Is there any "standard" way to calculate the numerical gradient? - c++

I am trying to calculate the numerical gradient of a smooth function in c++. And the parameter value could vary from zero to a very large number(maybe 1e10 to 1e20?)
I used the function f(x,y) = 10*x^3 + y^3 as a testbench, but I found that if x or y is too large, I can't get correct gradient.
Here is my code to calculate the graidient:
#include <iostream>
#include <cmath>
#include <cassert>
using namespace std;
double f(double x, double y)
{
// black box expensive function
return 10 * pow(x, 3) + pow(y, 3);
}
int main()
{
// double x = -5897182590.8347721;
// double y = 269857217.0017581;
double x = 1.13041e+19;
double y = -5.49756e+14;
const double epsi = 1e-4;
double f1 = f(x, y);
double f2 = f(x, y+epsi);
double f3 = f(x, y-epsi);
cout << f1 << endl;
cout << f2 << endl;
cout << f3 << endl;
cout << f1 - f2 << endl; // 0
cout << f2 - f3 << endl; // 0
return 0;
}
If I use the above code to calculate the gradient, the gradient would be zero!
The testbench function, 10*x^3 + y^3, is just a demo, the real problem I need to solve is actually a black box function.
So, is there any "standard" way to calculate the numerical gradient?

In the first place, you should use the central difference scheme, which is more accurate (by cancellation of one more term of the Taylor develoment).
(f(x + h) - f(x - h)) / 2h
rather than
(f(x + h) - f(x)) / h
Then the choice of h is critical and using a fixed constant is the worst thing you can do. Because for small x, h will be too large so that the approximation formula no more works, and for large x, h will be too small, resulting in severe truncation error.
A much better choice is to take a relative value, h = x√ε, where ε is the machine epsilon (1 ulp), which gives a good tradeoff.
(f(x(1 + √ε)) - f(x(1 - √ε))) / 2x√ε
Beware that when x = 0, a relative value cannot work and you need to fall back to a constant. But then, nothing tells you which to use !

You need to consider the precision needed.
At first glance, since |y| = 5.49756e14 and epsi = 1e-4, you need at least ⌈log2(5.49756e14)-log2(1e-4)⌉ = 63 bits of significand precision (that is the number of bits used to encode the digits of your number, also known as mantissa) for y and y+epsi to be considered different.
The double-precision floating-point format only has 53 bits of significand precision (assuming it is 8 bytes). So, currently, f1, f2 and f3 are exactly the same because y, y+epsi and y-epsi are equal.
Now, let's consider the limit : y = 1e20, and the result of your function, 10x^3 + y^3. Let's ignore x for now, so let's take f = y^3. Now we can calculate the precision needed for f(y) and f(y+epsi) to be different : f(y) = 1e60 and f(epsi) = 1e-12. This gives a minimum significand precision of ⌈log2(1e60)-log2(1e-12)⌉ = 240 bits.
Even if you were to use the long double type, assuming it is 16 bytes, your results would not differ : f1, f2 and f3 would still be equal, even though y and y+epsi would not.
If we take x into account, the maximum value of f would be 11e60 (with x = y = 1e20). So the upper limit on precision is ⌈log2(11e60)-log2(1e-12)⌉ = 243 bits, or at least 31 bytes.
One way to solve your problem is to use another type, maybe a bignum used as fixed-point.
Another way is to rethink your problem and deal with it differently. Ultimately, what you want is f1 - f2. You can try to decompose f(y+epsi). Again, if you ignore x, f(y+epsi) = (y+epsi)^3 = y^3 + 3*y^2*epsi + 3*y*epsi^2 + epsi^3. So f(y+epsi) - f(y) = 3*y^2*epsi + 3*y*epsi^2 + epsi^3.

The only way to calculate gradient is calculus.
Gradient is a vector:
g(x, y) = Df/Dx i + Df/Dy j
where (i, j) are unit vectors in x and y directions, respectively.
One way to approximate derivatives is first order differences:
Df/Dx ~ (f(x2, y)-f(x1, y))/(x2-x1)
and
Df/Dy ~ (f(x, y2)-f(x, y1))/(y2-y1)
That doesn't look like what you're doing.
You have a closed form expression:
g(x, y) = 30*x^2 i + 3*y^2 j
You can plug in values for (x, y) and calculate the gradient exactly at any point. Compare that to your differences and see how well your approximation is doing.
How you implement it numerically is your responsibility. (10^19)^3 = 10^57, right?
What is the size of double on your machine? Is it a 64 bit IEEE double precision floating point number?

Use
dx = (1+abs(x))*eps, dfdx = (f(x+dx,y) - f(x,y)) / dx
dy = (1+abs(y))*eps, dfdy = (f(x,y+dy) - f(x,y)) / dy
to get meaningful step sizes for large arguments.
Use eps = 1e-8 for one-sided difference formulas, eps = 1e-5 for central difference quotients.
Explore automatic differentiation (see autodiff.org) for derivatives without difference quotients and thus much smaller numerical errors.

