call another constructor from constructor body - c++

I have an object that has different constructors. Now I want to add another constructor that based on arbitrary data will try to process that data and call the correct constructor.
AFAIK there are two ways to do it:
static function that returns the created object
static *A from_data(/arbitrary data/);
create a private "init" function that is called by constructors
But I am wondering what are the problems and potential pitfalls of using a placement new on this using the desired constructor. So the code would be:
#include <new>
struct A
{
/*different constructors*/
A(int i) {};
A(double d) {};
A(/*large set of data*/)
{
/*large set of data gets processed and depending on the processing a different constructor gets called*/
this->~A(); //deletes current object
if (true) {
new (this) A(1); //reconstructs object calling the correct constructor for the data
} else {
new (this) A(1.0); //reconstructs object calling the correct constructor for the data
}
};
};
int main(int argc, char* argv[])
{
A a;
}

You want a compile time decision (choice of constructor to delegate to) from run-time information (result of processing a data set).
That means that what you directly want, cannot be done.
But you can use your idea of a static member function that returns the created object, except that instead of A* it should return A, or else a smart pointer.
Re the other suggested solution,
” create a private "init" function that is called by cosntructors
… that doesn't solve the stated problem, and it's a generally bad idea.
Re
” what are the problems and potential pitfalls of using a placement new on this
Well, it's not code you can rely on. I believe it's Undefined Behavior because at the point where the object self-destroys it's not completely initialized. If it should turn out that it's technically well defined for the case at hand, it's not code that you would want to rely on. And in a setting with possible maintenance, someone stumbling on this code would have to replace it rather than wasting time trying to prove UB or not. Just Say No™ to the dark corners of the language.

I briefly considered spending some time trying to figure out whether the shown example results in undefined behavior, or not. But I quickly decided that this is irrelevant, a waste of time, and is completely beside the point because the current C++ standard has a perfectly well-defined, clean mechanism to do exactly the same thing, and it would be more productive to focus my answer on that, instead.
I'm referring to delegating constructors, of course:
class A {
public:
A(int n) {
// whatever
}
A(const char *p, double z)
: A( /* some formula that calculates an int value goes here */ )
{
}
};
The current C++ standard specifies a well-defined way for one constructor to delegate the actual job of constructing and initializing an instance of the class by invoking a different constructor.
Note that this doesn't mean that one constructor gets to execute arbitrary code, before deciding to invoke the delegated-to constructor. The delegation must occur as the very first order of business, where you normally see the initialization section of a constructor; where you see things like the superclasses' constructors, if any.
Only after the delegated-to constructor returns, does the delegated-from constructor have an option of running more code of its own, to finish the job.
But this is just a minor inconvenience, easily addressed with just a little bit of coding:
class A {
public:
A(int n) {
// whatever
}
A(const char *p, double z)
: A(figure_out_an_int_value_from_p_and_z(p, z))
{
}
private:
static int figure_out_an_int_value_from_p_and_z(const char *p, double z)
{
int a_very_complicated_value;
// Some complicated code that computes a_very_complicated_value.
return a_very_complicated_value;
}
};

