I'm trying to use variadic templates to store the parameter types to a member function. The way I'm trying to achieve this is by associating each type with a key, then storing this key in an std::vector. The code for creating this key is as follows
template <typename T>
class ClassInfo {
public:
inline static void const* GetClassKey() {
static char key;
return &key;
}
};
Then I use the following code to try to store the keys in an std::vector
class WrappedMemberFunction {
void *function_pointer; // Holds the member function pointer
void const* class_type; // Class type key
void const* return_type; // Return type key
std::vector<void const*> parameter_types; // Parameter type keys
void StoreArguments() {}
template <typename Arg, typename... Args>
void StoreArguments() {
parameter_types.push_back(ClassInfo<Arg>::GetClassKey());
StoreArguments<Args...>(); // Error here: No matching member function for call to 'StoreArguments'
}
public:
template <typename Class, typename ReturnType, typename... Args>
WrappedMemberFunction(ReturnType (Class::*member_pointer)(Args...)) {
// Store member pointer as regular old void pointer
function_pointer = (void*&)member_pointer;
// Store class type
class_type = ClassInfo<Class>::GetClassKey();
// Store return type
return_type = ClassInfo<Class>::GetClassKey();
// Store parameter types
StoreArguments<Args...>();
}
};
What I'm getting stuck on is the variadic recursion needed to store each class key. I am getting an error on the line indicated above, which is the recursive step in trying to expand the parameter pack. What am I doing wrong here?
You have:
// function that is not a template
void StoreArguments() {}
// function template that takes N+1 types
template <typename Arg, typename... Args>
void StoreArguments() {
parameter_types.push_back(ClassInfo<Arg>::GetClassKey());
// call function template that takes N types
StoreArguments<Args...>();
}
Hopefully the comments I added make this clear... you're recursing from a function template taking N+1 types to a function template taking N types. The base case there is a function template taking 0 types. You don't have that, you have a nullary function - which won't be considered.
Your approaches are either to lift your types into values, so your base case actually is a nullary function:
template <class T> struct tag { using type = T; };
void StoreArgumentsImpl() { }
template <typename Arg, typename... Tags>
void StoreArgumentsImpl(tag<Arg>, Tags... tags) {
parameter_types.push_back(ClassInfo<Arg>::GetClassKey());
StoreArgumentsImpl(tags...);
}
template <typename... Args>
void StoreArguments() {
StoreArgumentsImpl(tag<Args>{}...);
}
Or do everything in a single function with the expander trick:
template <typename... Args>
void StoreArguments() {
using expander = int[];
(void)expander{0,
(void(
parameter_types.push_back(ClassInfo<Args>::GetClassKey())
), 0)...
};
}
Or, in C++17 (can't wait), with fold expressions:
template <typename... Args>
void StoreArguments() {
(parameter_types.push_back(ClassInfo<Args>::GetClassKey()), ...);
}
Or, also in C++17, with if constexpr (though this will not work with no arguments):
template <typename Arg, typename... Args>
void StoreArguments() {
parameter_types.push_back(ClassInfo<Args>::GetClassKey());
if constexpr(sizeof...(Args) > 0) {
StoreArguments<Args...>();
}
}
Related
I am trying to create a class template that expects a type and a function pointer as template parameters. The function pointer is expected to be a member function of the type passed in. I want the user of the class template to be able to pass in a void member function of the type passed in. That member function will then be called on instances of the type passed in every time a certain function of the class template is called. It's a bit hard to explain but it's supposed to work sort of like this:
template<Type, Function> // For the purpose of explaining it
class Foo
{
public:
template<Args... args>
void callOnAll(Args... args)
{
for(Type* ptr : ptrs_)
{
ptr->Function(std::forward<Args>(args)...);
}
}
private:
std::vector<Type*> ptrs_;
}
Assuming that something like this is possible (which I realize it might not be), the key would have to be getting the template parameters for the class right, and getting the update function right. This is what I've come up with but I still can't get it to work:
template<typename T, template<typename... Args> void(T::*func)(Args... args)>
class EngineSystem
{
public:
template<typename... Args>
void update(Args... args)
{
for (T* handler : handlers_)
{
((*handler).*func)(std::forward<Args>(args)...);
}
}
private:
std::vector<T*> handlers_;
};
The code above does not compile. It points me to the line where I declare the template parameters for the class, underlines void and says expected 'class' or 'typename'.