We can examine the behaviour of the error in the derivative using the following program - it calculates the 1-sided derivative and the central difference based derivative using a varying step size. Here I'm using x and y ~ 10^10, which is smaller than what you were using, but should illustrate the same point.
#include <iostream>
#include <cmath>
#include <cassert>
using namespace std;
double f(double x, double y) {
return 10 * pow(x, 3) + pow(y, 3);
}
double f_x(double x, double y) {
return 3 * 10 * pow(x,2);
}
double f_y(double x, double y) {
return 3 * pow(y,2);
}
int main()
{
// double x = -5897182590.8347721;
// double y = 269857217.0017581;
double x = 1.13041e+10;
double y = -5.49756e+10;
//double x = 10.1;
//double y = -5.2;
double epsi = 1e8;
for(int i=0; i<60; ++i) {
double dfx_n = (f(x+epsi,y) - f(x,y))/epsi;
double dfx_cd = (f(x+epsi,y) - f(x-epsi,y))/(2*epsi);
double dfx = f_x(x,y);
cout<<epsi<<" "<<fabs(dfx-dfx_n)<<" "<<fabs(dfx - dfx_cd)<<std::endl;
epsi/=1.5;
}
return 0;
}
The output shows that a 1-sided difference gets us an optimal error of about 1.37034e+13 at a step length of about 100.0. Note that while this error looks large, as a relative error it is 3.5746632302764072e-09 (since the exact value is 3.833e+21)
In comparison the 2-sided difference gets an optimal error of about 1.89493e+10 with a step size of about 45109.3. This is three-orders of magnitude better, (with a much larger step-size).
How can we work out the step size? The link in the comments of Yves Daosts answer gives us a ballpark value:
h=x_c sqrt(eps) for 1-Sided, and h=x_c cbrt(eps) for 2-Sided.
But either way, if the required step size for decent accuracy at x ~ 10^10 is 100.0, the required step size with x ~ 10^20 is going to be 10^10 larger too. So the problem is simply that your step size is way too small.
This can be verified by increasing the starting step-size in the above code and resetting the x/y values to the original values.
Then expected derivative is O(1e39), best 1-sided error of about O(1e31) occurs near a step length of 5.9e10, best 2-sided error of about O(1e29) occurs near a step length of 6.1e13.

As numerical differentiation is ill conditioned (which means a small error could alter your result significantly) you should consider to use Cauchy's integral formula. This way you can calculate the n-th derivative with an integral. This will lead to less problems with considering accuracy and stability.

Related

Simpson's Composite Rule giving too large values for when n is very large

Using Simpson's Composite Rule to calculate the integral from 2 to 1,000 of 1/ln(x), however when using a large n (usually around 500,000), I start to get results that vary from the value my calculator and other sources give me (176.5644). For example, when n = 10,000,000, it gives me a value of 184.1495. Wondering why this is, since as n gets larger, the accuracy is supposed to increase and not decrease.
#include <iostream>
#include <cmath>
// the function f(x)
float f(float x)
{
return (float) 1 / std::log(x);
}
float my_simpson(float a, float b, long int n)
{
if (n % 2 == 1) n += 1; // since n has to be even
float area, h = (b-a)/n;
float x, y, z;
for (int i = 1; i <= n/2; i++)
{
x = a + (2*i - 2)*h;
y = a + (2*i - 1)*h;
z = a + 2*i*h;
area += f(x) + 4*f(y) + f(z);
}
return area*h/3;
}
int main()
{
std::cout.precision(20);
int upperBound = 1'000;
int subsplits = 1'000'000;
float approx = my_simpson(2, upperBound, subsplits);
std::cout << "Output: " << approx << std::endl;
return 0;
}
Update: Switched from floats to doubles and works much better now! Thank you!
Unlike a real (in mathematical sense) number, a float has a limited precision.
A typical IEEE 754 32-bit (single precision) floating-point number binary representation dedicates only 24 bits (one of which is implicit) to the mantissa and that translates in roughly less than 8 decimal significant digits (please take this as a gross semplification).
A double on the other end, has 53 significand bits, making it more accurate and (usually) the first choice for numerical computations, these days.
since as n gets larger, the accuracy is supposed to increase and not decrease.
Unfortunately, that's not how it works. There's a sweat spot, but after that the accumulation of rounding errors prevales and the results diverge from their expected values.
In OP's case, this calculation
area += f(x) + 4*f(y) + f(z);
introduces (and accumulates) rounding errors, due to the fact that area becomes much greater than f(x) + 4*f(y) + f(z) (e.g 224678.937 vs. 0.3606823). The bigger n is, the sooner this gets relevant, making the result diverging from the real one.
As mentioned in the comments, another issue (undefined behavior) is that area isn't initialized (to zero).

