Assign values from vector to dynamic array (C++) - c++

I have a vector of vertices of a line called lineVertices and I am going to pass this data to draw an OpenGL shape, so this vector must be in the form of an array, I'm assuming. I've tried the following code:
float* lineArray = new float[lineVertices.size()]();
for (unsigned i = 0; i < lineVertices.size(); i++) {
lineArray[i] = lineVertices.at(i);
}
However, it appears that the each element of the vector is getting assigned to the first element of the array only. Even though the lineArray identifier is a pointer to the first element, is there another way to access the different elements of the dynamic array?
If it helps, when I am debugging, it says that the size of lineArray is always 1, although lineVertices' size is clearly greater than 1.
I have also tried the code below, but this also does not work.
float* lineArray = &lineVertices[0];
Any help is appreciated!

You can pass a std::vector directly to OpenGL functions taking a pointer to an array. Just use the ::data() member function. Example:
std::vector<float> vec = ...;
glVertex2fv(vec.data()); // only uses the first two elements
OpenGL functions like this take a pointer to one or more elements. This doesn't have to be a raw array created with new; it just has to be a pointer to a consecutive list of elements. Use vector.data() to get a pointer to a std::vector's contents (first element).
If you really want to create a new array with manual memory management, you can do this (same effect as the code you posted):
float* arr = new float[vec.size()]; // NO () - not a constructor, but operator new[]
for (size_t i = 0; i < vec.size(); i++) {
arr[i] = vec[i];
}

Related

Problem implementing a dynamically-sized array

I'm writing an implementation of a dynamically-sized array. The code compiles without errors, but the array elements don't get copied properly. They seem to just get erased (overwritten with 0's). Trying to call a getter on an array element causes a segfault.
The array holds pointers to some basic class objects; this is the main difference between my code and the examples I looked up.
This is the function:
// Pointer to array of pointers
SomeClass** mainArray = new SomeClass[1];
int numItems = 0;
void AddItemDynamic(SomeClass* newVal) {
SomeClass** tempArray = new SomeClass*[numItems+1];
// Copying pointers to bigger array
for (int i = 0; i < numItems - 1; i++) {
tempArray[i] = mainArray[i];
}
numItems++;
// Adding the new value
tempArray[numItems] = newVal;
delete [] mainArray;
mainArray = tempArray;
}
The code should copy the array elements over, then reassign the pointer to the newly created array. Instead, the pointer seems to be set to something else.
If the current array have numItems element in them, then the loop
for (int i = 0; i < numItems - 1; i++)
will copy one less than numItems elements.
And when you add the new element, you go out of bounds of the new array, because you increase numItems to early.
So two off-by-one errors in the same function, one in each direction.
And as mentioned in a comment (thanks Ayxan) the first off-by-one error will mean that the first two times you call this function, the copying loop won't happen. That's actually good when doing it the first time as then there's nothing to copy, but the second time there should be something to copy and yet the loop (currently) won't run.

How to init a double**?

I need to init/use a double ** (decleared in my header):
double **pSamples;
allocating (during the time) a matrix of NxM, where N and M are get from two function:
const unsigned int N = myObect.GetN();
const unsigned int M = myObect.GetM();
For what I learnt from heap and dynamic allocation, I need keyword new, or use STL vector, which will manage automatically allocate/free within the heap.
So I tried with this code:
vector<double> samplesContainer(M);
*pSamples[N] = { samplesContainer.data() };
but it still says I need a constant value? How would you allocate/manage (during the time) this matrix?
The old fashioned way of initializing a pointer to a pointer, is correctly enough with the new operator, you would first initialize the the first array which is a pointer to doubles (double*), then you would iterate through that allocating the next pointer to doubles (double*).
double** pSamples = new double*[N];
for (int i = 0; i < N; ++i) {
pSambles[i] = new double[M];
}
The first new allocates an array of double pointers, each pointer is then assigned to the array of pointers allocated by the second new.
That is the old way of doing it, remember to release the memory again at some point using the delete [] operator. However C++ provide a lot better management of sequential memory, such as a vector which you can use as either a vector of vectors, or simply a single vector capable of holding the entire buffer.
If you go the vector of vector way, then you have a declaration like this:
vector<vector<double>> samples;
And you will be able to reference the elements using the .at function as such: samples.at(2).at(0) or using the array operator: samples[2][0].
Alternatively you could create a single vector with enough storage to hold the multidimensional array by simply sizing it to be N * M elements large. However this method is difficult to resize, and honestly you could have done that with new as well: new double[N * M], however this would give you a double* and not a double**.
Use RAII for resource management:
std::vector<std::vector<double>> samplesContainer(M, std::vector<double>(N));
then for compatibility
std::vector<double*> ptrs(M);
for (std::size_t i = 0; i != M; ++i) {
ptrs[i] = samplesContainer[i].data();
}
And so pass ptrs.data() for double**.
samplesContainer.data() returns double*, bur expression *pSamples[N] is of type double, not double*. I think you wanted pSamples[N].
pSamples[N] = samplesContainer.data();

