3/A**3/(A+B)**6,-.5000000000000000/B**3*A**3/(A+B)**6-3.500000000000000/B**2*A**2/(A+B)**6-9.500000000000000/B*A/(A+B)**6-53./(A+B)**6-9.500000000000000*B/A/(A+B)**6-3.500000000000000*B**2/A**2/(A+B)**6-.5000000000000000*B**3/A**3/(A+B)**6,-2./B**3*A**4/(A+B)**7-12.50000000000000/B**2*A**3/(A+B)**7-32.50000000000000/B*A**2/(A+B)**7+18.50000000000000*A/(A+B)**7-253.*B/(A+B)**7-17.50000000000000*B**2/A/(A+B)**7-4.500000000000000*B**3/A**2/(A+B)**7-.5000000000000000*B**4/A**3/(A+B)**7,-.5000000000000000/B**3*A**4/(A+B)**7-4.500000000000000/B**2*A**3/(A+B)**7-17.50000000000000/B*A**2/(A+B)**7-253.*A/(A+B)**7+18.50000000000000*B/(A+B)**7-32.50000000000000*B**2/A/(A+B)**7-12.50000000000000*B**3/A**2/(A+B)**7-2.*B**4/A**3/(A+B)**7,-.5000000000000000/B**3*A**3/(A+B)**6-3.500000000000000/B**2*A**2/(A+B)**6-9.500000000000000/B*A/(A+B)**6-53./(A+B)**6-9.500000000000000*B/A/(A+B)**6-3.500000000000000*B**2/A**2/(A+B)**6-.5000000000000000*B**3/A**3/(A+B)**6,2./B**3*A**3/(A+B)**6+14./B**2*A**2/(A+B)**6+38./B*A/(A+B)**6+212./(A+B)**6+38.*B/A/(A+B)**6+14.*B**2/A**2/(A+B)**6+2.*B**3/A**3/(A+B)**6,1./B**3*A**4/(A+B)**7+6.500000000000000/B**2*A**3/(A+B)**7+16.50000000000000/B*A**2/(A+B)**7-19.*A/(A+B)**7+118.*B/(A+B)**7+4.500000000000000*B**2/A/(A+B)**7+.5000000000000000*B**3/A**2/(A+B)**7,.5000000000000000/B**2*A**3/(A+B)**7+4.500000000000000/B*A**2/(A+B)**7+118.*A/(A+B)**7-19.*B/(A+B)**7+16.50000000000000*B**2/A/(A+B)**7+6.500000000000000*B**3/A**2/(A+B)**7+1.*B**4/A**3/(A+B)**7,-2./B**3*A**4/(A+B)**7-12.50000000000000/B**2*A**3/(A+B)**7-32.50000000000000/B*A**2/(A+B)**7+18.50000000000000*A/(A+B)**7-253.*B/(A+B)**7-17.50000000000000*B**2/A/(A+B)**7-4.500000000000000*B**3/A**2/(A+B)**7-.5000000000000000*B**4/A**3/(A+B)**7,1./B**3*A**4/(A+B)**7+6.500000000000000/B**2*A**3/(A+B)**7+16.50000000000000/B*A**2/(A+B)**7-19.*A/(A+B)**7+118.*B/(A+B)**7+4.500000000000000*B**2/A/(A+B)**7+.5000000000000000*B**3/A**2/(A+B)**7,7./B**3/(A+B)**8*A**5+50./B**2/(A+B)**8*A**4+154./B/(A+B)**8*A**3+331./(A+B)**8*A**2-147.*B/(A+B)**8*A+848.*B**2/(A+B)**8+80.*B**3/(A+B)**8/A+19.*B**4/(A+B)**8/A**2+2.*B**5/(A+B)**8/A**3,1./B**3/(A+B)**8*A**5+8.500000000000000/B**2/(A+B)**8*A**4+31./B/(A+B)**8*A**3-152.5000000000000/(A+B)**8*A**2+1568.*B/(A+B)**8*A-152.5000000000000*B**2/(A+B)**8+31.*B**3/(A+B)**8/A+8.500000000000000*B**4/(A+B)**8/A**2+1.*B**5/(A+B)**8/A**3,-.5000000000000000/B**3*A**4/(A+B)**7-4.500000000000000/B**2*A**3/(A+B)**7-17.50000000000000/B*A**2/(A+B)**7-253.*A/(A+B)**7+18.50000000000000*B/(A+B)**7-32.50000000000000*B**2/A/(A+B)**7-12.50000000000000*B**3/A**2/(A+B)**7-2.*B**4/A**3/(A+B)**7,.5000000000000000/B**2*A**3/(A+B)**7+4.500000000000000/B*A**2/(A+B)**7+118.*A/(A+B)**7-19.*B/(A+B)**7+16.50000000000000*B**2/A/(A+B)**7+6.500000000000000*B**3/A**2/(A+B)**7+1.*B**4/A**3/(A+B)**7,1./B**3/(A+B)**8*A**5+8.500000000000000/B**2/(A+B)**8*A**4+31./B/(A+B)**8*A**3-152.5000000000000/(A+B)**8*A**2+1568.*B/(A+B)**8*A-152.5000000000000*B**2/(A+B)**8+31.*B**3/(A+B)**8/A+8.500000000000000*B**4/(A+B)**8/A**2+1.*B**5/(A+B)**8/A**3,2./B**3/(A+B)**8*A**5+19./B**2/(A+B)**8*A**4+80./B/(A+B)**8*A**3+848./(A+B)**8*A**2-147.*B/(A+B)**8*A+331.*B**2/(A+B)**8+154.*B**3/(A+B)**8/A+50.*B**4/(A+B)**8/A**2+7.*B**5/(A+B)**8/A**3