Related

Array class member initialization in C++

I have the following code snippet:
#include <iostream>
using namespace std;
class A {
int* data;
int size;
public:
A(int s):size(s)
{
data = new int[size];
}
A() {
data = nullptr;
}
~A() {
if (data) delete [] data;
}
};
class B {
A a[2];
public:
B() {
a[0] = A(10);
a[1] = A(11);
}
};
int main(int argc, char *argv[]) {
B b;
}
In the C++ code above, I have class A which has an array member int* data, and the (de)allocation of memory are handled by (de)constructor. The I created class B which has an array of class A of fixed length as a data member.
My question is: how to elegantly initialise the member A a[2]? In the code above, the A(10) and A(11) are created on the stack, when jumping out of the scope, their destructors will be called, hence the data comes invalid. When jumping of the main function's scope, the pointers held by a[2] will be deallocated twice, causing the error:
pointer being freed was not allocated.
One possible solution is to carefully design a copy constructor and a move constructor, by doing so the above coding paradigm could work.
Another solution I've tried is to initialise the array in the initialization list of class B:
B() : a { A(10), A(11) }
This solution works and I don't really tell the underlying mechanism of initialization list. I think it must be quite different from simply construct and copy. I really expected some experts could give an elaborate explanation of this mechanism. Of course, this solution is ugly hard-coded and not flexible.
So I wonder if there are some programming paradigms in C++ to tackle this design problem?
In the code above, the A(10) and A(11) are created on the stack
They are temporary objects. It is not specified where they are created or if they're created at all.
when jumping out of the scope, their destructors will be called
The destructor of each temporary will be called after the corresponding move assignment statement ends.
One possible solution is to carefully design a copy constructor and a move constructor, by doing so the above coding paradigm could work.
And {copy,move} assignment operator too. You should always do that when the implicitly declared ones don't do the right thing. And they never do the right thing if you delete something in the destructor.
Another solution I've tried is to initialise the array in the initialization list of class B
This solution works and I don't really tell the underlying mechanism of initialization list. I think it must be quite different from simply construct and copy.
The bug in the original code is badly behaving move assignment operator of A. Since the initialization list never move assigns from a temporary, it never triggers the bug.
This is actually the more elegant way to construct a that you asked for. Not because it avoids the bug, but because avoiding unnecessary moving is good thing, intrinsically.
So I wonder if there are some programming paradigms in C++ to tackle this design problem?
Yes. RAII and Single responsibility principle. Unless your class does nothing else, besides managing the memory pointed by data, it should not be managing the memory. Instead, it should delegate the memory management to a RAII object. In this case, you should use a std::vector member.
class A {
std::vector<int> data;
public:
A(int s):data(s) {}
A() = default;
};
Using an initializer list to construct B::a, like this:
class B {
A a[2];
public:
B() : a({10, 11}){
}
};
The ideal answer would be to force A to use movements instead of copies, or on a copy to allocate new space for the item. Of the two, the most efficient is the former and so I will expand on it below:
Forcing movement can be done in two fashions:
Delete the copy constructor and copy operator=, and implement your own move constructor and operator=
Consistently use std::move and std::swap.
Of these, the former is superior in that you will be unable to accidentally copy the class, but with the latter the fact that you are moving will be more evident.
To delete the default copy methods do:
class A {
A( const A& a ) = delete;
A& operator =( const A& a ) = delete;
}

C++11 best practice to use rvalue

I am new to C++11. In fact until recently, I programmed only using dynamic allocation, in a way similar to Java, e.g.
void some_function(A *a){
a->changeInternalState();
}
A *a = new A();
some_function(a);
delete a;
// example 2
some_function( new A() ); // suppose there is **no** memory leak.
Now I want to reproduce similar code with C++11, but without pointers.
I need to be able to pass newly created class class A directly to function useA(). There seems to be a problem if I want to do so with non-const normal reference and It works if I do it with rvalue reference.
Here is the code:
#include <stdio.h>
class A{
public:
void print(){
++p; // e.g. change internal state
printf("%d\n", p);
}
int p;
};
// normal reference
void useA(A & x){
x.print();
}
// rvalue reference
void useA(A && x){
useA(x);
}
int main(int argc, char** argv)
{
useA( A{45} ); // <--- newly created class
A b{20};
useA(b);
return 0;
}
It compiles and executes correctly, but I am not sure, if this is the correct acceptable way to do the work?
Are there some best practices for this kind of operations?
Normally you would not design the code so that a temporary object gets modified. Then you would write your print function as:
void useA(A const & x){
x.print();
}
and declare A::print as const. This binds to both rvalues and lvalues. You can use mutable for class member variables which might change value but without the object logically changing state.
Another plan is to keep just A &, but write:
{ A temp{45}; useA(temp); }
If you really do want to modify a temporary object, you can write the pair of lvalue and rvalue overloads as you have done in your question. I believe this is acceptable practice for that case.
The best thing about C++11 move semantics is that most of the time, you get them "for free" without having to explicitly add any &&s or std::move()s in your code. Usually, you only need to use these things explicitly if you're writing code that does manual memory management, such as the implementation of a smart pointer or a container class, where you would have had to write a custom destructor and copy constructor anyway.
In your example, A is just an int. For ints, a move is no different from a copy, because there's no opportunity for optimization even if the int happens to be a disposable temporary. Just provide a single useA() function that takes an ordinary reference. It'll have the same behavior.

