I would like to know proper explanation of the clahe parameters
i.e clipLimit and tileGridSize.
and how does clipLimit value effects the contrast of the image and what factors(like image resolution, object sizes) to be considered to select tileGridSize.
Thanks in advance
this question is for a long time ago but i searched for the answer and saw this,then i found some links which may help,obviously most of below information are from different sites.
AHE is a computer image processing technique used to improve contrast in images. It differs from ordinary histogram equalization in the respect that the adaptive method computes several histograms, each corresponding to a distinct section of the image, and uses them to redistribute the lightness values of the image. It is therefore suitable for improving the local contrast and enhancing the definitions of edges in each region of an image.
and , AHE has a tendency to over-amplify noise in relatively homogeneous regions of an image ,A variant of adaptive histogram equalization called contrast limited adaptive histogram equalization (CE) prevents this by limiting the amplification.
for first one this image can be useful:
CLAHE limits the amplification by clipping the histogram at a predefined value (called clip limit)
tileGridSize refers to Size of grid for histogram equalization. Input image will be divided into equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
it is opencv documentation about it's available functions:
https://docs.opencv.org/master/d6/db6/classcv_1_1CLAHE.html
and this link was good at all:
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization#Contrast_Limited_AHE
http://www.cs.utah.edu/~sujin/courses/reports/cs6640/project2/clahe.html
clipLimit is the threshold value.
tileGridSize defines the number of tiles in row and column.
More Information
Related
Problem
Is there a build-in function for interpolating single pixels?
Given a normal image as Mat and a Point, e.g. an anomaly of the sensor or an outlier, is their some function to repair this Point?
Furthermore, if I have more than one Point connected (let's say a blob with area smaller 10x10) is there a possibility to fix them too?
Trys but not really solutions
It seems that interpolation is implemented in the geometric transformations including resizing images and to extrapolate pixels outside of the image with borderInterpolate, but I haven't found a possibility for single pixels or small clusters of pixels.
A solution with medianBlur like suggested here does not seem appropriate as it changes the whole image.
Alternative
If there isn't a build-in function, my idea would be to look at all 8-connected surrounding pixels which are not part of the blob and calculate the mean or weighted mean. If doing this iteratively, all missing or erroneous pixel should be filled. But this method would be dependent of the applied order to correct each pixel. Are there other suggestions?
Update
Here is an image to illustrate the problem. Left the original image with a contour marking the pixels to fix. Right side shows the fixed pixels. I hope to find some sophisticated algorithms to fix the pixel.
The build-in function inpaint of OpenCV does the desired interpolation of chosen pixels. Simply create a mask with all pixels to be repaired.
See the documentation here: OpenCV 3.2. Description: inpaint and Function: inpaint
I am trying to classify MRI images of brain tumors into benign and malignant using C++ and OpenCV. I am planning on using bag-of-words (BoW) method after clustering SIFT descriptors using kmeans. Meaning, I will represent each image as a histogram with the whole "codebook"/dictionary for the x-axis and their occurrence count in the image for the y-axis. These histograms will then be my input for my SVM (with RBF kernel) classifier.
However, the disadvantage of using BoW is that it ignores the spatial information of the descriptors in the image. Someone suggested to use SPM instead. I read about it and came across this link giving the following steps:
Compute K visual words from the training set and map all local features to its visual word.
For each image, initialize K multi-resolution coordinate histograms to zero. Each coordinate histogram consist of L levels and each level
i has 4^i cells that evenly partition the current image.
For each local feature (let's say its visual word ID is k) in this image, pick out the k-th coordinate histogram, and then accumulate one
count to each of the L corresponding cells in this histogram,
according to the coordinate of the local feature. The L cells are
cells where the local feature falls in in L different resolutions.
Concatenate the K multi-resolution coordinate histograms to form a final "long" histogram of the image. When concatenating, the k-th
histogram is weighted by the probability of the k-th visual word.
To compute the kernel value over two images, sum up all the cells of the intersection of their "long" histograms.