Edit
I guess the important part of this question is how to read in an array of equations from a file into a numpy array and be able to assign values to the variables without the need for eval. As an example of what can usually be done using numpy:
import numpy as np
A = 1
B = 1
arr = np.array([[A+2*B,2],[2,B+6*(B+A)]])
print arr
This gives:
[[ 3 2]
[ 2 13]]
The numpy array contained algebraic terms and when printed the specified values of A and B were inserted. Is this possible with equations read from a file into a numpy array? I have looked through the numpy documentation and is the issue to do with the type of data being read in? i.e. I cannot specify the dtype to be int or float as each array element contains ints, floats and text. I feel there is a very simple aspect of Python I am missing that can do this.

Python: Solving equation system (coefficients are arrays)

I can solve a system equation (using NumPY) like this:
>>> a = np.array([[3,1], [1,2]])
>>> b = np.array([9,8])
>>> y = np.linalg.solve(a, b)
>>> y
array([ 2., 3.])
But, if I got something like this:
>>> x = np.linspace(1,10)
>>> a = np.array([[3*x,1-x], [1/x,2]])
>>> b = np.array([x**2,8*x])
>>> y = np.linalg.solve(a, b)
It doesnt work, where the matrix's coefficients are arrays and I want calculate the array solution "y" for each element of the array "x". Also, I cant calculate
>>> det(a)
The question is: How can do that?
Check out the docs page. If you want to solve multiple systems of linear equations you can send in multiple arrays but they have to have shape (N,M,M). That will be considered a stack of N MxM arrays. A quote from the docs page below,
Several of the linear algebra routines listed above are able to compute results for several matrices at once, if they are stacked into the same array. This is indicated in the documentation via input parameter specifications such as a : (..., M, M) array_like. This means that if for instance given an input array a.shape == (N, M, M), it is interpreted as a “stack” of N matrices, each of size M-by-M. Similar specification applies to return values, for instance the determinant has det : (...) and will in this case return an array of shape det(a).shape == (N,). This generalizes to linear algebra operations on higher-dimensional arrays: the last 1 or 2 dimensions of a multidimensional array are interpreted as vectors or matrices, as appropriate for each operation.
When I run your code I get,
>>> a.shape
(2, 2)
>>> b.shape
(2, 50)
Not sure exactly what problem you're trying to solve, but you need to rethink your inputs. You want a to have shape (N,M,M) and b to have shape (N,M). You will then get back an array of shape (N,M) (i.e. N solution vectors).