C++ How to create a dynamic array of vectors?

I'm having problem initialising an array of std::vectors.
I'm declaring and initialising it like this:
vector<component_change*>* _changes;
_changes = new vector<component_change*> [numThreads];
in the hope that it's in the same form as this:
int * foo;
foo = new int [5];
but when I hit a breakpoint after the initialisation, _changes' size is 0.
What am I doing wrong and how can I fix it?
I don't want to use a vector of vectors as the number I need remains constant throughout the program but depends on the current hardware. And I'm not just looking for a single vector (Each vector will be used by a different thread then merged when the threads have finished their tasks).
Thanks guys! :)
Your program is correct. But you misinterpreted the debugger. _changes's size is not 0, but the first vector in your array (the one _changes points at) is empty. Thats because the debugger does not know if _changes points at a single element or an array (in that case the compiler would not know how many elements are in that array). Simply use a vector and call std::vector::shrink_to_fit.
If the size can be determined at compile time use a std::array. If the size is a run-time argument then use a vector and don't change the size of the container.
Are you interested in have a vector for each thread, or a vector containing items used by each thread? I assumed the later, but my answer could be adapted.
This is using a statically sized array; (this syntax is close).
const int NUMBER_OF_THREADS = 5;
component_change* _changes[NUMBER_OF_THREADS] =
{
new component_change(1),
new component_change(2),
new component_change(3),
new component_change(4),
new component_change(5)
}
If the number of threads is dynamic, you will have to use a new...
int NUMBER_OF_THREADS = system.getThreadCount();
component_change* _changes = new component_change[NUMBER_OF_THREADS];
for (int i = 0; i < NUMBER_OF_THREADS; i++)
{
_changes[i] = new component_change(i+1);
}
If you want to a std::vector:
int NUMBER_OF_THREADS = system.getThreadCount();
std::vector<component_change*> _changes;
_changes.reserve(NUMBER_OF_THREADS);
for (int i = 0; i < NUMBER_OF_THREADS; i++)
{
_changes.push_back(new component_change(i+1));
}
I think you're kind of mislead, this size that you are reading belongs to the vector in the first element of the array. Its size is equal to 0 since no elements have been inserted in the vector yet.
new vector is usually wrong.
You should use, with most preferred if possible first,
std::vector<component_change> _changes(numThreads);
or
std::vector<std::unique_ptr<component_change>> _changes(numThreads);
or
std::vector<component_change*> _changes(numThreads);
or if each element of the vector should itself contain an array of components (it's not clear in your question)
std::vector<std::vector<**component_change**>> _changes(numThreads);
Declaring the component as one of the above ways, depending on your needs.
Note that the pointers begin not pointing to anything. You'd have to allocate the individual components as a separate step.
The following creates an array of numThreads vectors, not a vector of numThread elements.
new vector<component_change*> [numThreads]

initialize an int[][] with new()

