Clang and GCC different behavior when resolving variadic function template overload - c++

Consider this code:
#include <utility>
int foo_i(int x) { return x + 1; }
char foo_c(char x) { return x + 1; }
using II = int (*)(int);
using CC = char (*)(char);
template<typename F>
struct fn {
F f;
template<typename... Args>
decltype(auto) operator()(Args&&... args) const
{
return f(std::forward<Args>(args)...);
}
};
struct fn_2 : private fn<II>, private fn<CC> {
fn_2(II fp1, CC fp2)
: fn<II>{fp1}
, fn<CC>{fp2}
{}
using fn<II>::operator();
using fn<CC>::operator();
};
int main()
{
fn_2 f(foo_i, foo_c);
f(42);
}
Basically, fn<T> stores a functor (not necessarily a function pointer) of type T, and its variadic operator() forwards everything to the functor.
This code compiles fine with gcc 4.9.2 through gcc 6.1, but is rejected by every clang version I've tried, even clang 3.8. clang complains that the call is ambiguous. (I'd appreciate it if someone can try compile it with VS, because I don't have access to it right now.)
Which compiler is right, and how can I work around this discrepancy?
UPDATE: Although I'm still not sure which compiler's behavior is (more) compliant to the standard, I've found a workaround: Specializing fn<T> on pointers to functions, and avoid the need to blindly use variadic operator(). (Well, we've still left out pointers to member functions... For now I'm going to ignore them. :/) Example:
template<typename F>
struct fn : private F {
using F::operator();
};
template<typename R, typename... Args>
struct fn<R (*)(Args...)> {
fn(R (*f)(Args...)) noexcept : f_(f) {}
R operator()(Args&&... args) const
{
return f_(std::forward<Args>(args)...);
}
private:
R (*f_)(Args...);
};

I think clang is right here to not compile the code as the operator() is clearly ambiguous. If you think about it, from the provided template signature for operator() it's not clear which function should be preferred. You will have to provide additional hints to the compiler based on your stored function in fn.
Here is my solution:
#include <utility>
#include <type_traits>
#include <iostream>
int foo(int x) { return x + 1; }
char foo(char x) { return x + 1; }
using II = int (*)(int);
using CC = char (*)(char);
template <bool... B>
struct bool_pack {};
template <bool... V>
using all_true = std::is_same<bool_pack<true, V...>, bool_pack<V..., true>>;
template <typename... Args> struct packed {};
template <typename T> struct func_traits;
template <typename R, typename... Args>
struct func_traits<R(*)(Args...)> {
using type = packed<Args...>;
};
template<typename F>
struct fn {
F f;
template<typename... Args,
typename std::enable_if<std::is_same<packed<Args...>, typename func_traits<F>::type>::value>::type* = nullptr>
auto operator()(Args&&... args) const
{
return f(std::forward<Args>(args)...);
}
};
struct fn_2 : private fn<II>, private fn<CC> {
fn_2(II fp1, CC fp2)
: fn<II>{fp1}
, fn<CC>{fp2}
{}
using fn<II>::operator();
using fn<CC>::operator();
};
int main()
{
fn_2 f(static_cast<II>(foo),
static_cast<CC>(foo));
std::cout << f(42) << std::endl;
std::cout << f('a') << std::endl;
}
Nothing fancy, but I am using enable_if to help compiler choose the correct version of operator() based upon the arity types of the stored function.

This is a GCC bug. Note that GCC always calls the fn<II> version, even if called with a parameter of type char. There is no way a compiler can tell which function template to call, because they have the exact same signature, and GCC is just picking one arbitrarily.

The code would work perfectly fine if char and int were independent types with no implicit conversions. However, since char and int can be implicitly converted between each other (yes, int to char can convert implicitly!), there may be an ambiguity in the call. GCC does the intuitive exception in selecting the call requiring no conversion at all, if present.
EDIT: I've been pointed out there is a templated argument that gets its own operator() function in here. This is something I definitely did not see.

