C++ : Null pointers and structs - c++

If I want to make a struct for representing an item to render on the screen, and contains:
A list of natives "renderables" (meshes, triangles, etc)
A pointer to others sub-structures
Does this:
struct RenderGroup {
std::vector<RenderGroup*> Children;
std::vector<Renderable> Renderables;
}
What is the best way to do this? And if I have no sub-structures, can I just put a null pointer in the vector ?
Edit : Bad tags

A std::vector is not fixed size, so if there are no elements in it, size will return 0 and empty will return true.
std::vector<int> v;
auto sz = v.size(); // sz has value 0
auto e = v.empty(); // true
v.push_back(42);
sz = v.size(); // 1
e = v.emi empty(); // false
You can also remove elements (the vector moves all the followingv elements down to fill the gap)
std::vector<int> v { 1, 2, 3 };
auto it = v.find(2);
if (it != v.end())
v.erase(it); // v now contains 1, 3
So, in theory, no you don't need to put nullptrs in your vector. This assumes you've designed your application in a way that doesn't require a certain population size in your vector; if so, vector might not be the right container. Consider std::array.
There is a problem with your renderables vector, though: the vector stores instances of Renderable. The elements I'm the vector are exactly the size of a Renderable. So if you try and store a derived class, e.g Mesh, you will lose the derived classes extra fields.
This is called slicing. https://en.m.wikipedia.org/wiki/Object_slicing
You'll need to store pointers or references to the instances of the objects. Which depends on lifetime and ownership of the instances.
If your vector owns the remediables, you could use std::vector<std::unique_pre<Remediable>>.
If you are being given the instances from your caller, perhaps std::shared_ptr.

There's no need to put arbitrary "nothing" records in a std::vector, this isn't like a variable-length C-style array where you must terminate with some kind of delimiter. Just leave it empty.
In general practice you want to avoid putting NULL into lists like this where something might iterate over the contents and re-reference that pointer, causing a crash.

If RenderGroup is a base class and your Children vector is storing arbitrary children classes of RenderGroup then this approach is "fine" (though smart pointers would probably be preferred).
However, as tadman mentioned, if you're using pointers to represent the absense of a RenderGroup, you'll probably want to instead just remove the items in the vector when they are no longer needed.

See if this structure can help:
struct RenderGroup {
std::map<Renderable, std::vector<RenderGroup*>> Renderables;
}
List of child (RenderGroup) objects are mapped to Renderable object.