Default Initialize or Check For Null

I'd like to know is it better to specify a default initialization for a smart-pointer or do a NULL value check before accessing the smart-pointers methods?
Currently I've been using the method below to avoid calling increment() on a NULL pointer. Is this a reasonable way of doing things or is there a pitfall that I don't see?
Note: We use a custom smart-pointer class and I don't have the Boost libraries on my current configuration to test compile this code. This should compile, but YMMV.
Example.h
#include <boost/shared_ptr.hpp>
class Foo
{
public:
Foo() : mFoo(0) {}
Foo(int rawValue) : mFoo(rawValue) {}
void increment() { mFoo++; }
private:
int mFoo;
};
typedef boost::shared_ptr<Foo> FooSP;
class MyClass
{
public:
MyClass() : mFoo(new Foo()) {}
FooSP foo() { return mFoo; }
void setFoo(FooSP newFoo) { mFoo = newFoo; }
private:
FooSP mFoo;
};
Main.cpp
#include <Example.h>
int main()
{
MyClass temp; // Default-constructed
temp.foo()->increment(); // Increment Foo's member integer
// Before: mFoo = 0
// After: mFoo = 1
FooSP tempFoo = new Foo(10); // Create a Foo with a default size
temp.setFoo(FooSP(new Foo(10))); // Explicitly set the FooSP member
temp.foo()->increment(); // Increment the new FooSP
// Before: mFoo = 10
// After: mFoo = 11
return 0;
}
If you are using a smart pointer as a general replacement for a pointer type, you cannot get away from a check for null. This is because a class defined with a smart pointer with a default constructor is likely to allow the smart pointer to be created with its default constructor. Dynamically creating a new object just to fill the pointer until you can set it seems to be a waste of resources.
shared_ptr's constructor is explicit, so your initialization of tempFoo won't compile. If you wanted to save a line of code, you can avoid declaring the temporary like this:
temp.setFoo(FooSP(new Foo(10)));
You can also declare the method of setFoo to take a constant reference, to avoid manipulating the reference count when taking in the parameter.
void setFoo(const FooSP &newFoo) { mFoo = newFoo; }
Or use swap on the parameter instance.
void setFoo(FooSP newFoo) { std::swap(mFoo, newFoo); }
If I were required to implement something along the lines of what you are proposing, I would create a static instance of Foo to serve as the null version, and then have the increment method throw an exception if it was the null version.
class Foo
{
public:
static Foo Null;
//...
void increment() {
if (this == &Null) throw Null;
mFoo++;
}
//...
};
struct DeleteFoo {
void operator () (Foo *t) const {
if (t != &Foo::Null) delete t;
}
};
class MyClass
{
public:
MyClass() : mFoo(&Foo::Null, DeleteFoo()) {}
//...
};
Note the custom deleter for FooSP to properly deal with Foo::Null.
is it better to specify a default initialization for a smart-pointer or do a NULL value check before accessing the smart-pointers methods?
There is no right answer which applies to every case (more soon). If I had to err to one or the other, I would err toward NULL testing without default initialization because that's an obvious programmer error which can be detected and corrected easily.
However, I think the right answer is that there are good reasons we use multiple idioms for construction and initialization, and that you should choose the best approach for your program.
Typically, I will be explicit (no default or no default initialization) in the lower level classes, as well as complex higher level classes. When the classes are mid-level and defaults and ownership are more obvious (often because of limited use cases), then a default may be sensible.
Often, you will just want to be consistent, to avoid surprising clients. You'll also need to be aware of the complexity of allocating default-initialized objects. If it's big and complex to create, and a default does not make sense, then you are simply wasting a lot of resources when the default-constructed object is the wrong choice.
a) do not apply a default where it does not make sense. the default should be obvious.
b) avoid wasted allocations.
In addition to the approaches you have mentioned, there are a few other angles you might also consider:
Matching Foo's declared constructors in MyClass. At least, the ones which pertain to MyClass.
If copyable and efficient to copy, passing a Foo to MyClass's constructor.
Passing Foo in a container (smart pointer in this case) to MyClass's constructor to remove any ambiguity and to offer the client the option to construct (and share, in the case of a shared pointer) Foo as they desire.
Is this a reasonable way of doing things or is there a pitfall that I don't see?
Wasted allocations. Surprising results. It can restrict capabilities. The most obvious, broadly applicable problems are time and resource consumption.
To illustrate some scenarios:
say Foo reads a 1MB file every time it is constructed. when construction parameters are necessary and the default is not the right option, the file would have to be read a second time. the innocent default would double the disk io required.
in another case, an omitted construction parameter may be another large or complex shared pointer. if absent, Foo may create its own -- when the resource could/should have been shared.
Constructors parameters are often very important, and often should not be erased from the interface. It's certainly fine to do so in some cases, but these conveniences can introduce a lot of restrictions or introduce much unnecessary allocations and CPU time as the contained object's complexity increases.
Using both approaches in your programs is fine. Using additional approaches I outlined is also fine. Specifically, using the right approach for the problem is ideal - there are multiple ways to implement ideal solutions available; you just have to determine what that is in the context of what it is your program is trying to do. All these approaches have separate pros and cons - there is often an ideal match for the context of your program's operation and exposed interfaces.

