Some background:
So my plan is to create a stippling algorithm in C++ and I basically just plan on storing a whole bunch of data for each radius of a circle to write onto a texture map in OpenGL I'm not sure if this is the right thing to do but I feel like it
would be quicker than the computer dynamically calculating the radius for each circle especially if lots of circles are the same size, my plan is to create a function that just writes a whole text document full of radiuses up to a certain size and this data will be stored bitwise inside an array of long's std::array <long> bit = {0x21, 0x0A ect... } so that I can encode 4X4 arrays of values with 2 bits assigned to the antialiasing value of each pixel however to create this database of ant-aliased circles I need to write a function that I keep getting wrong;
The actual question:
So this may seem lazy but I can promise I have tried everything to wrap my head around what I am getting wrong here basically i have written this code to anti=alias by dividing up the pixels into sub pixels however it seems to be returning values greater than 1 which shouldn't be possible as i have divided each pixel into 100 pixels of size 0.01
float CircleConst::PixelAA(int I, int J)
{
float aaValue = 0;
for (float i = (float) I; i < I + 1; i += 0.1f)
{
for (float j = (float) J; j < J + 1; j += 0.1f)
{
if ((pow((i - center), 2) + pow((j - center), 2) < pow(rad, 2)))
aaValue += 0.01f;
}
}
return aaValue;
}
also here is the code that writes the actual circle
CircleConst::CircleConst(float Rad)
{
rad = Rad;
dataSize = (unsigned int) ceil(2 * rad);
center = (float) dataSize/2;
arrData.reserve((int) pow(dataSize, 2));
for (int i = 0; i < dataSize; i++)
{
for (int j = 0; j < dataSize; j++)
{
if ( CircleBounds(i, j, rad-1) )
arrData.push_back(1);
else if (!CircleBounds(i, j, rad - 1) && CircleBounds(i, j, rad + 1))
{
arrData.push_back(PixelAA(i,j));
}
else
arrData.push_back(0);
}
}
}
so I noticed without the antialiasing that the way the circle is written is shifted over by one line, but this could be fixed by changing the value of the centre of the circle todataSize/2 - 0.5f but this causes problems later on when the circle is asymmetrical with the antialiasing, here is an example of radius 3.5
0.4 1.0 1.1 1.1 1.1 0.4 0.0
1.0 1.0 1.0 1.0 1.0 1.1 0.2
1.1 1.0 1.0 1.0 1.0 1.0 0.5
1.1 1.0 1.0 1.0 1.0 1.0 0.5
1.1 1.0 1.0 1.0 1.0 1.0 0.2
0.4 1.1 1.0 1.0 1.0 0.5 0.0
0.0 0.2 0.5 0.5 0.2 0.0 0.0
as you can see some of the values are over 1.0 which should not be possible, I'm sure there is an obvious answer to why this is but I'm completely missing it.
The problem lies with lines such as this one:
for (float i = (float) I; i < I + 1; i += 0.1f)
Floating point numbers cannot be stored or manipulated with infinite precision. By repeatedly adding one floating point number to another, the inaccuracies accumulate. This is why you're seeing values higher than 1.0.
The solution is to iterate using an integer type and compute the desired floating point numbers. For example:
for (unsigned i = 0U; i < 10U; ++i)
{
float x = 0.1F * static_cast<float>(i);
printf("%f\n", x);
}
In addition to what #Yun (the round-off error of floating point numbers) indicates, you must also pay attention to the sampling point (which must be at the pixel center).
Here your code, with some modification and addition:
#include <iostream>
#include <vector>
#include <iomanip>
#include <math.h>
float rad, radSquared, center;
const int filterSize = 8;
const float invFilterSize = 1.0f / filterSize;
// Sample the circle returning 1 when inside, 0 otherwise.
int SampleCircle(int i, int j) {
float di = (i + 0.5f) * invFilterSize - center;
float dj = (j + 0.5f) * invFilterSize - center;
return ((di * di + dj * dj) < radSquared) ? 1 : 0;
}
// NOTE: This sampling method works with any filter size.
float PixelAA(int I, int J)
{
int aaValue = 0;
for (int i = 0; i < filterSize; ++i)
for (int j = 0; j < filterSize; ++j)
aaValue += SampleCircle(I + i, J + j);
return (float)aaValue / (float)(filterSize * filterSize);
}
// NOTE: This sampling method works only with filter sizes that are power of two.