Now, I have the following questions:
What is a coordinate histogram? Doesn't a histogram just show the counts for each grouping in the x-axis? How will it provide information on the coordinates of a point?
How would I compute the probability of the k-th visual word?
What will be the use of the "kernel value" that I will get? How will I use it as input to SVM? If I understand it right, is the kernel value is used in the testing phase and not in the training phase? If yes, then how will I train my SVM?
Or do you think I don't need to burden myself with the spatial info and just stick with normal BoW for my situation(benign and malignant tumors)?
Someone please help this poor little undergraduate. You'll have my forever gratefulness if you do. If you have any clarifications, please don't hesitate to ask.
Here is the link to the actual paper, http://www.csd.uwo.ca/~olga/Courses/Fall2014/CS9840/Papers/lazebnikcvpr06b.pdf
MATLAB code is provided here http://web.engr.illinois.edu/~slazebni/research/SpatialPyramid.zip
Co-ordinate histogram (mentioned in your post) is just a sub-region in the image in which you compute the histogram. These slides explain it visually, http://web.engr.illinois.edu/~slazebni/slides/ima_poster.pdf.
You have multiple histograms here, one for each different region in the image. The probability (or the number of items would depend on the sift points in that sub-region).
I think you need to define your pyramid kernel as mentioned in the slides.
A Convolutional Neural Network may be better suited for your task if you have enough training samples. You can probably have a look at Torch or Caffe.
UPDATE:
I have segmented the image into different regions. For each region, I need to know whether it is more or less homogeneous in terms of color.
What could be the possible strategies to do so?
previous:
I want to check the color variance (preferably hue variance) of an image to find out the images made up of homogeneous colors (i.e. the images which have only one or two color).
I understand that one strategy could be to create a hue-histogram for that and then I can found the count of each color but I have several images altogether and I cannot create a hue-histogram of 180 bins for each image because then it would be computationally expensive for whole code.
Is there any inbuilt openCV method OR other simpler method to find out whether the image consist of homogeneous color only OR several colors?
Something, which can calculate the variance of hue-image would also be fine. I could not find something like variance(image);
PS: I am writing the code in C++.
The variance can be computed without an histogram, as the average squared values minus the square of the averaged values. It takes a single pass over the image, with two accumulators. Choose a data type that will not overflow.
A little introduction on what I'm doing ...
For academic purposes I am creating an application in c++ using opencv for the detection of static objects in a scene.
The application is based on a combined approach of background subtraction and tracking, and the detection of events related to the abandonment of the objects works fine.
But at the moment I have a problem that I can't solve; I have to implement a finite state machine for detect the event of object removal, both before and after the entry of the object in the background.
To do this I was ordered by my superiors to use the edges of objects.
And now the problem.
After detecting a vehicle illegally parked along a road, I need to compare the edges of various images (the background captured at the time of the alarm, the current background, the current frame) to understand what the vehicle do (picks up the movement, remains parked or picks up the movement after being in the background).
I run these comparisons on the region of the scene in which there is the vehicle (vehicles typically have different size), I pull the edges using canny algorithm by obtaining a binarized CV_8UC1 cv::Mat.
At this point I have to compare them.
I tried to detect the contours with findContours and compare them with matchShapes, but it does not seem the right way, I'd compare each contour of the first image with every contour of the second, in addition typically the two images to campare have different number of contour (for example original background and current background, because the edges of the current background increased with the entry of the vehicle in the background).
I also tried to create a new image in which each pixel corresponds to the absolute difference of the other two, then I counted the white pixels of the difference image (wPx), and I used this number for comparison in this way: I set two thresholds (thr1 and thr2), and counted the pixels of the bounding rect of the vehicle (perim), if wPxthr2*perim images are different.
(I set percentages thresholds and I moltipy them with the perimeter of the bounding box to adapt the thresholds to the vehicle dimensions.)
This solution, however, seems to be very little robust.
Do you have something simple to suggest me?
Thank you very much in any case, more than once you StackOverflow users have helped me!