I am a c++ newbie. While learning I came across this.
if I have a pointer like this
int (*a)[2][3]
cdecl.org describe this as declare a as pointer to array 2 of array 3 of int:
When I try
int x[2][3];
a = &x;
this works.
My question is how I can initialize a when using with new() say something like
a = new int [] [];
I tried some combinations but doesn't get it quite right.
Any help will be appreciated.
You will have to do it in two steps - first allocate an array of pointers to pointers(dynamically allocated arrays) and then, allocate each of them in turn. Overall I believe a better option is simply to use std::vector - that is the preferred C++ way of doing this kind of things.
Still here is an example on how to achieve what you want:
int a**;
a = new int*[2];
for (int i =0; i< 2;++i){
a[i] = new int[3]
}
... use them ...
// Don't forget to free the memory!
for (int i = 0; i< 2; ++i) {
delete [] a[i];
}
delete [] a;
EDIT: and as requested by Default - the vector version:
std::vector<std::vector<int> > a(2, std::vector<int>(3,0));
// Use a and C++ will take care to free the memory.
It's probably not the answer you're looking for, but what you
need is a new expression whose return type is (*)[2][3] This
is fairly simple to do; that's the return type of new int
[n][2][3], for example. Do this, and a will point to the
first element of an array of [2] of array of [3] int. A three
dimensional array, in sum.
The problem is that new doesn't return a pointer to the top
level array type; it returns a pointer to the first element of
the array. So if you do new int[2][3], the expression
allocates an array of 2 array of 3 int, but it returns
a pointer to an array of 3 int (int (*a)[3]), because in C++,
arrays are broken (for reasons of C compatibility). And there's
no way of forcing it to do otherwise. So if you want it to
return a pointer to a two dimensional array, you have to
allocate a three dimensional array. (The first dimension can be
1, so new [1][2][3] would do the trick, and effectively only
allocate a single [2][3].)
A better solution might be to wrap the array in a struct:
struct Array
{
int data[2][3];
};
You can then use new Array, and everything works as expected.
Except that the syntax needed to access the array will be
different.

Multi-dimensional array and pointers in C++?

int *x = new int[5]();
With the above mentality, how should the code be written for a 2-dimensional array - int[][]?
int **x = new int[5][5] () //cannot convert from 'int (*)[5]' to 'int **'
In the first statement I can use:
x[0]= 1;
But the second is more complex and I could not figure it out.
Should I use something like:
x[0][1] = 1;
Or, calculate the real position then get the value
for the fourth row and column 1
x[4*5+1] = 1;
I prefer doing it this way:
int *i = new int[5*5];
and then I just index the array by 5 * row + col.
You can do the initializations separately:
int **x = new int*[5];
for(unsigned int i = 0; i < 5; i++)
x[i] = new int[5];
There is no new[][] operator in C++. You will first have to allocate an array of pointers to int:
int **x = new int*[5];
Then iterate over that array. For each element, allocate an array of ints:
for (std::size_t i = 0; i < 5; ++i)
x[i] = new int[5];
Of course, this means you will have to do the inverse when deallocating: delete[] each element, then delete[] the larger array as a whole.
This is how you do it:
int (*x)[5] = new int[7][5] ;
I made the two dimensions different so that you can see which one you have to use on the lhs.
Ff the array has predefined size you can write simply:
int x[5][5];
It compiles
If not why not to use a vector?
There are several ways to accomplish this:
Using gcc's support for flat multidimensional arrays (TonyK's answer, the most relevant to the question IMO). Note that you must preserve the bounds in the array's type everywhere you use it (e.g. all the array sizes, except possibly the first one), and that includes functions that you call, because the produced code will assume a single array. The allocation of $ new int [7][5] $ causes a single array to be allocated in memory. indexed by the compiler (you can easily write a little program and print the addresses of the slots to convince yourself).
Using arrays of pointers to arrays. The problem with that approach is having to allocate all the inner arrays manually (in loops).
Some people will suggest using std::vector's of std::vectors, but this is inefficient, due to the memory allocation and copying that has to occur when the vectors resize.
Boost has a more efficient version of vectors of vectors in its multi_array lib.
In any case, this question is better answered here:
How do I use arrays in C++?