Numerical precision for difference of squares

in my code I often compute things like the following piece (here C code for simplicity):
float cos_theta = /* some simple operations; no cosf call! */;
float sin_theta = sqrtf(1.0f - cos_theta * cos_theta); // Option 1
For this example ignore that the argument of the square root might be negative due to imprecisions. I fixed that with additional fdimf call. However, I wondered if the following is more precise:
float sin_theta = sqrtf((1.0f + cos_theta) * (1.0f - cos_theta)); // Option 2
cos_theta is between -1 and +1 so for each choice there will be situations where I subtract similar numbers and thus will loose precision, right? What is the most precise and why?
The most precise way with floats is likely to compute both sin and cos using a single x87 instruction, fsincos.
However, if you need to do the computation manually, it's best to group arguments with similar magnitudes. This means the second option is more precise, especially when cos_theta is close to 0, where precision matters the most.
As the article
What Every Computer Scientist Should Know About Floating-Point Arithmetic notes:
The expression x2 - y2 is another formula that exhibits catastrophic
cancellation. It is more accurate to evaluate it as (x - y)(x + y).
Edit: it's more complicated than this. Although the above is generally true, (x - y)(x + y) is slightly less accurate when x and y are of very different magnitudes, as the footnote to the statement explains:
In this case, (x - y)(x + y) has three rounding errors, but x2 - y2 has only two since the rounding error committed when computing the smaller of x2 and y2 does not affect the final subtraction.
In other words, taking x - y, x + y, and the product (x - y)(x + y) each introduce rounding errors (3 steps of rounding error). x2, y2, and the subtraction x2 - y2 also each introduce rounding errors, but the rounding error obtained by squaring a relatively small number (the smaller of x and y) is so negligible that there are effectively only two steps of rounding error, making the difference of squares more precise.
So option 1 is actually going to be more precise. This is confirmed by dev.brutus's Java test.
I wrote small test. It calcutates expected value with double precision. Then it calculates an error with your options. The first option is better:
Algorithm: FloatTest$1
option 1 error = 3.802792362162126
option 2 error = 4.333273185303996
Algorithm: FloatTest$2
option 1 error = 3.802792362167937
option 2 error = 4.333273185305868
The Java code:
import org.junit.Test;
public class FloatTest {
#Test
public void test() {
testImpl(new ExpectedAlgorithm() {
public double te(double cos_theta) {
return Math.sqrt(1.0f - cos_theta * cos_theta);
}
});
testImpl(new ExpectedAlgorithm() {
public double te(double cos_theta) {
return Math.sqrt((1.0f + cos_theta) * (1.0f - cos_theta));
}
});
}
public void testImpl(ExpectedAlgorithm ea) {
double delta1 = 0;
double delta2 = 0;
for (double cos_theta = -1; cos_theta <= 1; cos_theta += 1e-8) {
double[] delta = delta(cos_theta, ea);
delta1 += delta[0];
delta2 += delta[1];
}
System.out.println("Algorithm: " + ea.getClass().getName());
System.out.println("option 1 error = " + delta1);
System.out.println("option 2 error = " + delta2);
}
private double[] delta(double cos_theta, ExpectedAlgorithm ea) {
double expected = ea.te(cos_theta);
double delta1 = Math.abs(expected - t1((float) cos_theta));
double delta2 = Math.abs(expected - t2((float) cos_theta));
return new double[]{delta1, delta2};
}
private double t1(float cos_theta) {
return Math.sqrt(1.0f - cos_theta * cos_theta);
}
private double t2(float cos_theta) {
return Math.sqrt((1.0f + cos_theta) * (1.0f - cos_theta));
}
interface ExpectedAlgorithm {
double te(double cos_theta);
}
}
The correct way to reason about numerical precision of some expression is to:
Measure the result discrepancy relative to the correct value in ULPs (Unit in the last place), introduced in 1960. by W. H. Kahan. You can find C, Python & Mathematica implementations here, and learn more on the topic here.
Discriminate between two or more expressions based on the worst case they produce, not average absolute error as done in other answers or by some other arbitrary metric. This is how numerical approximation polynomials are constructed (Remez algorithm), how standard library methods' implementations are analysed (e.g. Intel atan2), etc...
With that in mind, version_1: sqrt(1 - x * x) and version_2: sqrt((1 - x) * (1 + x)) produce significantly different outcomes. As presented in the plot below, version_1 demonstrates catastrophic performance for x close to 1 with error > 1_000_000 ulps, while on the other hand error of version_2 is well behaved.
That is why I always recommend using version_2, i.e. exploiting the square difference formula.