Related

Memory management when using vector

I am making a game engine and need to use the std::vector container for all of the components and entities in the game.
In a script the user might need to hold a pointer to an entity or component, perhaps to continuously check some kind of state. If something is added to the vector that the pointer points to and the capacity is exceeded, it is my understanding that the vector will allocate new memory and every pointer that points to any element in the vector will become invalid.
Considering this issue i have a couple of possible solutions. After each push_back to the vector, would it be a viable to check if a current capacity variable is exceeded by the actual capacity of the vector? And if so, fetch and overwrite the old pointers to the new ones? Would this guarantee to "catch" every case that invalidates pointers when performing a push_back?
Another solution that i've found is to instead save an index to the element and access it that way, but i suspect that is bad for performance when you need to continuously check the state of that element (every 1/60 second).
I am aware that other containers do not have this issue but i'd really like to make it work with a vector. Also it might be worth noting that i do not know in advance how many entities / components there will be.
Any input is greatly appreciated.
You shouldn't worry about performance of std::vector when you access its element only 60 times per second. By the way, in Release compilation mode std::vector::operator[] is being converted to a single lea opcode. In Debug mode it is decorated by some runtime range checks though.
If the user is going to store pointers to the objects, why even contain them in a vector?
I don't feel like it is a good idea to (poor wording)->store pointers to objects in a vector. (what I meant is to create pointers that point to vector elements, i.e. my_ptr = &my_vec[n];) The whole point of a container is to reference the contents in the normal ways that the container supports, not to create outside pointers to elements of the container.
To answer your question about whether you can detect the allocations, yes you could, but it is still probably a bad idea to reference the contents of a vector by pointers to elements.
You could also reserve space in the vector when you create it, if you have some idea of what the maximum size might grow to. Then it would never resize.
edit:
After reading other responses, and thinking about what you asked, another thought occurred. If your vector is a vector of pointers to objects, and you pass out the pointers to the objects to your clients, resizing the vector does not invalidate the pointers that the vector hold. The issue becomes keeping track of the life of the object (who owns it), which is why using shared_ptr would be useful.
For example:
vector<shared_ptr> my_vec;
my_vec.push_back(stuff);
if you pass out the pointers contained in the vector to clients...
client_ptr = my_vec[3];
There will be no problem when the vector resizes. The contents of the vector will be preserved, and whatever was at my_vec[3] will still be there. The object pointed to by my_vec[3] will still be at the same address, and my_vec[3] will still contain that address. Whomever got a copy of the pointer at my_vec[3] will still have a valid pointer.
However, if you did this:
client_ptr = &my_vec[3];
And the client is dereferencing like this:
*client_ptr->whatever();
You have a problem. Now when my_vec resized, &my_vec[3] is probably no longer valid, thus client_ptr points to nowhere.
If something is added to the vector that the pointer points to and the
capacity is exceeded, it is my understanding that the vector will
allocate new memory and every pointer that points to any element in
the vector will become invalid.
I once wrote some code to analyze what happens when a vector's capacity is exceeded. (Have you done this, yet?) What that code demonstrated on my Ubuntu with g++v5 system was that std::vector code simply a) doubles the capacity, b) moves all the elements from old to the new storage, then c) cleans up the old. Perhaps your implementation is similar. I think the details of capacity expansion is implementation dependent.
And yes, any pointer into the vector would be invalidated when push_back() causes capacity to be exceeded.
1) I simply don't use pointers-into-the-vector (and neither should you). In this way the issue is completely eliminated, as it simply can not occur. (see also, dangling pointers) The proper way to access a std::vector (or a std::array) element is to use an index (via the operator[]() method).
After any capacity-expansion, the index of all elements at indexes less than the previous capacity limit are still valid, as the push_back() installed the new element at the 'end' (I think highest memory addressed.) The elements memory location may have changed, but the element index is still the same.
2) It is my practice that I simply don't exceed the capacity. Yes, by that I mean that I have been able to formulate all my problems such that I know the required maximum-capacity. I have never found this approach to be a problem.
3) If the vector contents can not be contained in system memory (my system's best upper limit capacity is roughly 3.5 GBytes), then perhaps a vector container (or any ram based container) is inappropriate. You will have to accomplish your goal using disk storage, perhaps with vector containers acting as a cache.
update 2017-July-31
Some code to consider from my latest Game of Life.
Each Cell_t (on the 2-d gameboard) has 8 neighbors.
In my implementation, each Cell_t has a neighbor 'list,' (either std::array or std::vector, I've tried both), and after the gameboard has fully constructed, each Cell_t's init() method is run, filling it's neighbor 'list'.
// see Cell_t data attributes
std::array<int, 8> m_neighbors;
// ...
void Cell_t::void init()
{
int i = 0;
m_neighbors[i] = validCellIndx(m_row-1, m_col-1); // 1 - up left
m_neighbors[++i] = validCellIndx(m_row-1, m_col); // 2 - up
m_neighbors[++i] = validCellIndx(m_row-1, m_col+1); // 3 - up right
m_neighbors[++i] = validCellIndx(m_row, m_col+1); // 4 - right
m_neighbors[++i] = validCellIndx(m_row+1, m_col+1); // 5 - down right
m_neighbors[++i] = validCellIndx(m_row+1, m_col); // 6 - down
m_neighbors[++i] = validCellIndx(m_row+1, m_col-1); // 7 - down left
m_neighbors[++i] = validCellIndx(m_row, m_col-1); // 8 - left
// ^^^^^^^^^^^^^- returns info to quickly find cell
}
The int value in m_neighbors[i] is the index into the gameboard vector. To determine the next state of the cell, the code 'counts the neighbor's states.'
Note - Some cells are at the edge of the gameboard ... in this implementation, validCellIndx() can return a value indicating 'no-neighbor', (above top row, left of left edge, etc.)
// multiplier: for 100x200 cells,20,000 * m_generation => ~20,000,000 ops
void countNeighbors(int& aliveNeighbors, int& totalNeighbors)
{
{ /* ... initialize m_count[]s to 0 */ }
for(auto neighborIndx : m_neighbors ) { // each of 8 neighbors // 123
if(no_neighbor != neighborIndx) // 8-4
m_count[ gBoard[neighborIndx].m_state ] += 1; // 765
}
aliveNeighbors = m_count[ CellALIVE ]; // CellDEAD = 1, CellALIVE
totalNeighbors = aliveNeighbors + m_count [ CellDEAD ];
} // Cell_Arr_t::countNeighbors
init() pre-computes the index to this cells neighbors. The m_neighbors array holds index integers, not pointers. It is trivial to have NO pointers-into-the-gameboard vector.