Using a class with const data members in a vector

Given a class like this:
class Foo
{
const int a;
};
Is it possible to put that class in a vector? When I try, my compiler tells me it can't use the default assignment operator. I try to write my own, but googling around tells me that it's impossible to write an assignment operator for a class with const data members. One post I found said that "if you made [the data member] const that means you don't want assignment to happen in the first place." This makes sense. I've written a class with const data members, and I never intended on using assignment on it, but apparently I need assignment to put it in a vector. Is there a way around this that still preserves const-correctness?
I've written a class with const data members, and I never intended on using assignment on it, but apparently I need assignment to put it in a vector. Is there a way around this that still preserves const-correctness?
You have to ask whether the following constraint still holds
a = b;
/* a is now equivalent to b */
If this constraint is not true for a and b being of type Foo (you have to define the semantics of what "equivalent" means!), then you just cannot put Foo into a Standard container. For example, auto_ptr cannot be put into Standard containers because it violates that requirement.
If you can say about your type that it satisfies this constraint (for example if the const member does not in any way participate to the value of your object, but then consider making it a static data member anyway), then you can write your own assignment operator
class Foo
{
const int a;
public:
Foo &operator=(Foo const& f) {
/* don't assign to "a" */
return *this;
}
};
But think twice!. To me, it looks like that your type does not satisfy the constraint!
Use a vector of pointers std::vector<Foo *>. If you want to avoid the hassle of cleaning up after yourself, use boost::ptr_vector.
Edit: My initial stab during my coffee break, static const int a; won't work for the use case the OP has in mind, which the initial comments confirm, so I'm rewriting and expanding my answer.
Most of the time, when I want to make an element of a class constant, it's a constant whose value is constant for all time and across all instances of the class. In that case, I use a static const variable:
class Foo
{
public:
static const int a;
};
Those don't need to be copied among instances, so if it applied, that would fix your assignment problem. Unfortunately, the OP has indicated that this won't work for the case the OP has in mind.
If you want to create a read-only value that clients can't modify, you can make it a private member variable and only expose it via a const getter method, as another post on this thread indicates:
class Foo
{
public:
int get_a() const { return a; }
private:
int a;
};
The difference between this and
class Foo
{
public:
const int a;
};
is:
The const int gives you assurance that not even the implementation of the class will be able to muck with the value of a during the lifetime of the object. This means that assignment rightfully won't work, since that would be trying to modify the value of a after the object's been created. (This is why, btw, writing a custom operator=() that skips the copy of a is probably a bad idea design-wise.)
The access is different – you have to go through a getter rather than accessing the member directly.
In practice, when choosing between the two, I use read-only members. Doing so probably means you'll be able to replace the value of an object with the value of another object without violating semantics at all. Let's see how it would work in your case.
Consider your Grid object, with a width and height. When you initially create the vector, and let's say you reserve some initial space using vector::reserve(), your vector will be populated with initial default-initialized (i.e. empty) Grids. When you go to assign to a particular position in the vector, or push a Grid onto the end of the vector, you replace the value of the object at that position with a Grid that has actual stuff. But you may be OK with this! If the reason you wanted width and height to be constant is really to ensure consistency between width and height and the rest of the contents of your Grid object, and you've verified that it doesn't matter whether width and height are replaced before or after other elements of Grid are replaced, then this assignment should be safe because by the end of the assignment, the entire contents of the instance will have been replaced and you'll be back in a consistent state. (If the lack of atomicity of the default assignment was a problem, you could probably get around this by implementing your own assignment operator which used a copy constructor and a swap() operation.)
In summary, what you gain by using read-only getters is the ability to use the objects in a vector or any container with value semantics. However, it then falls to you to ensure that none of Grid's internal operations (or the operations of friends of Grid) violate this consistency, because the compiler won't be locking down the width and height for you. This goes for default construction, copy construction, and assignment as well.
I'm considering making the data member non-const, but private and only accessible by a get function, like this:
class Foo
{
private:
int a;
public:
int getA() const {return a;}
};
Is this 'as good' as const? Does it have any disadvantages?
As of c++20, using const member variables are legal without restrictions that had made it virtually unusable in containers. You still have to define a copy assignment member function because it continues to be automatically deleted when a const object exists in the class. However, changes to "basic.life" now allow changing const sub-objects and c++ provides rather convenient functions for doing this. Here's a description of why the change was made:
The following code shows how to define a copy assignment member function which is useable in any class containing const member objects and uses the new functions std::destroy_at and std::construct_at to fulfil the requirement so the new "basic.life" rules. The code demonstrates assignment of vectors as well as sorting vectors with const elements.
Compiler explorer using MSVC, GCC, CLANG https://godbolt.org/z/McfcaMWqj
#include <memory>
#include <vector>
#include <iostream>
#include <algorithm>
class Foo
{
public:
const int a;
Foo& operator=(const Foo& arg) {
if (this != &arg)
{
std::destroy_at(this);
std::construct_at(this, arg);
}
return *this;
}
};
int main()
{
std::vector<Foo> v;
v.push_back({ 2 });
v.push_back({ 1 });
v.insert(v.begin() + 1, Foo{ 0 });
std::vector<Foo> v2;
v2 = v;
std::sort(v2.begin(), v2.end(), [](auto p1, auto p2) {return p1.a < p2.a; });
for (auto& x : v2)
std::cout << x.a << '\n';
}