PS: THIS is an example of the images that I have to compare
The first is the background without the vehicle stationary, contains the edges of the street;
the second is the original background, the one captured when the stationary vehicle is detected;
the third is the current background (which in this case is equal to the original being the same frame, but then change);
the fourth is the current frame of the video;
You may want to take a look at this paper: A Novel SIFT-Like-Based Approach
for FIR-VS Images Registration. Aguilera et al. propose an Edge Oriented Histogram descriptor (EOH-SIFT).
This paper intends to register multispectral images, visible and infrared image, to each other. Because of the different characteristics of the images, the authors first extract edges/contours in both images, which results in images similiar to yours.
So, you can describe your image patches using this descriptor, illustrated in the following figure (taken from the above paper):
Subdivide your image patch into 4x4 zones
For each of the 16 subregions compose a histogram of contour's orientation (5 bins)
Put the histograms together into one descriptor vector of size 16x5=80 bins
Normalize the feature vector
So, every image you want to compare (in your case 4) is described by its 80-dimensional feature vector. You can compare them to each other by calculating and evaluating the Euclidean distance between them.
Note: Here a patch of size 80x80 or 100x100 (NxN) pixels is suggested. You may have to adjust the sizes to your image sizes.
Finding Circle Edges :
Here are the two sample images that i have posted.
Need to find the edges of the circle:
Does it possible to develop one generic circle algorithm,that could find all possible circles in all scenarios ?? Like below
1. Circle may in different color ( White , Black , Gray , Red)
2. Background color may be different
3. Different in its size
http://postimage.org/image/tddhvs8c5/
http://postimage.org/image/8kdxqiiyb/
Please suggest some idea to write a algorithm that should work out on above circle
Sounds like a job for the Hough circle transform:
I have not used it myself so far, but it is included in OpenCV. Among other parameters, you can give it a minimum and maximum radius.
Here are links to documentation and a tutorial.
I'd imagine your second example picture will be very hard to detect though
You could apply an edge detection transformation to both images.
Here is what I did in Paint.NET using the outline effect:
You could test edge detect too but that requires more contrast in the images.
Another thing to take into consideration is what it exactly is that you want to detect; in the first image, do you want to detect the white ring or the disc inside. In the second image; do you want to detect the all the circles (there are many tiny ones) or just the big one(s). These requirement will influence what transformation to use and how to initialize these.
After transforming the images into versions that 'highlight' the circles you'll need an algorithm to find them.
Again, there are more options than just one. Here is a paper describing an algoritm
Searching the web for image processing circle recognition gives lots of results.
I think you will have to use a couple of different feature calculations that can be used for segmentation. I the first picture the circle is recognizeable by intensity alone so that one is easy. In the second picture it is mostly the texture that differentiates the circle edge, in that case a feature image based based on some kind of texture filter will be needed, calculating the local variance for instance will result in a scalar image that can segment out the circle. If there are other features that defines the circle in other scenarios (different colors for background foreground etc) you might need other explicit filters that give a scalar difference for those cases.
When you have scalar images where the circles stand out you can use the circular Hough transform to find the circle. Either run it for different circle sizes or modify it to detect a range of sizes.
If you know that there will be only one circle and you know the kind of noise that will be present (vertical/horizontal lines etc) an alternative approach is to design a more specific algorithm e.g. filter out the noise and find center of gravity etc.
Answer to comment:
The idea is to separate the algorithm into independent stages. I do not know how the specific algorithm you have works but presumably it could take a binary or grayscale image where high values means pixel part of circle and low values pixel not part of circle, the present algorithm also needs to give some kind of confidence value on the circle it finds. This present algorithm would then represent some stage(s) at the end of the complete algorithm. You will then have to add the first stage which is to generate feature images for all kind of input you want to handle. For the two examples it should suffice with one intensity image (simply grayscale) and one image where each pixel represents the local variance. In the color case do a color transform an use the hue value perhaps? For every input feed all feature images to the later stage, use the confidence value to select the most likely candidate. If you have other unknowns that your algorithm need as input parameters (circle size etc) just iterate over the possible values and make sure your later stages returns confidence values.