In C++, How do I store values into a vector that is inside of a vector when the two vectors are of different types?

I am writing a program where I need to use the following data structure:
struct shape
{
std::vector<float> verts; // contains the x & y values for each vertex
char type; // the type of shape being stored.
float shapeCol[3]; // stores the color of the shape being stored.
float shapeSize; // stores the size of the shape if it is a line or point
};
In my main program I need a vector of type shape. How would I store values into the vector inside of the struct shapes using the the vector of struct shapes.
For instance, vector<shape> myshapes;
If I wanted to store a value into the first index of my verts vector, inside of my first index of my myshapes vector how would I do this?
in pseudo code it would look something like this, with i being the index:
myshapes[i].vector[i] = 4; // but I know this is incorrect
Would this be easier to implement using a STL list instead and if so what would that syntax look like?
Thanks for the help I am new to vectors so any advice would be appreciated.
vector supports the use of the [] operator. The syntax and semantics are very similar to using the [] operator with arrays. See: http://en.cppreference.com/w/cpp/container/vector/operator_at.
As with any struct member, you need to access it by name. myshapes[i].verts[j] = 4;.
The general advice given is to use std::vector as your default container of choice. Naturally if you have specific needs (like adding/removing items in the middle of the container) other containers may have better performance characteristics.
If your vector(s) start out empty, you'll have to add elements to them before you can index into them with operator[]. This is usually done with push_back (to add an existing shape object) or emplace_back (to construct a new shape object directly in the vector).
Given vector<shape> myshapes, you could add some shapes like this:
// add 10 shapes
for (size_t n = 0; n < 10; n++) {
shape s; // creates a new, blank shape object
// initialize the shape's data
s.type = ...;
s.shapeSize = ...;
// etc.
// add verts
s.verts.push_back(1.0f);
s.verts.push_back(2.0f);
s.verts.push_back(3.0f);
// etc.
// add the shape to the vector
myshapes.push_back(std::move(s));
}
(Since we're done with s on that last line, we can use std::move. This allows push_back to move the shape's data into the vector instead of copying it. Look up move semantics for more info.)
Once you have stuff in the vector, you can access elements by index like this:
myshapes[index of shape].verts[index of vertex within that shape]
Using [] with an invalid index or when the vector is empty invokes undefined behavior (don't do it or your program will crash/malfunction).

How do i remove a pointer to an object in c++ from a vector dynamically?