float PixelAAQuadTree(int i, int j, int filterSize)
{
if (filterSize == 1)
return (float)SampleCircle(i, j);
// We sample the four corners of the filter. Note that on left and bottom corners
// 1 is subtracted to avoid sampling overlap.
int topLeft = SampleCircle(i, j);
int topRight = SampleCircle(i + filterSize - 1, j);
int bottomLeft = SampleCircle(i, j + filterSize - 1);
int bottomRight = SampleCircle(i + filterSize - 1, j + filterSize - 1);
// If all samples have same value we can stop here. All samples lies outside or inside the circle.
if (topLeft == topRight && topLeft == bottomLeft && topLeft == bottomRight)
return (float)topLeft;
// Half the filter dimension.
filterSize /= 2;
// Recurse.
return (PixelAAQuadTree(i, j, filterSize) +
PixelAAQuadTree(i + filterSize, j, filterSize) +
PixelAAQuadTree(i, j + filterSize, filterSize) +
PixelAAQuadTree(i + filterSize, j + filterSize, filterSize)) / 4.0f;
}
void CircleConst(float Rad, bool useQuadTree)
{
rad = Rad;
radSquared = rad * rad;
center = Rad;
int dataSize = (int)ceil(rad * 2);
std::vector<float> arrData;
arrData.reserve(dataSize * dataSize);
if (useQuadTree)
{
for (int i = 0; i < dataSize; i++)
for (int j = 0; j < dataSize; j++)
arrData.push_back(PixelAAQuadTree(i * filterSize, j * filterSize, filterSize));
}
else
{
for (int i = 0; i < dataSize; i++)
for (int j = 0; j < dataSize; j++)
arrData.push_back(PixelAA(i * filterSize, j * filterSize));
}
for (int i = 0; i < dataSize; i++)
{
for (int j = 0; j < dataSize; j++)
std::cout << std::fixed << std::setw(2) << std::setprecision(2)
<< std::setfill('0') << arrData[i + j * dataSize] << " ";
std::cout << std::endl;
}
}
int main() {
CircleConst(3.5f, false);
std::cout << std::endl;
CircleConst(4.0f, false);
std::cout << std::endl;
std::cout << std::endl;
CircleConst(3.5f, true);
std::cout << std::endl;
CircleConst(4.0f, true);
return 0;
}
Which gives these results (the second ones with use of quad-tree to optimize number of samples required to compute the AA value):
0.00 0.36 0.84 1.00 0.84 0.36 0.00
0.36 1.00 1.00 1.00 1.00 1.00 0.36
0.84 1.00 1.00 1.00 1.00 1.00 0.84
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.84 1.00 1.00 1.00 1.00 1.00 0.84
0.36 1.00 1.00 1.00 1.00 1.00 0.36
0.00 0.36 0.84 1.00 0.84 0.36 0.00
0.00 0.16 0.70 0.97 0.97 0.70 0.16 0.00
0.16 0.95 1.00 1.00 1.00 1.00 0.95 0.16
0.70 1.00 1.00 1.00 1.00 1.00 1.00 0.70
0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.97
0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.97
0.70 1.00 1.00 1.00 1.00 1.00 1.00 0.70
0.16 0.95 1.00 1.00 1.00 1.00 0.95 0.16
0.00 0.16 0.70 0.97 0.97 0.70 0.16 0.00
0.00 0.36 0.84 1.00 0.84 0.36 0.00
0.36 1.00 1.00 1.00 1.00 1.00 0.36
0.84 1.00 1.00 1.00 1.00 1.00 0.84
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.84 1.00 1.00 1.00 1.00 1.00 0.84
0.36 1.00 1.00 1.00 1.00 1.00 0.36
0.00 0.36 0.84 1.00 0.84 0.36 0.00
0.00 0.16 0.70 0.97 0.97 0.70 0.16 0.00
0.16 0.95 1.00 1.00 1.00 1.00 0.95 0.16
0.70 1.00 1.00 1.00 1.00 1.00 1.00 0.70
0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.97
0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.97
0.70 1.00 1.00 1.00 1.00 1.00 1.00 0.70
0.16 0.95 1.00 1.00 1.00 1.00 0.95 0.16
0.00 0.16 0.70 0.97 0.97 0.70 0.16 0.00
As further notes:
you can see how quad-trees work here https://en.wikipedia.org/wiki/Quadtree
you can further modify the code and implement fixed-point math (https://en.wikipedia.org/wiki/Fixed-point_arithmetic) which has no round-off problems like floats because numbers are always represented as integers
given that these data are part of a pre-calculation phase, privilege the simplicity of the code over performance
I am trying to solve the iris data set with a neural network I wrote in C++ from scratch, which has 150 rows divided up into 3 different flowers with 4 columns and then a fifth for the flower type which I converted to a 0, 1 or 2.