Related

C++ wrapper for bound member function on resource constrained MCU

I am trying to implement a pointer to member function wrapper where the return type and parameter types are known but the class type of the member function is not known. This is for a C++ project targeting resource constrained (No heap allocation/c++ standard library) microprocessor.
The following code seems to work (you can run it HERE) and it fulfills our general requirements, but it uses reinterpret_cast hackery.
//can't use any c++ std libs or heap allocation
#include <cstdio>
template<typename Ret,typename... Args>
struct member_cb
{
template<typename T>
void set_cb(T *obj_,Ret (T::*func)(Args...))
{
obj = reinterpret_cast<member_cb*>(obj_);
cb = reinterpret_cast<Ret (member_cb::*)(Args...)>(func);
}
Ret operator()(Args... num)
{
return (obj->*cb)(num...);
}
member_cb* obj;
Ret (member_cb::*cb)(Args...);
};
struct Bar{
void someFunc(int n2){
printf("someFunc called with parameter: %d\n",n2);
}
};
int main()
{
//class type of Bar is not known at wrapper creation
member_cb<void,int> foo;
Bar bar;
foo.set_cb(&bar, &Bar::someFunc);
foo(42);
}
I want to do this without the reinterpret_cast. I believe there is a solution using a lambda that is created by the set_cb() function something like this:
template<typename Ret,typename... Args>
struct member_cb
{
template<typename T>
void set_cb(T *obj_,Ret (T::*func)(Args...))
{
cb_func = [=](Args...num)
{
(obj_->*func)(num...);
};
}
Ret operator()(Args... args)
{
return cb_func(args...);
}
Ret (*cb_func)(Args...);
}
The above code will not compile (you can try it HERE). Problem is that the regular function pointers like cb_func can only point to lambdas that have no captures, and the lambda has to capture the obj_ and the func parameters. Any suggestions on making this work would be appreciated.
A simple, compiler-independent solution:
template <typename Signature>
struct member_cb;
template <typename Ret, typename... Args>
struct member_cb<Ret(Args...)>
{
template <typename T, Ret (T::*func)(Args...)>
static Ret wrapper(void *object, Args&&... args) {
T *o = reinterpret_cast<T *>(object);
return (o->*func)(std::forward<Args>(args)...);
}
template <typename T, Ret (T::*func)(Args...)>
void set_cb(T *obj_)
{
obj = obj_;
cb_func = wrapper<T, func>;
}
// since C++17:
template <auto func, typename T>
void set_cb(T *obj_)
{
obj = obj_;
cb_func = wrapper<T, func>;
}
Ret operator() (Args&& ...args)
{
return cb_func(obj, std::forward<Args>(args)...);
}
void *obj;
Ret (*cb_func)(void *, Args&&...);
};
...
member_cb<void(int)> foo;
foo.set_cb<Bar, &Bar::someFunc>(&bar);
foo.set_cb<&Bar::someFunc>(&bar); // since C++17
The key limitation is that someFunc must be known at compile-time at the place set_cb is called, so you can’t take arbitrary method pointer and convert it to a member_cb. It is possible to change the object keeping the method pointer intact, though (but that’s not type-safe).
Another possible problem is that the compiler may need to emit a wrapper instance for each and every method that is ever used as a callback.
The upside is that it should work on any C++11-compliant compiler (C++17 for nicer syntax), and member_cb itself is small.

C++ MSVC/GCC/Clang compilers bug

I discovered what appears to be a mind breaking bug in the 3 compilers from the title. The following code compiles with the latest versions of all three compilers using both the c++11 and c++14 standards, even though it really shouldn't as the "visit_detail" function is not visible to "main".
Correction: I was stupid, not actually a bug in GCC/Clang, seems to be a bug in my MSVC version tho.