Python 3.6 code that produces square_diff_error.csv file:
from fractions import Fraction
from math import exp, fabs, sqrt
from random import random
from struct import pack, unpack
def ulp(x):
"""
Computing ULP of input double precision number x exploiting
lexicographic ordering property of positive IEEE-754 numbers.
The implementation correctly handles the special cases:
- ulp(NaN) = NaN
- ulp(-Inf) = Inf
- ulp(Inf) = Inf
Author: Hrvoje Abraham
Date: 11.12.2015
Revisions: 15.08.2017
26.11.2017
MIT License https://opensource.org/licenses/MIT
:param x: (float) float ULP will be calculated for
:returns: (float) the input float number ULP value
"""
# setting sign bit to 0, e.g. -0.0 becomes 0.0
t = abs(x)
# converting IEEE-754 64-bit format bit content to unsigned integer
ll = unpack('Q', pack('d', t))[0]
# computing first smaller integer, bigger in a case of ll=0 (t=0.0)
near_ll = abs(ll - 1)
# converting back to float, its value will be float nearest to t
near_t = unpack('d', pack('Q', near_ll))[0]
# abs takes care of case t=0.0
return abs(t - near_t)
with open('e:/square_diff_error.csv', 'w') as f:
for _ in range(100_000):
# nonlinear distribution of x in [0, 1] to produce more cases close to 1
k = 10
x = (exp(k) - exp(k * random())) / (exp(k) - 1)
fx = Fraction(x)
correct = sqrt(float(Fraction(1) - fx * fx))
version1 = sqrt(1.0 - x * x)
version2 = sqrt((1.0 - x) * (1.0 + x))
err1 = fabs(version1 - correct) / ulp(correct)
err2 = fabs(version2 - correct) / ulp(correct)
f.write(f'{x},{err1},{err2}\n')
Mathematica code that produces the final plot:
data = Import["e:/square_diff_error.csv"];
err1 = {1 - #[[1]], #[[2]]} & /# data;
err2 = {1 - #[[1]], #[[3]]} & /# data;
ListLogLogPlot[{err1, err2}, PlotRange -> All, Axes -> False, Frame -> True,
FrameLabel -> {"1-x", "error [ULPs]"}, LabelStyle -> {FontSize -> 20}]
As an aside, you will always have a problem when theta is small, because the cosine is flat around theta = 0. If theta is between -0.0001 and 0.0001 then cos(theta) in float is exactly one, so your sin_theta will be exactly zero.
To answer your question, when cos_theta is close to one (corresponding to a small theta), your second computation is clearly more accurate. This is shown by the following program, that lists the absolute and relative errors for both computations for various values of cos_theta. The errors are computed by comparing against a value which is computed with 200 bits of precision, using GNU MP library, and then converted to a float.
#include <math.h>
#include <stdio.h>
#include <gmp.h>
int main()
{
int i;
printf("cos_theta abs (1) rel (1) abs (2) rel (2)\n\n");
for (i = -14; i < 0; ++i) {
float x = 1 - pow(10, i/2.0);
float approx1 = sqrt(1 - x * x);
float approx2 = sqrt((1 - x) * (1 + x));
/* Use GNU MultiPrecision Library to get 'exact' answer */
mpf_t tmp1, tmp2;
mpf_init2(tmp1, 200); /* use 200 bits precision */
mpf_init2(tmp2, 200);
mpf_set_d(tmp1, x);
mpf_mul(tmp2, tmp1, tmp1); /* tmp2 = x * x */
mpf_neg(tmp1, tmp2); /* tmp1 = -x * x */
mpf_add_ui(tmp2, tmp1, 1); /* tmp2 = 1 - x * x */
mpf_sqrt(tmp1, tmp2); /* tmp1 = sqrt(1 - x * x) */
float exact = mpf_get_d(tmp1);
printf("%.8f %.3e %.3e %.3e %.3e\n", x,
fabs(approx1 - exact), fabs((approx1 - exact) / exact),
fabs(approx2 - exact), fabs((approx2 - exact) / exact));
/* printf("%.10f %.8f %.8f %.8f\n", x, exact, approx1, approx2); */
}
return 0;
}
Output:
cos_theta abs (1) rel (1) abs (2) rel (2)
0.99999988 2.910e-11 5.960e-08 0.000e+00 0.000e+00
0.99999970 5.821e-11 7.539e-08 0.000e+00 0.000e+00
0.99999899 3.492e-10 2.453e-07 1.164e-10 8.178e-08
0.99999684 2.095e-09 8.337e-07 0.000e+00 0.000e+00
0.99998999 1.118e-08 2.497e-06 0.000e+00 0.000e+00
0.99996835 6.240e-08 7.843e-06 9.313e-10 1.171e-07
0.99989998 3.530e-07 2.496e-05 0.000e+00 0.000e+00
0.99968380 3.818e-07 1.519e-05 0.000e+00 0.000e+00
0.99900001 1.490e-07 3.333e-06 0.000e+00 0.000e+00
0.99683774 8.941e-08 1.125e-06 7.451e-09 9.376e-08
0.99000001 5.960e-08 4.225e-07 0.000e+00 0.000e+00
0.96837723 1.490e-08 5.973e-08 0.000e+00 0.000e+00
0.89999998 2.980e-08 6.837e-08 0.000e+00 0.000e+00
0.68377221 5.960e-08 8.168e-08 5.960e-08 8.168e-08
When cos_theta is not close to one, then the accuracy of both methods is very close to each other and to round-off error.
[Edited for major think-o] It looks to me like option 2 will be better, because for a number like 0.000001 for example option 1 will return the sine as 1 while option will return a number just smaller than 1.
No difference in my option since (1-x) preserves the precision not effecting the carried bit. Then for (1+x) the same is true. Then the only thing effecting the carry bit precision is the multiplication. So in both cases there is one single multiplication, so they are both as likely to give the same carry bit error.