Is it clear what I'm trying to achieve, and is it possible?
C++ doesn't allow non-type template template parameters. That means you can't have a parameter-pack for your member-function pointer parameter.
Assuming you're using C++17 or newer, you can use an auto template parameter instead:
template<typename T, auto func>
public:
template<typename... Args>
void update(Args... args)
{
for (T* handler : handlers_)
{
(handler->*func)(std::forward<Args>(args)...);
}
}
private:
std::vector<T*> handlers_;
};
Live Demo
Technically that will accept any object for func, but assuming update is called, then (handler->*func)(std::forward<Args>(args)...) still has to be well-formed or compilation will fail.
If you want compilation to fail even if update never gets called, you could use some type traits and a static_assert (or some SFINAE hackery, if you need it) to ensure that func is actually a pointer to a member function of T:
template <typename T, typename U>
struct IsPointerToMemberOf : std::false_type {};
template <typename T, typename U>
struct IsPointerToMemberOf<T, U T::*> : std::true_type {};
template <typename T, typename U>
struct IsPointerToMemberFunctionOf
: std::integral_constant<
bool,
IsPointerToMemberOf<T, U>::value && std::is_member_function_pointer<U>::value
>
{};
template<typename T, auto func>
class EngineSystem
{
static_assert(IsPointerToMemberFunctionOf<T, decltype(func)>::value, "func must be a pointer to a member function of T");
//...
};
Live Demo
#include <iostream>
#include <vector>
template <typename T, typename... Args>
class EngineSystem
{
public:
EngineSystem(void(T::*fun)(Args... args)): fun(fun)
{
}
void update(Args... args)
{
for (T* handler : handlers_)
{
(handler->*fun)(std::forward<Args>(args)...);
}
}
void push(T* t){
handlers_.push_back(t);
}
private:
void(T::*fun)(Args... args);
std::vector<T*> handlers_;
};
struct A {
int x = 3;
void fn(int a, int b){
std::cout << a << b << x;
}
};
template <typename T, typename... Args>
auto makeEngine(void(T::*fun)(Args... args)){
return EngineSystem<T, Args...>(fun);
}
int main() {
EngineSystem<A, int, int> as(&A::fn);
// or deduce types automatically
auto es = makeEngine(&A::fn);
A a;
es.push(&a);
es.update(1,2);
return 0;
}
https://gcc.godbolt.org/z/Pcdf9K9nz
I have a template function:
template<class... Args>
void foo(Args&&... args)
{
boo<std::decay_t<Args>...>(std::forward<Args>(args)...);
}
Now what I want to do is to call foo function several times like this:
int value = 123;
const int& cr_value = value;
foo(value );
foo(std::cref(value ));
In first case I call boo<int> in second case boo<std::const_reference_wrapper<int>> is called.
Is there way to "dereference" reference_wrapper automaticaly without explicit using of get function for every argument in pack?
The reason for this is that I want to call boo<const int&> in second case, not boo<std::const_reference_wrapper<int>>
You might do something like:
template <typename T> struct unwrap {
using type = T;
};
template <typename T> struct unwrap<std::reference_wrapper<T>> {
using type = T&;
};
template <typename T> using unwrap_t = typename unwrap<T>::type;
template<class... Args>
void foo(Args&&... args)
{
boo<unwrap_t<std::decay_t<Args>>...>(std::forward<Args>(args)...);
}
Demo.