Problem:
Whenever I run the network it will go through a test set of 90 rows, split into 3 different flowers (30, 30, 30). Every time I run an epoch it will show the output values being all very high like (0.99, 0.99, 0.98). It will do that for a few epochs and then eventually get lower to more sensible values. But when it will get to the later epochs, when I'm doing say 50 epochs, the values for the correct flower will get closer and closer to 1.00, for each flower, then do the same for the next flower and the flower after that, then it will start that process over. Instead of starting close to 1.0 indicating that it had learned and the weights were properly adjusted.
Console output for running epoch (which runs forward_prop(), back_prop() and then update_weights()), after each epoch it prints out the output values for the network. Printing at the end of the epoch means that the actual values are always {0, 0, 1}. When I ran the network I ran it 1000 times, the output values never changed for every epoch after 15. Why is it doing this?
File parsed, weights and bias randomized
Epoch 1
0.97 0.97 0.99 Epoch 2
0.93 0.94 0.99 Epoch 3
0.64 0.70 0.99 Epoch 4
0.27 0.36 0.99 Epoch 5
0.22 0.31 0.99 Epoch 6
0.21 0.30 0.99 Epoch 7
0.21 0.30 0.98 Epoch 8
0.21 0.30 0.98 Epoch 9
0.21 0.30 0.96 Epoch 10
0.21 0.30 0.88 Epoch 11
0.21 0.30 0.66 Epoch 12
0.21 0.30 0.56 Epoch 13
0.21 0.30 0.54 Epoch 14
0.21 0.30 0.53 Epoch 15
0.21 0.30 0.53 completed successfully
End console output.
Example of epoch 9
0.21 0.30 0.98
0.21 0.30 0.98
0.22 0.29 0.98
0.23 0.29 0.98
0.24 0.28 0.98
0.25 0.28 0.98
0.25 0.27 0.98
0.26 0.27 0.98
0.27 0.27 0.98
0.28 0.26 0.98
0.29 0.26 0.98
0.30 0.26 0.98
0.31 0.26 0.98
0.32 0.25 0.98
0.34 0.25 0.98
0.35 0.24 0.98
0.36 0.24 0.98
0.37 0.24 0.98
0.38 0.24 0.98
0.40 0.23 0.98
0.41 0.23 0.98
0.42 0.23 0.98
0.43 0.23 0.98
0.44 0.22 0.98
0.45 0.22 0.98
0.46 0.22 0.98
0.48 0.22 0.98
0.49 0.22 0.98
0.50 0.21 0.98
0.51 0.21 0.98
0.53 0.20 0.98
0.52 0.21 0.98
0.50 0.22 0.98
0.49 0.23 0.98
0.48 0.24 0.98
0.47 0.24 0.98
0.46 0.25 0.98
0.45 0.26 0.98
0.44 0.27 0.98
0.43 0.28 0.98
0.42 0.29 0.98
0.42 0.30 0.98
0.41 0.32 0.98
0.40 0.33 0.98
0.39 0.34 0.98
0.38 0.35 0.98
0.38 0.36 0.98
0.37 0.37 0.98
0.36 0.38 0.98
0.35 0.40 0.98
0.35 0.41 0.98
0.34 0.42 0.98
0.34 0.43 0.98
0.33 0.44 0.98
0.32 0.46 0.98
0.32 0.47 0.98
0.31 0.48 0.98
0.31 0.49 0.98
0.30 0.50 0.98
0.30 0.51 0.97
0.30 0.52 0.98
0.29 0.51 0.98
0.29 0.50 0.98
0.28 0.49 0.98
0.28 0.48 0.98
0.27 0.47 0.98
0.27 0.46 0.97
0.27 0.45 0.98
0.26 0.44 0.98
0.26 0.43 0.98
0.26 0.42 0.98
0.25 0.41 0.98
0.25 0.40 0.98
0.25 0.40 0.98
0.24 0.39 0.98
0.24 0.38 0.98
0.24 0.37 0.98
0.24 0.37 0.98
0.23 0.36 0.98
0.23 0.35 0.98
0.23 0.35 0.98
0.23 0.34 0.98
0.22 0.33 0.98
0.22 0.33 0.98
0.22 0.32 0.98
0.22 0.32 0.98
0.21 0.31 0.98
0.21 0.31 0.98
0.21 0.30 0.98
0.21 0.30 0.98 Epoch 9
So with epoch 9 the first 30 rows have an actual value of {1, 0, 0}, then next 30 have an actual value of {0, 1, 0} and finally the last 30 have an actual value of {0, 0, 1}. See how it inches closer and closer for each row of data, yet the last row stays the same, while not staying the same for all the epochs. This is strange and I am not sure exactly why it is doing this.