How i can make matlab precision to be the same as in c++?

I have problem with precision. I have to make my c++ code to have same precision as matlab. In matlab i have script which do some stuff with numbers etc. I got code in c++ which do the same as that script. Output on the same input is diffrent :( I found that in my script when i try 104 >= 104 it returns false. I tried to use format long but it did not help me to find out why its false. Both numbers are type of double. i thought that maybe matlab stores somewhere the real value of 104 and its for real like 103.9999... So i leveled up my precision in c++. It also didnt help because when matlab returns me value of 50.000 in c++ i got value of 50.050 with high precision. Those 2 values are from few calculations like + or *. Is there any way to make my c++ and matlab scrips have same precision?
for i = 1:neighbors
y = spoints(i,1)+origy;
x = spoints(i,2)+origx;
% Calculate floors, ceils and rounds for the x and y.
fy = floor(y); cy = ceil(y); ry = round(y);
fx = floor(x); cx = ceil(x); rx = round(x);
% Check if interpolation is needed.
if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6)
% Interpolation is not needed, use original datatypes
N = image(ry:ry+dy,rx:rx+dx);
D = N >= C;
else
% Interpolation needed, use double type images
ty = y - fy;
tx = x - fx;
% Calculate the interpolation weights.
w1 = (1 - tx) * (1 - ty);
w2 = tx * (1 - ty);
w3 = (1 - tx) * ty ;
w4 = tx * ty ;
%Compute interpolated pixel values
N = w1*d_image(fy:fy+dy,fx:fx+dx) + w2*d_image(fy:fy+dy,cx:cx+dx) + ...
w3*d_image(cy:cy+dy,fx:fx+dx) + w4*d_image(cy:cy+dy,cx:cx+dx);
D = N >= d_C;
end
I got problems in else which is in line 12. tx and ty eqauls 0.707106781186547 or 1 - 0.707106781186547. Values from d_image are in range 0 and 255. N is value 0..255 of interpolating 4 pixels from image. d_C is value 0.255. Still dunno why matlab shows that when i have in N vlaues like: x x x 140.0000 140.0000 and in d_C: x x x 140 x. D gives me 0 on 4th position so 140.0000 != 140. I Debugged it trying more precision but it still says that its 140.00000000000000 and it is still not 140.
int Codes::Interpolation( Point_<int> point, Point_<int> center , Mat *mat)
{
int x = center.x-point.x;
int y = center.y-point.y;
Point_<double> my;
if(x<0)
{
if(y<0)
{
my.x=center.x+LEN;
my.y=center.y+LEN;
}
else
{
my.x=center.x+LEN;
my.y=center.y-LEN;
}
}
else
{
if(y<0)
{
my.x=center.x-LEN;
my.y=center.y+LEN;
}
else
{
my.x=center.x-LEN;
my.y=center.y-LEN;
}
}
int a=my.x;
int b=my.y;
double tx = my.x - a;
double ty = my.y - b;
double wage[4];
wage[0] = (1 - tx) * (1 - ty);
wage[1] = tx * (1 - ty);
wage[2] = (1 - tx) * ty ;
wage[3] = tx * ty ;
int values[4];
//wpisanie do tablicy 4 pixeli ktore wchodza do interpolacji
for(int i=0;i<4;i++)
{
int val = mat->at<uchar>(Point_<int>(a+help[i].x,a+help[i].y));
values[i]=val;
}
double moze = (wage[0]) * (values[0]) + (wage[1]) * (values[1]) + (wage[2]) * (values[2]) + (wage[3]) * (values[3]);
return moze;
}
LEN = 0.707106781186547 Values in array values are 100% same as matlab values.
Matlab uses double precision. You can use C++'s double type. That should make most things similar, but not 100%.
As someone else noted, this is probably not the source of your problem. Either there is a difference in the algorithms, or it might be something like a library function defined differently in Matlab and in C++. For example, Matlab's std() divides by (n-1) and your code may divide by n.
First, as a rule of thumb, it is never a good idea to compare floating point variables directly. Instead of, for example instead of if (nr >= 104) you should use if (nr >= 104-e), where e is a small number, like 0.00001.
However, there must be some serious undersampling or rounding error somewhere in your script, because getting 50050 instead of 50000 is not in the limit of common floating point imprecision. For example, Matlab can have a step of as small as 15 digits!
I guess there are some casting problems in your code, for example
int i;
double d;
// ...
d = i/3 * d;
will will give a very inaccurate result, because you have an integer division. d = (double)i/3 * d or d = i/3. * d would give a much more accurate result.
The above example would NOT cause any problems in Matlab, because there everything is already a floating-point number by default, so a similar problem might be behind the differences in the results of the c++ and Matlab code.
Seeing your calculations would help a lot in finding what went wrong.
EDIT:
In c and c++, if you compare a double with an integer of the same value, you have a very high chance that they will not be equal. It's the same with two doubles, but you might get lucky if you perform the exact same computations on them. Even in Matlab it's dangerous, and maybe you were just lucky that as both are doubles, both got truncated the same way.
By you recent edit it seems, that the problem is where you evaluate your array. You should never use == or != when comparing floats or doubles in c++ (or in any languages when you use floating-point variables). The proper way to do a comparison is to check whether they are within a small distance of each other.
An example: using == or != to compare two doubles is like comparing the weight of two objects by counting the number of atoms in them, and deciding that they are not equal even if there is one single atom difference between them.
MATLAB uses double precision unless you say otherwise. Any differences you see with an identical implementation in C++ will be due to floating-point errors.