#include <utility>
#include <iostream>
#include <type_traits>
namespace bug
{
using namespace std;
using size_t = unsigned long long;
namespace detail
{
struct visit_stop_t {};
constexpr bug::detail::visit_stop_t visit_stop = bug::detail::visit_stop_t();
template <typename Visitor, typename First, typename... Tail>
void visit_detail(Visitor&& vis, First&& first, Tail&&... tail)
{
// code, not necessairy to recreate bug
}
}
template <typename Visitor, typename... Variants>
void visit(Visitor&& vis, Variants&&... vars)
{
bug::detail::visit_detail(bug::forward<Visitor>(vis), bug::forward<Variants>(vars)..., bug::detail::visit_stop);
}
template <typename Visitor>
void visit(Visitor&& vis) = delete;
}
using namespace bug;
// dummy variant, used to test the code
// code is never actually used in this version
template <typename... T>
struct variant
{
static constexpr bug::size_t size() noexcept { return sizeof...(T); }
constexpr variant(int) noexcept {}
template <bug::size_t I>
constexpr int get() const noexcept { return 5; }
};
// simple example visitor
// code is never actually used in this version
struct visitor
{
int operator()(int x) { std::cout << x << std::endl; return x; }
double operator()(double x) { std::cout << x << std::endl; return x; }
};
int main()
{
visitor vis;
variant<int, double> var = 5;
// where the trouble is:
visit_detail(vis, var, bug::detail::visit_stop); // ADL: http://en.cppreference.com/w/cpp/language/adl
visit_detail(vis, var); // fails with GCC/Clang, no error with MSVC => MSVC bug maybe
std::cout << "Press enter to continue . . . ";
std::getchar();
return 0;
}
What you're experiencing is a C++ feature called argument-dependent lookup, or ADL for short. Basically, if you invoke a function f without explicitly qualifying it, the compiler will look for f in the namespaces of the arguments that you've passed.
This is what allows operator<< for IO streams to work without requiring qualifications:
std::cout << 100; // finds std::operator<<(std::ostream&, int);
In your particular case, the argument bug::detail::visit_stop is making the compiler look for visit_detail inside the bug::detail namespace.

C++ variadic template arguments method to pass to a method without variadic arguments

I have the following question, I really can't compile from all the questions and articles researched:
In C++, is it possible to have a method with variadic template arguments that specify types of arguments (as a meta-description type for parameters of in, out, in/out of a certain type, to be passed by value, by address etc.), to loop through these variadic arguments in order to instantiate variables of specified types, and be passed these variables to functions specified by a pointer in a template parameter, but these functions not having variadic parameters?
EDIT 1
I try here to detail, as pseudocode:
template <decltype(*Type::*Method), typename... Parameters>
static bool ExecuteMethod(JSContext *cx, unsigned argc, JS::Value *vp)
{
JS::CallArgs args = CallArgsFromVp(argc, vp);
loop through Parameters
{
Parameters[i]::Type p[i] <-- args[i];
}
ReturnType r = Method(p[0], p[1], p[2] .. p[n]); // the method does not have variadic parameters
...
}
where Method might be like:
int(*GetColor) ( int16 *color);
int(*GetFile) ( FilePath &file );
int(*WriteDocument) ( const FilePath &file, const char *fileFormatName, bool askForParms);
etc.
This comes out of wrapping needs.
The challenge is something missing in C++, reflection as in .net.
It is possible to instance an array of heterogeneous objects by looping through the variadic arguments somehow? Probably.
But how pass them to methods having no variadic arguments? I think it is not possible to assign that array of objects to functions like these three above without explicit wrappers, isn't it?
EDIT 2
I've got a lot of feed-back, but it is clear I was not specific enough.
I did not detailed too much because I've got complains in the past for being too specific. Indeed, I do not have easy implementations and I am a generic guy, not lazy, but I try to make a latter development faster.
Here is the source of the problem: I need to wrap Adobe Illustrator API, which exposes hundreds if not thousands of pointers to functions grouped in structs, called suites.
I try to have a javascript engine using SpiderMonkey.
I use Visual Studio 2015 compiler.