So the basic structure of the program is:
main() executes, declare and initialize a class Neural_Network with a input, hidden and output layer.
calling train() then executes epoch() which runs in a loop the amount of times specified when calling train.
epoch() itself runs forward_prop(), back_prop() and finally update_network(), there are also a few variables like arrays for the expected and actual values for the output.
The vectors bias, values, weights and errors all hold the values for the network separately, which I found was better for readability. the first layer or position [0] of the weights vector is empty and the input values use the weights in the hidden layer and the hidden layer uses the weights in the output layer.
Each weight is a vector of weights equal to the amount of nodes in the previous layer, Position [0] of the vector of weights is used for the node at position [0] in the previous layer.
#include <iostream>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <fstream>
#include <sstream>
#include <vector>
#include <array>
#include <string>
#include <numeric>
class Neural_Network
{
private:
std::vector<std::array<double, 4>> training_set; // 30 setosa -> 30 versicolor -> 30 virginica
std::vector<std::vector<double>> values, bias, errors;
std::vector<std::vector<std::vector<double>>> weights;
size_t net_size = 0;
double dot_val(std::vector<double> val, std::vector<double> weights);
double sigmoid(const double num);
double random_number();
double transfer_derivitive(double num);
void initialize(std::vector<size_t> layers);
void forward_prop(std::vector<double>& expected);
void back_prop(std::vector<double> expected);
void update_network(double l_rate);
public:
Neural_Network(const std::vector<std::array<double, 4>>& data);
~Neural_Network() = default;
void train(size_t epochs = 1);
void display();
};
Neural_Network::Neural_Network(const std::vector<std::array<double, 4>>& data) : training_set{ data }
{
initialize({ 4, 6, 3 });
}
double Neural_Network::dot_val(std::vector<double> val, std::vector<double> weights)
{
return std::inner_product(val.begin(), val.end(), weights.begin(), 0.0);
}
double Neural_Network::sigmoid(const double num)
{
return (1 / (1 + exp(-num)));
}
double Neural_Network::random_number()
{
return (double)rand() / (double)RAND_MAX;
}
double Neural_Network::transfer_derivitive(double num)
{
return num * (1 - num);
}
void Neural_Network::display()
{
std::cout << std::fixed << std::setprecision(2) << "values:\n";
for (size_t i = 0; i < values.size(); ++i)
{
std::cout << "layer " << i << "\n[ ";
for (size_t j = 0; j < values[i].size(); ++j)
std::cout << values.at(i).at(j) << " ";
std::cout << " ]\n";
}
}
void Neural_Network::initialize(std::vector<size_t> layers)
{
for (size_t i = 0; i < layers.size(); ++i)
{
std::vector<double> v{}, b{}, e{};
std::vector<std::vector<double>> w{};
//initializing the nodes in the layers
for (size_t j = 0; j < layers.at(i); ++j)
{
v.push_back(0);
b.push_back(random_number());
e.push_back(1);
std::vector<double> inner_w{};
if (i != 0) // checking if the current layer is the input