sin and cos are slow, is there an alternatve?

My game needs to move by a certain angle. To do this I get the vector of the angle via sin and cos. Unfortunately sin and cos are my bottleneck. I'm sure I do not need this much precision. Is there an alternative to a C sin & cos and look-up table that is decently precise but very fast?
I had found this:
float Skeleton::fastSin( float x )
{
const float B = 4.0f/pi;
const float C = -4.0f/(pi*pi);
float y = B * x + C * x * abs(x);
const float P = 0.225f;
return P * (y * abs(y) - y) + y;
}
Unfortunately, this does not seem to work. I get significantly different behavior when I use this sin rather than C sin.
Thanks
A lookup table is the standard solution. You could Also use two lookup tables on for degrees and one for tenths of degrees and utilize sin(A + B) = sin(a)cos(b) + cos(A)sin(b)
For your fastSin(), you should check its documentation to see what range it's valid on. The units you're using for your game could be too big or too small and scaling them to fit within that function's expected range could make it work better.
EDIT:
Someone else mentioned getting it into the desired range by subtracting PI, but apparently there's a function called fmod for doing modulus division on floats/doubles, so this should do it:
#include <iostream>
#include <cmath>
float fastSin( float x ){
x = fmod(x + M_PI, M_PI * 2) - M_PI; // restrict x so that -M_PI < x < M_PI
const float B = 4.0f/M_PI;
const float C = -4.0f/(M_PI*M_PI);
float y = B * x + C * x * std::abs(x);
const float P = 0.225f;
return P * (y * std::abs(y) - y) + y;
}
int main() {
std::cout << fastSin(100.0) << '\n' << std::sin(100.0) << std::endl;
}
I have no idea how expensive fmod is though, so I'm going to try a quick benchmark next.
Benchmark Results
I compiled this with -O2 and ran the result with the Unix time program:
int main() {
float a = 0;
for(int i = 0; i < REPETITIONS; i++) {
a += sin(i); // or fastSin(i);
}
std::cout << a << std::endl;
}
The result is that sin is about 1.8x slower (if fastSin takes 5 seconds, sin takes 9). The accuracy also seemed to be pretty good.
If you chose to go this route, make sure to compile with optimization on (-O2 in gcc).
I know this is already an old topic, but for people who have the same question, here is a tip.
A lot of times in 2D and 3D rotation, all vectors are rotated with a fixed angle. In stead of calling the cos() or sin() every cycle of the loop, create variable before the loop which contains the value of cos(angle) or sin(angle) already. You can use this variable in your loop. This way the function only has to be called once.
If you rephrase the return in fastSin as
return (1-P) * y + P * (y * abs(y))
And rewrite y as (for x>0 )
y = 4 * x * (pi-x) / (pi * pi)
you can see that y is a parabolic first-order approximation to sin(x) chosen so that it passes through (0,0), (pi/2,1) and (pi,0), and is symmetrical about x=pi/2.
Thus we can only expect our function to be a good approximation from 0 to pi. If we want values outside that range we can use the 2-pi periodicity of sin(x) and that sin(x+pi) = -sin(x).
The y*abs(y) is a "correction term" which also passes through those three points. (I'm not sure why y*abs(y) is used rather than just y*y since y is positive in the 0-pi range).
This form of overall approximation function guarantees that a linear blend of the two functions y and y*y, (1-P)*y + P * y*y will also pass through (0,0), (pi/2,1) and (pi,0).
We might expect y to be a decent approximation to sin(x), but the hope is that by picking a good value for P we get a better approximation.
One question is "How was P chosen?". Personally, I'd chose the P that produced the least RMS error over the 0,pi/2 interval. (I'm not sure that's how this P was chosen though)
Minimizing this wrt. P gives
This can be rearranged and solved for p
Wolfram alpha evaluates the initial integral to be the quadratic
E = (16 π^5 p^2 - (96 π^5 + 100800 π^2 - 967680)p + 651 π^5 - 20160 π^2)/(1260 π^4)
which has a minimum of
min(E) = -11612160/π^9 + 2419200/π^7 - 126000/π^5 - 2304/π^4 + 224/π^2 + (169 π)/420
≈ 5.582129689596371e-07
at
p = 3 + 30240/π^5 - 3150/π^3
≈ 0.2248391013559825
Which is pretty close to the specified P=0.225.
You can raise the accuracy of the approximation by adding an additional correction term. giving a form something like return (1-a-b)*y + a y * abs(y) + b y * y * abs(y). I would find a and b by in the same way as above, this time giving a system of two linear equations in a and b to solve, rather than a single equation in p. I'm not going to do the derivation as it is tedious and the conversion to latex images is painful... ;)
NOTE: When answering another question I thought of another valid choice for P.
The problem is that using reflection to extend the curve into (-pi,0) leaves a kink in the curve at x=0. However, I suspect we can choose P such that the kink becomes smooth.
To do this take the left and right derivatives at x=0 and ensure they are equal. This gives an equation for P.
You can compute a table S of 256 values, from sin(0) to sin(2 * pi). Then, to pick sin(x), bring back x in [0, 2 * pi], you can pick 2 values S[a], S[b] from the table, such as a < x < b. From this, linear interpolation, and you should have a fair approximation
memory saving trick : you actually need to store only from [0, pi / 2], and use symmetries of sin(x)
enhancement trick : linear interpolation can be a problem because of non-smooth derivatives, humans eyes is good at spotting such glitches in animation and graphics. Use cubic interpolation then.
What about
x*(0.0174532925199433-8.650935142277599*10^-7*x^2)
for deg and
x*(1-0.162716259904269*x^2)
for rad on -45, 45 and -pi/4 , pi/4 respectively?
This (i.e. the fastsin function) is approximating the sine function using a parabola. I suspect it's only good for values between -π and +π. Fortunately, you can keep adding or subtracting 2π until you get into this range. (Edited to specify what is approximating the sine function using a parabola.)
you can use this aproximation.
this solution use a quadratic curve :
http://www.starming.com/index.php?action=plugin&v=wave&ajax=iframe&iframe=fullviewonepost&mid=56&tid=4825