Okay, so i'm doing this game like a project where i have 3 different objects.
void Character::shoot(){
Shot* s = new Shot(blablabla);
shots.push_back(s);
}
This happens dynamically, and currently i dont delete the pointers so it has to be loads of pointers to shots in that vector after a little while.
I use Bot, Character and Shot, and as i said i need help with storing and removing a pointer to the shot dynamically, preferably from a vector. I've got it to work like i put all the shot objects in a vector, but they never disappear from there. And i want to delete them permanently from my program when they collide with something, or reaches outside my screen width.
You can use std::remove and std::erase on any std container to remove content:
Shot* to_be_removed = ...;
std::vector<Shot*>::iterator i = std::remove(shots.begin(),shots.end(),to_be_removed);
std::erase(i,shots.end());
delete (to_be_removed);//don't forget to delete the pointer
This works when you know the element you want to remove. If you don't know the element you must find a way to identify the elements you want removed. Also if you have a system to identify the element it could be easier to use the container iterator in order to do the removal:
std::vector<Shot*>::iterator i = ...;//iterator the the element you want to remove
delete (*i);//delete memory
shots.erase(i);//remove it from vector
Lastly if you want to remove all pointers from the container and delete all the items at the same time you can use std::for_each
//c++ 03 standard:
void functor(Shot* s)
{
delete(s);
}
std::for_each(shots.begin(),shots.end(),functor);
shots.clear();//empty the list
//or c++11 standard:
std::for_each(shots.begin(),shots.end(),[] (Shot * s){ delete(s); } );
//the rest is the same
Using simple vector methods
You can iterate trough std::vector and use erase() method to remove current shot:
std::vector<cls*> shots; // Your vector of shots
std::vector<cls*>::iterator current_shot = shots.begin(); // Your shot to be deleted
while( current_shot < shots.end()){
if((*current_shot)->needs_to_be_deleted()){
// Remove item from vector
delete *current_shot;
current_shot = shots.erase(current_shot);
} else {
(*current_shot)->draw();
++current_shot; // Iterate trough vector
}
}
erase() returns iterator to next element after removed element so while loop is used.
Setting values to null and calling std::remove()
Note that std::vector::erase() reorganize everything after delete items:
Because vectors use an array as their underlying storage, erasing
elements in positions other than the vector end causes the container
to relocate all the elements after the segment erased to their new
positions. This is generally an inefficient operation compared to the
one performed for the same operation by other kinds of sequence
containers (such as list or forward_list).
This way you may end up with O(n^2) complexity so you may rather set values to null and use std::remove() as suggested by juanchopanza in comment, Erase-Remove idiom:
int deleted = 0;
for( current_shot = shots.begin(); current_shot < shots.end(); ++current_shot){
if((*current_shot)->needs_to_be_deleted()){
// Remove item from vector
delete *current_shot;
*current_shot = null;
++deleted;
}
}
if( deleted){
shots.erase( std::remove(shots.begin(), shots.end(), null));
}
Using std::list
If you need large amount of shot creations and deletions std::vector may not be the best structure for containing this kind of list (especially when you want to remove items from the middle):
Internally, vectors use a dynamically allocated array to store their
elements. This array may need to be reallocated in order to grow in
size when new elements are inserted, which implies allocating a new
array and moving all elements to it. This is a relatively expensive
task in terms of processing time, and thus, vectors do not reallocate
each time an element is added to the container.
See link from Raxvan's comment for performance comparison.
You may want to use std::list instead:
List containers are implemented as doubly-linked lists; Doubly linked
lists can store each of the elements they contain in different and
unrelated storage locations. The ordering is kept by the association
to each element of a link to the element preceding it and a link to
the element following it.
Compared to other base standard sequence containers (array, vector and
deque), lists perform generally better in inserting, extracting and
moving elements in any position within the container for which an
iterator has already been obtained, and therefore also in algorithms
that make intensive use of these, like sorting algorithms.
The main drawback of lists and forward_lists compared to these other
sequence containers is that they lack direct access to the elements by
their position;
Which is great for removing items from the middle of the "array".
As for removing, use delete and std::list::erase():
std::list<cls*> shots;
std::list<cls*>::iterator current_shot;
// You have to use iterators, not direct access
for( current_shot = shots.begin(); current_shot != shots.end(); current_shot++){
if( (*current_shots)->needs_to_be_deleted()){
delete *current_shot;
shots.erase(current_shot); // Remove element from list
}
}
Using std::shared_ptr
If you have more complex program structure and you use the same object on many places and you can simply determine whether you can delete object already or you need to keep it alive for a little bit more (and if you are using C++11), you can use std::shared_ptr (or use different kind of "smart pointers" which delete data where reference count reaches zero):
// Pushing items will have slightly more complicated syntax
std::list< std::shared_ptr<cls>> shots;
shots.push_back( std::shared_ptr( new cls()));
std::list< std::shared_ptr<cls>>::iterator current_shot;
// But you may skip using delete
shots.erase(current_shot); // shared_ptr will take care of freeing the memory
Simply use "delete" to deallocate the memory:
vector<Shot*>::iterator i;
for(i = shoot.begin(); i != shoot.end(); ++i)
{
delete (*i);//delete data that was pointed
*i = 0;
}
shoot.clear();
This will delete all elements from the heap and clear your vector.