for (size_t k = 0; k < layers.at(i - 1); ++k) // adding weights to the current layer to the amount of nodes in the next layer
inner_w.push_back(random_number()); // adding a weight to the current layer for a node in the next layer
w.push_back(inner_w);
}
values.push_back(v);
bias.push_back(b);
errors.push_back(e);
weights.push_back(w);
++net_size;
}
std::cout << "initialize network success" << std::endl;
}
void Neural_Network::train(size_t epoch_count)
{
const size_t count = epoch_count;
while (epoch_count > 0)
{
std::cout << "\nEpoch " << 1 + (count - epoch_count) << std::endl;
for (size_t i = 0; i < 90; ++i)
{
std::vector<double> expected{ 0, 0, 0 };
if (i < 30)
expected[0] = 1;
else if (i < 60)
expected[1] = 1;
else if (i < 90)
expected[2] = 1;
for (size_t j = 0; j < values[0].size(); ++j) // Initialize input layer values
values.at(0).at(j) = training_set.at(i).at(j); // value[0] is the input layer, j is the node
forward_prop(expected);
back_prop(expected);
update_network(0.05);
}
display();
--epoch_count;
}
}
void Neural_Network::forward_prop(std::vector<double>& expected)
{
for (size_t i = 1; i < net_size - 1; ++i) // looping through every layer except the first and last
for (size_t j = 0; j < values.at(i).size(); ++j) // looping through every node in the current non input/output layer
values.at(i).at(j) = sigmoid(dot_val(values.at(i - 1), weights.at(i).at(j)) + bias.at(i).at(j)); // assigning node j of layer i a sigmoided val that is the dotval + the associated bias
for (size_t i = 0; i < values.at(net_size - 1).size(); ++i) // looping through the ouptut layer
values.at(net_size - 1).at(i) = sigmoid(dot_val(values.at(net_size - 2), weights.at(net_size - 1).at(i)) + bias.at(net_size - 1).at(i));
}
void Neural_Network::back_prop(std::vector<double> expected) // work backwards from the output layer
{
std::vector<double> output_errors{};
for (size_t i = 0; i < errors.at(net_size - 1).size(); ++i) // looping through the output layer
{
output_errors.push_back(expected.at(i) - values.at(net_size - 1).at(i));
errors.at(net_size - 1).at(i) = output_errors.at(i) * transfer_derivitive(values.at(net_size - 1).at(i));
} // output layer finished
for (size_t i = net_size - 2; i > 0; i--) // looping through the non output layers backwards
{
std::vector<double> layer_errors{};
for (size_t j = 0; j < errors.at(i).size(); ++j) // looping through the current layer's nodes
{
double error = 0;
for (size_t k = 0; k < weights.at(i + 1).size(); ++k) // looping through the current set of weights
error += errors.at(i).at(j) * weights.at(i + 1).at(k).at(j);
layer_errors.push_back(error);
}
for (size_t j = 0; j < layer_errors.size(); ++j)
errors.at(i).at(j) = layer_errors.at(j) * transfer_derivitive(values.at(i).at(j));
}
}
void Neural_Network::update_network(double l_rate)
{
for (size_t i = 1; i < net_size; ++i)
{
for (size_t j = 0; j < weights.at(i).size(); ++j)
{
for (size_t k = 0; k < weights.at(i).at(j).size(); ++k)
weights.at(i).at(j).at(k) += l_rate * errors.at(i).at(j) * values.at(i - 1).at(j);
bias.at(i).at(j) += l_rate * errors.at(i).at(j);
}
}
}
int main()
{