I have a templated function wrapper that I am attempting to update to C++11 syntax (variadic paremeters).
My issue is that I am caught in a "catch 22" where 'Args...' must be the last template parameter, but at the same time, cannot be defined after the function pointer template parameter.
Any idea if this can actually be solved?
template <typename... Args, void(*Function)(Args...)>
class function
{
public:
void operator ()(Args... args) const
{
(*Function)(std::forward<Args...>(args...));
}
};
A possible way is to use the template specialization
template <typename>
struct myFunc;
template <typename R, typename ... Args>
struct myFunc<R(*)(Args...)>
{
// ...
};
but, this way, you intercept (as template parameter) the type of the function pointer, not the function pointer itself; so you have to pass the function pointer in some way (constructor?).
Also observe that, if you want to use perfect forwarding, you have to transform operator() in a template method receiving arguments as universal references (&&).
Something as follows
template <typename ... As>
R operator() (As && ... args) const
{
return fun(std::forward<As>(args)...);
}
where fun is a pointer of type R(*)(Args...).
The following is a full compiling example
#include <iostream>
#include <utility>
int foo (int, long)
{ return 42; }
template <typename>
struct myFunc;
template <typename R, typename ... Args>
struct myFunc<R(*)(Args...)>
{
using funPnt = R(*)(Args...);
funPnt fun = nullptr;
myFunc (funPnt f0) : fun{f0}
{ }
template <typename ... As>
R operator() (As && ... args) const
{
return fun(std::forward<As>(args)...);
}
};
int main ()
{
myFunc<decltype(&foo)> mf0{&foo};
std::cout << mf0(1, 2l) << std::endl;
}
If you really want the pointer function as template parameter (but, this way, every function determine a different type; this can be a good or a bad thing according to your needs), you can write the myFunc struct receiving before a type (the same pointer type) and then a value of that type.
So
template <typename T, T>
struct myFunc;
template <typename R, typename ... Args, R(*Func)(Args...)>
struct myFunc<R(*)(Args...), Func>
{
template <typename ... As>
R operator() (As && ... args) const
{
return Func(std::forward<As>(args)...);
}
};
that can be declared
myFunc<decltype(&foo), foo> mf0;
If you can use C++17, you can simplify using auto for type of template values; so you can avoid the type
template <auto>
struct myFunc;
template <typename R, typename ... Args, R(*Func)(Args...)>
struct myFunc<Func>
{
template <typename ... As>
R operator() (As && ... args) const
{
return Func(std::forward<As>(args)...);
}
};
and you can create a myFunc object as follows
myFunc<&foo> mf0;
Addendum: if you can use C++17, you can define a deduction guide for the first example (pointer as member, not as template value parameter)
template <typename R, typename ... Args>
myFunc (R(*)(Args...)) -> myFunc<R(*)(Args...)>;
so, instead of
myFunc<decltype(&foo)> mf0{&foo};
you can simply write
myFunc mf0{&foo};
Off Topic: I hope that you know that you're reinventing the wheel. As suggested by NathanOliver, the standard provide std::function.
I am writing Monitor class for synchronization problem and I would like to implement an 'Entry' class that will wrap a std::function.
I implemented it a bit, used function traits, but right now I am only able to construct Entry objects using prepared std::function object. Attempts to write a constructor that has an plain function as a parameter failed with compiler messages about template argument deduction/substitution and <anonymous> parameter.
The program is working but I am just curious how to implement given constructor, this is my code:
template <class F>
struct FunctionType;
template <class R, class Object, class... Args>
struct FunctionType<R (Object::*)(Args...)> {
typedef R return_type;
};
template <class R, class Object, class... Args>
struct FunctionType<R (Object::*)(Args...) const> {
typedef R return_type;
};
template <class F> class Entry {
std::function<F> internalFunction;
...
public:
template <F> Entry(const F& function){
// It doesn't work.