My approach is as follows:
I have several classes to wrap the API in order to add to SpiderMonkey's engine objects for all the suites. Each SpiderMonkey class, could be called as jsData, wraps a data type of Adobe SDK, or a suite, jsSuite.
So far, I have used templates because SpiderMonkey forces me to add each function to its custom objects with a specific signature, like this:
bool jsAIDocumentSuite::WriteDocument(JSContext *cx, unsigned argc, JS::Value *vp)
{
...
}
and adding it to the custom object would be done like this:
const JSFunctionSpec jsAIDocumentSuite::fFunctions[] = {
...
JS_FN("WriteDocument", jsAIDocumentSuite::WriteDocument, 3, 0),
...
}
JS_FN is a SpiderMonkeyMacro.
Actually, this is, so far, less than 10% of the Adobe SDK.
The most are getters and setters with one parameter, passed by value or address or pointer, so I have replaced them by a generic function, like this:
template <typename jsType, typename jsReturnType, typename ReturnPrivateType = jsReturnType::PrivateType, typename jsParamType, typename ParamPrivateType = jsParamType::PrivateType, ReturnPrivateType(*Type::*Method)(ParamPrivateType&)>
static bool GetByRefMethod(JSContext *cx, unsigned argc, JS::Value *vp)
{
JS::CallArgs args = CallArgsFromVp(argc, vp);
try
{
ReturnPrivateType result;
ParamPrivateType ppt;
if (jsType::Suite() && (jsType::Suite()->*Method))
result = (jsType::Suite()->*Method)(ppt);
else
return false; // TODO throw a meaningful error
if ((jsReturnType::IsNoError(result)) && (argc > 0) && (args[0].isObject()))
{
JSObject *obj = &args[0].toObject();
JSObject *value = NULL;
if (!jsParamType::FromAIObject<jsParamType>(cx, &ppt, value))
return false;
if (!value)
return false;
jsProperty::SetProperty(cx, &obj, "value", value, true);
}
JSObject *obj = JS_NewObject(cx, &jsDataClass<jsReturnType>::fClass);
JS_SetPrivate(obj, new ReturnPrivateType(result));
args.rval().setObject(*obj);
}
EXCEPTION_CATCH_CONVERT();
return true;
}
A bit complicated, isn't it?
What is relevant, above, is:
The args variable holds the SpiderMonkey parameters passed in by its engine
Only one argument is passed here, ppt
The return type is one value, so it is easy to be handled
I use macros to inject the method in its variants (several short forms too, not so interesting here):
JS_FN(#GET_METHOD, (js##TYPE::GetByRefMethod<js##TYPE, RETURN_JS_TYPE, RETURN_PRIVATE_TYPE, PARAM_JS_TYPE, PARAM_PRIVATE_TYPE, &TYPE::GET_METHOD>), 1, 0)
I wish to be able to handle variable arguments, according to the statistics more philosophical, but interesting. The idea would be opposite to the C++, probably, and not as expected.
How would I expect it:
I wish to add variadic parameters meta-information, like:
template
static bool Method(JSContext *cx, unsigned argc, JS::Value *vp)
{
JS::CallArgs args = CallArgsFromVp(argc, vp);
try
{
ReturnPrivateType result;
*1st challenge: Loop through the variadic list of meta-parameters and create their corresponding object instances here and initialize the IN ones with values from the *args* collection passed by the SpiderMonkey engine*
if (jsType::Suite() && (jsType::Suite()->*Method))
result = (jsType::Suite()->*Method)(*2nd challenge: pass arguments here: probably by using a variadic macro?*);
else
return false; // TODO throw a meaningful error
if ((jsReturnType::IsNoError(result)) && (argc > 0) && (args[0].isObject()))
{
JSObject *obj = &args[0].toObject();
JSObject *value = NULL;
if (!jsParamType::FromAIObject<jsParamType>(cx, &ppt, value))
return false;
if (!value)
return false;
jsProperty::SetProperty(cx, &obj, "value", value, true);
}
JSObject *obj = JS_NewObject(cx, &jsDataClass<jsReturnType>::fClass);
JS_SetPrivate(obj, new ReturnPrivateType(result));
args.rval().setObject(*obj);
}
EXCEPTION_CATCH_CONVERT();
return true;
}
As you can see, it is not as C++ expected, it is a bit reversed, by trying to avoid writing templates to deduct the parameters, here, I know the parameters first and try to write a code to generate the right parameters by knowing their meta-information first and I have a clear set of types and I promise to write the right code to generate the correct wrappers. I don't need to validate much regarding the data of the parameters, as things are mostly passed without a huge business logic in the process.