std::vector<std::array<double, 4>> data = {
{5.1, 3.5, 1.4, 0.2},
{4.9, 3, 1.4, 0.2},
{4.7, 3.2, 1.3, 0.2},
{4.6, 3.1, 1.5, 0.2},
{5, 3.6, 1.4, 0.2},
{5.4, 3.9, 1.7, 0.4},
{4.6, 3.4, 1.4, 0.3},
{5, 3.4, 1.5, 0.2},
{4.4, 2.9, 1.4, 0.2},
{4.9, 3.1, 1.5, 0.1},
{5.4, 3.7, 1.5, 0.2},
{4.8, 3.4, 1.6, 0.2},
{4.8, 3, 1.4, 0.1},
{4.3, 3, 1.1, 0.1},
{5.8, 4, 1.2, 0.2},
{5.7, 4.4, 1.5, 0.4},
{5.4, 3.9, 1.3, 0.4},
{5.1, 3.5, 1.4, 0.3},
{5.7, 3.8, 1.7, 0.3},
{5.1, 3.8, 1.5, 0.3},
{5.4, 3.4, 1.7, 0.2},
{5.1, 3.7, 1.5, 0.4},
{4.6, 3.6, 1, 0.2},
{5.1, 3.3, 1.7, 0.5},
{4.8, 3.4, 1.9, 0.2},
{5, 3, 1.6, 0.2},
{5, 3.4, 1.6, 0.4},
{5.2, 3.5, 1.5, 0.2},
{5.2, 3.4, 1.4, 0.2},
{4.7, 3.2, 1.6, 0.2},
{7, 3.2, 4.7, 1.4},
{6.4, 3.2, 4.5, 1.5},
{6.9, 3.1, 4.9, 1.5},
{5.5, 2.3, 4, 1.3},
{6.5, 2.8, 4.6, 1.5},
{5.7, 2.8, 4.5, 1.3},
{6.3, 3.3, 4.7, 1.6},
{4.9, 2.4, 3.3, 1},
{6.6, 2.9, 4.6, 1.3},
{5.2, 2.7, 3.9, 1.4},
{5, 2, 3.5, 1},
{5.9, 3, 4.2, 1.5},
{6, 2.2, 4, 1},
{6.1, 2.9, 4.7, 1.4},
{5.6, 2.9, 3.6, 1.3},
{6.7, 3.1, 4.4, 1.4},
{5.6, 3, 4.5, 1.5},
{5.8, 2.7, 4.1, 1},
{6.2, 2.2, 4.5, 1.5},
{5.6, 2.5, 3.9, 1.1},
{5.9, 3.2, 4.8, 1.8},
{6.1, 2.8, 4, 1.3},
{6.3, 2.5, 4.9, 1.5},
{6.1, 2.8, 4.7, 1.2},
{6.4, 2.9, 4.3, 1.3},
{6.6, 3, 4.4, 1.4},
{6.8, 2.8, 4.8, 1.4},
{6.7, 3, 5, 1.7},
{6, 2.9, 4.5, 1.5},
{5.7, 2.6, 3.5, 1},
{6.3, 3.3, 6, 2.5},
{5.8, 2.7, 5.1, 1.9},
{7.1, 3, 5.9, 2.1},
{6.3, 2.9, 5.6, 1.8},
{6.5, 3, 5.8, 2.2},
{7.6, 3, 6.6, 2.1},
{4.9, 2.5, 4.5, 1.7},
{7.3, 2.9, 6.3, 1.8},
{6.7, 2.5, 5.8, 1.8},
{7.2, 3.6, 6.1, 2.5},
{6.5, 3.2, 5.1, 2},
{6.4, 2.7, 5.3, 1.9},
{6.8, 3, 5.5, 2.1},
{5.7, 2.5, 5, 2},
{5.8, 2.8, 5.1, 2.4},
{6.4, 3.2, 5.3, 2.3},
{6.5, 3, 5.5, 1.8},
{7.7, 3.8, 6.7, 2.2},
{7.7, 2.6, 6.9, 2.3},
{6, 2.2, 5, 1.5},
{6.9, 3.2, 5.7, 2.3},
{5.6, 2.8, 4.9, 2},
{7.7, 2.8, 6.7, 2},
{6.3, 2.7, 4.9, 1.8},
{6.7, 3.3, 5.7, 2.1},
{7.2, 3.2, 6, 1.8},
{6.2, 2.8, 4.8, 1.8},
{6.1, 3, 4.9, 1.8},
{6.4, 2.8, 5.6, 2.1},
{7.2, 3, 5.8, 1.6}
};
Neural_Network network{ data };
network.train(1);
return 0;
}
Edit to use .at() instead of [] for accessing std::vector in program
I hope I made everything clear, if not let me know.
note: I had this question of stackoverflow, I was told that I should
move it to codereview.stackexchange, then they told me I should move
it back to stackoverflow again, while reframing my question with more
detail. Please don't tell me to move this question a 3rd time. If there is something wrong with the way I am asking please give me a chance to change it or add information so I can get some help, please and thank you
One obvious mistake is in dot_val:
double Neural_Network::dot_val(std::vector<double> val,std::vector<double> weights)
{
double output; // <-- This is uninitialized
for (size_t i = 0; i < weights.size(); ++i)
output += val[i] * weights[i];
return output; // <-- Who knows what this will be
}
You are using an uninitialized variable. Either initialize output to 0, or you can use
std::inner_product :
#include <numeric>
//...
double Neural_Network::dot_val(std::vector<double> val,std::vector<double> weights)
{
return std::inner_product(val.begin(), val.end(), weights.begin(), 0.0);
}