}
template <F> Entry(const std::function<F> function) :
internalFunction(function) {
}
template<F, class... Arguments>
typename FunctionType<F>::return_type operator()(Arguments... arguments){
return internalFunction(arguments...);
}
};
A couple of things:
template<F>
doesn't make any sense at all. You get the type of F from the template parameter on the class, use that and remove this altogether.
Next, it's probably easier for you to use a trailing return type on your operator() function:
template<class... Arguments>
auto operator()(Arguments... arguments) -> decltype(internalFunction(arguments...))
{
return internalFunction(arguments...);
}
(If you have C++14 you can just use auto).
Live Demo
Here's your fixed class
template <class F> class Entry {
std::function<F> internalFunction;
public:
Entry(const F& function){
// It doesn't work.
}
Entry(const std::function<F> function) :
internalFunction(function) {
}
template<class... Arguments>
auto operator()(Arguments... arguments) -> decltype(internalFunction(arguments...)){
return internalFunction(arguments...);
}
};
I have a template that has a function pointer as it's 2nd parameter and a type that the function pointer is dependent on as it's first.
i.e.
template <typename P, typename void(*fn)(P)>
auto function(P) -> otherType<P, fn>;
I want to make it so that I can just specify the function pointer in the template list without having to specify the dependent type as that type should somehow be able to be inferred from the function pointer that I specify (or maybe even the parameter list, but I think that it probably is too far down the line).
My first thought was to defer the conversion to a template parameter value, by passing a template typename and then convert to a value after the fact though template metaprogramming wizardry.
i.e.
template <typename F, typename P>
auto function(P) -> [[ something here to get otherType<P, fn> if F was a function pointer ]]
However, I'm not sure how I can do this. Any ideas?
Edit
What I'm trying to accomplish here is to make a helper function that will generate a class object. So, given what was said by StenSoft, this is what I've come up with. Unfortunately it doesn't work with a failure inside the main() function where it cannot match to the correct function due to deduction failure:
#include <iostream>
#include <functional>
template<typename T, typename F>
struct wrapper_fntor
{
T m_t;
F m_f;
wrapper_fntor(T t, F f) : m_t(t), m_f(f) {}
void invoke() { m_f(m_t); }
};
template<typename T, void(*fn)(T)>
struct wrapper_fn
{
T m_t;
wrapper_fn(T t) : m_t(t) {}
void invoke() { fn(m_t); }
};
template <typename T>
struct Wrapper;
template <typename Ret, typename P>
struct Wrapper<Ret(P)>
{
template <Ret(*fn)(P)>
static Ret function(P p)
{
return fn(std::forward<P>(p));
}
template <Ret(*fn)(P)>
static P get_param_type(P);
typedef decltype(get_param_type<Ret(P)>()) param_t;
};
template<typename F>
wrapper_fn<typename Wrapper<F>::param_t, &Wrapper<F>::function> make_wrapper(typename Wrapper<F>::param_t param)
{
return wrapper_fn<typename Wrapper<F>::param_t, &Wrapper<F>::function>(param);
}
template<typename F>
wrapper_fntor<typename Wrapper<F>::param_t, F> make_wrapper(typename Wrapper<F>::param_t param, F fntor)
{
return wrapper_fntor<typename Wrapper<F>::param_t, F>(param, fntor);
}
void function(int value)
{
std::cout << "function called " << value << std::endl;
}
int main()
{
auto x = make_wrapper<function>(3);
x.invoke();
}
demo
For a similar problem I have used a templated function inside a templated wrapper class and a macro (this actually works with any parameters and return type):
template <typename T>
struct Wrapper;
template <typename Ret, typename... Params>
struct Wrapper<Ret(Params...)>
{
template <Ret(*fn)(Params...)>
static Ret function(Params... params)
{
return fn(std::forward<Params>(params)...);
}
};
#define FUNCTION(fn) \
Wrapper<decltype(fn)>::function<fn>