EDIT 3
About the parameters meta-information, I could write a few types with statics to specify the data type of the parameter, whether it is a return type, whether it is an IN, an OUT or an IN/OUT parameter, its jsType etc..
They would be the variadic list of the template parameters function above.
I still am having some difficulty understanding exactly what you want to do, but this should let you call a function(without variardic parameters) using a variardic template function, getting the parameters from an array and allowing a conversion operation to apply to each parameter before being passed to the function:
#include <functional>
template<typename T, typename JST> T getParam(const JST& a)
{
//Do whatever conversion necessary
return a;
}
namespace detail
{
template<typename R, typename... Args, int... S> R jsCaller(std::function<R(Args...)> f, seq<S...>, const JS::CallArgs& args)
{
return f(getParam<Args, /*Whatever type should go here */>(args[S])...);
}
}
//Actually use this to call the function and get the result
template<typename R, typename... Args> R jsCall(std::function<R(Args...)> f, const JS::CallArgs& args)
{
return detail::jsCaller(f, GenSequence<sizeof...(Args)>(), args);
}
Where GenSequence extends seq<0, 1, 2, ... , N - 1> and can be implemented as follows:
template<int... N>
struct seq {};
template<int N, int... S>
struct gens : gens<N-1, N-1, S...> {};
template<int... S>
struct gens<0, S...>
{
typedef seq<S...> type;
};
template<int N> using GenSequence<N> = typename gens<N>::type;
This creates a parameter pack of integers, and expands the function call using them- See this question.
You can call your method using jsCall:
Result r = jsCall((Method), args);
Assuming Method can be converted to std::function- if not, you can still do it by making a lambda which conforms to std::function. Does this solve the problem?
[Continued from part 1: https://stackoverflow.com/a/35109026/5386374 ]
There is an issue, however. We had to change the way our code is written to accomodate ExecuteMethod(), which may not always be possible. Is there a way around that, so that it functions exactly the same as your previously specified ExecuteMethod(), and doesn't need to take the variable it modifies as a macro parameter? The answer is... yes!
// Variadic function-like macro to automatically create, use, and destroy functor.
// Uncomment whichever one is appropriate for the compiler used.
// (The difference being that Visual C++ automatically removes the trailing comma if the
// macro has zero variadic arguments, while GCC needs a hint in the form of "##" to tell
// it to do so.)
// Instead of a do...while structure, we can just use a temporary Executor directly.
// MSVC:
// #define ExecuteMethod(M, ...) Executor<decltype(&M), decltype(&M)>{}(M, __VA_ARGS__)
// GCC:
#define ExecuteMethod(M, ...) Executor<decltype(&M), decltype(&M)>{}(M, ##__VA_ARGS__)
// For your example function WriteDocument(), defined as
// int WriteDocument(const FilePath &file, const char *fileFormatName, bool askForParms);
bool c = ExecuteMethod(WriteDocument, file, fileFormatName, askForParams);
This is all well and good, but there is one more change we can make to simplify things without impacting performance. At the moment, this functor can only take function pointers (and maybe lambdas, I'm not familiar with their syntax), not other types of function objects. If this is intended, it means that we can rewrite it to do away with the first template parameter (the entire signature), since the second and third parameters are themselves components of the signature.