finding cube root in C++?

Strange things happen when i try to find the cube root of a number.
The following code returns me undefined. In cmd : -1.#IND
cout<<pow(( double )(20.0*(-3.2) + 30.0),( double )1/3)
While this one works perfectly fine. In cmd : 4.93242414866094
cout<<pow(( double )(20.0*4.5 + 30.0),( double )1/3)
From mathematical way it must work since we can have the cube root from a negative number.
Pow is from Visual C++ 2010 math.h library. Any ideas?
pow(x, y) from <cmath> does NOT work if x is negative and y is non-integral.
This is a limitation of std::pow, as documented in the C standard and on cppreference:
Error handling
Errors are reported as specified in math_errhandling
If base is finite and negative and exp is finite and non-integer, a domain error occurs and a range error may occur.
If base is zero and exp is zero, a domain error may occur.
If base is zero and exp is negative, a domain error or a pole error may occur.
There are a couple ways around this limitation:
Cube-rooting is the same as taking something to the 1/3 power, so you could do std::pow(x, 1/3.).
In C++11, you can use std::cbrt. C++11 introduced both square-root and cube-root functions, but no generic n-th root function that overcomes the limitations of std::pow.
The power 1/3 is a special case. In general, non-integral powers of negative numbers are complex. It wouldn't be practical for pow to check for special cases like integer roots, and besides, 1/3 as a double is not exactly 1/3!
I don't know about the visual C++ pow, but my man page says under errors:
EDOM The argument x is negative and y is not an integral value. This would result in a complex number.
You'll have to use a more specialized cube root function if you want cube roots of negative numbers - or cut corners and take absolute value, then take cube root, then multiply the sign back on.
Note that depending on context, a negative number x to the 1/3 power is not necessarily the negative cube root you're expecting. It could just as easily be the first complex root, x^(1/3) * e^(pi*i/3). This is the convention mathematica uses; it's also reasonable to just say it's undefined.
While (-1)^3 = -1, you can't simply take a rational power of a negative number and expect a real response. This is because there are other solutions to this rational exponent that are imaginary in nature.
http://www.wolframalpha.com/input/?i=x^(1/3),+x+from+-5+to+0
Similarily, plot x^x. For x = -1/3, this should have a solution. However, this function is deemed undefined in R for x < 0.
Therefore, don't expect math.h to do magic that would make it inefficient, just change the signs yourself.
Guess you gotta take the negative out and put it in afterwards. You can have a wrapper do this for you if you really want to.
function yourPow(double x, double y)
{
if (x < 0)
return -1.0 * pow(-1.0*x, y);
else
return pow(x, y);
}
Don't cast to double by using (double), use a double numeric constant instead:
double thingToCubeRoot = -20.*3.2+30;
cout<< thingToCubeRoot/fabs(thingToCubeRoot) * pow( fabs(thingToCubeRoot), 1./3. );
Should do the trick!
Also: don't include <math.h> in C++ projects, but use <cmath> instead.
Alternatively, use pow from the <complex> header for the reasons stated by buddhabrot
pow( x, y ) is the same as (i.e. equivalent to) exp( y * log( x ) )
if log(x) is invalid then pow(x,y) is also.
Similarly you cannot perform 0 to the power of anything, although mathematically it should be 0.