Adding element to Array of Objects in C++

How do I add an element to the end of an array dynamically in C++?
I'm accustomed to using vectors to dynamically add an element. However, vectors does not seem to want to handle an array of objects.
So, my main goal is having an array of objects and then being able to add an element to the end of the array to take another object.
EDIT**
Sorry, its the pushback() that causes me the problems.
class classex
{
private:
int i;
public:
classex() { }
void exmethod()
{
cin >> i;
}
};
void main()
{
vector <classex> vectorarray;
cout << vectorarray.size();
cout << vectorarray.push_back();
}
Now I know push_back must have an argument, but What argument?
Now I know push_back must have an argument, but What argument?
The argument is the thing that you want to append to the vector. What could be simpler or more expected?
BTW, you really, really, really do not want exmethod as an actual method of classex in 99% of cases. That's not how classes work. Gathering the information to create an instance is not part of the class's job. The class just creates the instance from that information.
Arrays are fixed sized containers. So enlarging them is not possible. You work around this and copy one array in a bigger and gain space behind the old end, but that's it.
You can create a array larger than you currently need it and remember which elements are empty. Of course they are never empty (they at least contain 0's), but that's a different story.
Like arrays, there are many containers, some are able to grow, like the stl containers: lists, vectors, deques, sets and so on.
add a Constructor to set i (just to give your example a real world touch) to your example classex, like this:
class classex {
public:
classex(int& v) : i(v) {}
private:
int i;
};
An example for a growing container looks like this:
vector <classex> c; // c for container
// c is empty now. c.size() == 0
c.push_back(classex(1));
c.push_back(classex(2));
c.push_back(classex(3));
// c.size() == 3
EDIT: The question was how to add an element to an array dynamically allocated, but the OP actually mean std::vector. Below the separator is my original answer.
std::vector<int> v;
v.push_back( 5 ); // 5 is added to the back of v.
You could always use C's realloc and free. EDIT: (Assuming your objects are PODs.)
When compared to the requirement of manually allocating, copying, and reallocating using new and delete, it's a wonder Stroustrup didn't add a keyword like renew.

C++ reorder std::vector elements using std::list of pointers

I ran into this problem when I tried to write out an new algorithm to reorder elements in std::vector. The basic idea is that I have std::list of pointters pointing into std::vector in such way that *list.begin() == vector[0], *(++list.begin()) == vector[1] and so on.
However, any modifications on list's element positions breaks the mapping. (Including appended pointers) When the mapping is broken the list's elements can be in random order but they point still into correct elements on vector. The task would be to reorder the elements in vector to correct the mapping.
Simplest method to do it (How I have done it now):
create new empty std::vector and resize it to equal size of the old vector.
iterate through the list and read elements from the old vector and write them into new vector. Set the pointer to point into new vector's element.
swap vectors and release the old vector.
Sadly the method is only useful when I need more capacity on the vector. It's inefficient when the current vector holding the elements has enough capacity to store all incoming elements. Appended pointers on the list will point into diffrent vector's storgate. The simple method works for this because it only reads from the pointers.
So I would want to reorder the vector "in place" using constant amount of memory. Any pointer that was not pointing into current vector's storgate are moved to point into current vector's storgate. Elements are simple structures. (PODs)
I'll try post an example code when I have time..
What should I do to achieve this? I have the basic idea done, but I'm not sure if it is even possible to do the reordering with constant amount of memory.
PS: I'm sorry for the (possibly) bad grammar and typos in the post. I hope it's still readable. :)
First off, why do you have a list of pointers? You might as well keep indices into the vector, which you can compute as std::distance(&v[0], *list_iter). So, let's build a vector of indices first, but you can easily adapt that to use your list directly:
std::vector<T> v; // your data
std::list<T*> perm_list; // your given permutation list
std::vector<size_t> perms;
perms.reserve(v.size());
for (std::list<T*>::const_iterator it = perm_list.begin(), end = perm_list.end(); it != end; ++it)
{
perms.push_back(std::distance(&v[0], *it));
}
(There's probably a way to use std::transform and std::bind, or lambdas, to do this in one line.)
Now to do the work. We simply use the cycle-decomposition of the permutation, and we modify the perms vector as we go along:
std::set<size_t> done;
for (size_t i = 0; i < perms.size(); while(done.count(++i)) {})
{
T tmp1 = v[i];
for (size_t j = perms[i]; j != i; j = perms[j])
{
T tmp2 = v[j];
v[j] = tmp1;
tmp1 = tmp2;
done.insert(j);
}
v[i] = tmp1;
}
I'm using the auxiliary set done to track which indices have already been permuted. In C++0x you would add std::move everywhere to make this work with movable containers.