// Default functor.
template<typename... Ts>
struct Executor { };
// General case.
template<typename ReturnType, typename... Params>
struct Executor<ReturnType (*)(Params...)> {
private:
// Instead of explicitly taking M as a parameter, create it from
// the other parameters.
using M = ReturnType (*)(Params...);
public:
// Parameter match:
bool operator()(M method, Params... params) {
ReturnType r = method(params...);
// ...
}
// Parameter mismatch:
template<typename... Invalid_Params>
bool operator()(M method, Invalid_Params... ts) {
// Handle parameter type mismatch here.
}
};
// Special case to catch void return type.
template<typename... Params>
struct Executor<void (*)(Params...)> {
private:
// Instead of explicitly taking M as a parameter, create it from
// the other parameters.
using M = void (*)(Params...);
public:
// Parameter match:
bool operator()(M method, Params... params) {
method(params...);
// ...
}
// Parameter mismatch:
template<typename... Invalid_Params>
bool operator()(M method, Invalid_Params... ts) {
// Handle parameter type mismatch here.
}
};
// Variadic function-like macro to automatically create, use, and destroy functor.
// Uncomment whichever one is appropriate for the compiler used.
// (The difference being that Visual C++ automatically removes the trailing comma if the
// macro has zero variadic arguments, while GCC needs a hint in the form of "##" to tell
// it to do so.)
// Instead of a do...while structure, we can just use a temporary Executor directly.
// MSVC:
// #define ExecuteMethod(M, ...) Executor<decltype(&M)>{}(M, __VA_ARGS__)
// GCC:
#define ExecuteMethod(M, ...) Executor<decltype(&M)>{}(M, ##__VA_ARGS__)
// Note: If your compiler doesn't support C++11 "using" type aliases, replace them
// with the following:
// typedef ReturnType (*M)(Params...);
This results in cleaner code, but, as mentioned, limits the functor to only accepting function pointers.
When used like this, the functor expects parameters to be an exact match. It can handle reference-ness and cv-ness correctly, but may have issues with rvalues, I'm not sure. See here.
As to how to use this with your JSContext... I'm honestly not sure. I haven't learned about contexts yet, so someone else would be more helpful for that. I would suggest checking if one of the other answers here would be more useful in your situation, in all honesty.
Note: I'm not sure how easy it would be to modify the functor to work if its function parameter is a functor, lambda, std::function, or anything of the sort.
Note 2: As before, I'm not sure if there would be any negative effects on performance for doing something like this. There's likely a more efficient way, but I don't know what it would be.
I came up with the following C++11 solution, which gives the basic idea. It could very easily be improved, however, so I welcome suggestions. Live test here.
#include <iostream>
#include <tuple>
using namespace std;
// bar : does something with an arbitrary tuple
// (no variadic template arguments)
template <class Tuple>
void bar(Tuple t)
{
// .... do something with the tuple ...
std::cout << std::tuple_size<Tuple>::value;
}
// foo : takes a function pointer and an arbitrary number of other
// arguments
template <class Func, typename... Ts>
void foo(Func f, Ts... args_in)
{
// construct a tuple containing the variadic arguments
std::tuple<Ts...> t = std::make_tuple(args_in...);
// pass this tuple to the function f
f(t);
}
int main()
{
// this is not highly refined; you must provide the types of the
// arguments (any suggestions?)
foo(bar<std::tuple<int, const char *, double>>, 123, "foobar", 43.262);
return 0;
}
Edit: After seeing your "Edit 2", I don't believe this is the proper solution. Leaving it up for reference, though.
I believe I've found a potential solution that catches reference-ness, too. Scroll down to the bottom, to the "Edit 4" section.