C++11 has the cbrt function (see for example http://en.cppreference.com/w/cpp/numeric/math/cbrt) so you can write something like
#include <iostream>
#include <cmath>
int main(int argc, char* argv[])
{
const double arg = 20.0*(-3.2) + 30.0;
std::cout << cbrt(arg) << "\n";
std::cout << cbrt(-arg) << "\n";
return 0;
}
I do not have access to the C++ standard so I do not know how the negative argument is handled... a test on ideone http://ideone.com/bFlXYs seems to confirm that C++ (gcc-4.8.1) extends the cube root with this rule cbrt(x)=-cbrt(-x) when x<0; for this extension you can see http://mathworld.wolfram.com/CubeRoot.html
I was looking for cubit root and found this thread and it occurs to me that the following code might work:
#include <cmath>
using namespace std;
function double nth-root(double x, double n){
if (!(n%2) || x<0){
throw FAILEXCEPTION(); // even root from negative is fail
}
bool sign = (x >= 0);
x = exp(log(abs(x))/n);
return sign ? x : -x;
}
I think you should not confuse exponentiation with the nth-root of a number. See the good old Wikipedia
because the 1/3 will always return 0 as it will be considered as integer...
try with 1.0/3.0...
it is what i think but try and implement...
and do not forget to declare variables containing 1.0 and 3.0 as double...
Here's a little function I knocked up.
#define uniform() (rand()/(1.0 + RAND_MAX))
double CBRT(double Z)
{
double guess = Z;
double x, dx;
int loopbreaker;
retry:
x = guess * guess * guess;
loopbreaker = 0;
while (fabs(x - Z) > FLT_EPSILON)
{
dx = 3 * guess*guess;
loopbreaker++;
if (fabs(dx) < DBL_EPSILON || loopbreaker > 53)
{
guess += uniform() * 2 - 1.0;
goto retry;
}
guess -= (x - Z) / dx;
x = guess*guess*guess;
}
return guess;
}
It uses Newton-Raphson to find a cube root.
Sometime Newton -Raphson gets stuck, if the root is very close to 0 then the derivative can
get large and it can oscillate. So I've clamped and forced it to restart if that happens.
If you need more accuracy you can change the FLT_EPSILONs.
If you ever have no math library you can use this way to compute the cubic root:
cubic root
double curt(double x) {
if (x == 0) {
// would otherwise return something like 4.257959840008151e-109
return 0;
}
double b = 1; // use any value except 0
double last_b_1 = 0;
double last_b_2 = 0;
while (last_b_1 != b && last_b_2 != b) {
last_b_1 = b;
// use (2 * b + x / b / b) / 3 for small numbers, as suggested by willywonka_dailyblah
b = (b + x / b / b) / 2;
last_b_2 = b;
// use (2 * b + x / b / b) / 3 for small numbers, as suggested by willywonka_dailyblah
b = (b + x / b / b) / 2;
}
return b;
}
It is derives from the sqrt algorithm below. The idea is that b and x / b / b bigger and smaller from the cubic root of x. So, the average of both lies closer to the cubic root of x.
Square Root And Cubic Root (in Python)
def sqrt_2(a):
if a == 0:
return 0
b = 1
last_b = 0
while last_b != b:
last_b = b
b = (b + a / b) / 2
return b
def curt_2(a):
if a == 0:
return 0
b = a
last_b_1 = 0;
last_b_2 = 0;
while (last_b_1 != b and last_b_2 != b):
last_b_1 = b;
b = (b + a / b / b) / 2;
last_b_2 = b;
b = (b + a / b / b) / 2;
return b
In contrast to the square root, last_b_1 and last_b_2 are required in the cubic root because b flickers. You can modify these algorithms to compute the fourth root, fifth root and so on.
Thanks to my math teacher Herr Brenner in 11th grade who told me this algorithm for sqrt.
Performance
I tested it on an Arduino with 16mhz clock frequency:
0.3525ms for yourPow
0.3853ms for nth-root
2.3426ms for curt