Benefits of Initialization lists

Of what I know of benefits of using initialization list is that they provide efficiency when initializing class members which are not build-in. For example,
Fred::Fred() : x_(whatever) { }
is preferable to,
Fred::Fred() { x_ = whatever; }
if x is an object of a custom class. Other than that, this style is used even with built-in types for the sake of consistency.
The most common benefit of doing this is improved performance. If the expression whatever is the same type as member variable x_, the result of the whatever expression is constructed directly inside x_ — the compiler does not make a separate copy of the object.
With the other style, the expression whatever causes a separate, temporary object to be created, and this temporary object is passed into the x_ object's assignment operator. Then that temporary object is destructed at the ;. That's inefficient.
Question
Is there any efficiency gain in the following example with using initialization list.
I think there is no gain. The first version calls string's copy constructor and the other calls string's assignment operator (there isn't any temporary thats created). It that correct?
class MyClass
{
public:
MyClass(string n):name(n) { }
private:
string name;
};
class MyClass
{
public:
MyClass(string n)
{
name=n;
}
private:
string name;
};
The second version is calling string's default ctor and then string's copy-assignment operator -- there could definitely be (minor) efficiency losses compared to the first one, which directly calls c's copy-ctor (e.g., depending on string's implementation, there might be useless allocation-then-release of some tiny structure). Why not just always use the right way?-)
I think the only way to initialize const data members is in the initialization list
Eg. in the header:
class C
{
C();
private:
const int x;
int y;
}
And the in the cpp file:
C::C() :
x( 10 ),
y( 10 )
{
x = 20; // fails
y = 20;
}
It's a great way to initialize members that :
are const
don't have a default constructor (it's private)
Remember that there is a distinct difference between a copy constructor and an assignment operator:
the copy ctor constructs a new object using some other instance as a place to get initialization information from.
the assignment operator modifies an already existing object that has already been fully constructed (even if it's only by using a default constructor)
So in your second example, some work has already been done to create name by the time that
name=n;
is reached.
However, it's quite possible (especially in this simple example) that the work done is vanishingly small (probably just zeroing out some data members in the string object) and that the work is optimized away altogether in an optimized build. but it's still considered good form to use initializer lists whenever possible.
We can also perform the constructor delegation via the initialization list.