If you're asking whether it's possible to dynamically check template argument types, you can. I'll start with a general example of how to use std::true_type and std::false_type to overload based on whether a specified condition is met, then move on to your problem specifically. Consider this:
#include <type_traits>
namespace SameComparison {
// Credit for the contents of this namespace goes to dyp ( https://stackoverflow.com/a/20047561/5386374 )
template<class T, class...> struct are_same : std::true_type{};
template<class T, class U, class... TT> struct are_same<T, U, TT...> :
std::integral_constant<bool, std::is_same<T, U>{} && are_same<T, TT...>{} >{};
} // namespace SameComparison
template<typename T> class SomeClass {
public:
SomeClass() = default;
template<typename... Ts> SomeClass(T arg1, Ts... args);
~SomeClass() = default;
void func(T arg1);
template<typename U> void func(U arg1);
template<typename... Ts> void func(T arg1, Ts... args);
template<typename U, typename... Ts> void func(U arg1, Ts... args);
// ...
private:
template<typename... Ts> SomeClass(std::true_type x, T arg1, Ts... args);
template<typename... Ts> SomeClass(std::false_type x, T arg1, Ts... args);
// ...
};
// Constructors:
// -------------
// Public multi-argument constructor.
// Passes to one of two private constructors, depending on whether all types in paramater pack match T.
template<typename T> template<typename... Ts> SomeClass<T>::SomeClass(T arg1, Ts... args) :
SomeClass(SameComparison::are_same<T, Ts...>{}, arg1, args...) { }
// All arguments match.
template<typename T> template<typename... Ts> SomeClass<T>::SomeClass(std::true_type x, T arg1, Ts... args) { }
// One or more arguments is incorrect type.
template<typename T> template<typename... Ts> SomeClass<T>::SomeClass(std::false_type x, T arg1, Ts... args) {
static_assert(x.value, "Arguments wrong type.");
}
/*
Note that if you don't need to use Ts... in the parameter list, you can combine the previous two into a single constructor:
template<typename T> template<bool N, typename... Ts> SomeClass<T>::SomeClass(std::integral_constant<bool, N> x, T arg1, Ts... args) {
static_assert(x.value, "Arguments wrong type.");
}
x will be true_type (value == true) on type match, or false_type (value == false) on type mismatch. Haven't thoroughly tested this, just ran a similar function through an online compiler to make sure it could determine N.
*/
// Member functions:
// -----------------
// Single argument, type match.
template<typename T> void SomeClass<T>::func(T arg1) {
// code
}
// Single argument, type mismatch.
// Also catches true_type from multi-argument functions after they empty their parameter pack, and silently ignores it.
template<typename T> template<typename U> void SomeClass<T>::func(U arg1) {
if (arg1 != std::true_type{}) {
std::cout << "Argument " << arg1 << " wrong type." << std::endl;
}
}
// Multiple arguments, argument 1 type match.
template<typename T> template<typename... Ts> void SomeClass<T>::func(T arg1, Ts... args) {
func(arg1);
func(args...);
// func(SameComparison::are_same<T, Ts...>{}, vals...);
}
// Multiple arguments, argument 1 type mismatch.
template<typename T> template<typename U, typename... Ts> void SomeClass<T>::func(U arg1, Ts... args) {
// if (arg1 != std::true_type{}) {
// std::cout << "Argument " << arg1 << " wrong type." << std::endl;
// }
func(vals...);
}
First, SameComparison::are_same there is an extension of std::is_same, that applies it to an entire parameter pack. This is the basis of the check, with the rest of the example showing how it can be used. The lines commented out of the last two functions show how it could be applied there, as well.
Now, onto your problem specifically. Since you know what the methods are, you can make similar comparison structs for them.
int (*GetColor) ( int16_t *color);
int(*GetFile) ( FilePath &file );
int(*WriteDocument) ( const FilePath &file, const char *fileFormatName, bool askForParms);
Could have...
namespace ParameterCheck {
template<typename T, typename... Ts> struct parameter_match : public std::false_type {};
// Declare (GetColor, int16_t*) valid.
template<> struct parameter_match<int (*)(int16_t*), int16_t*> : public std::true_type {};
// Declare (GetFile, FilePath&) valid.
// template<> struct parameter_match<int (*)(FilePath&), FilePath&> : public std::true_type {}; // You'd think this would work, but...
template<> struct parameter_match<int (*)(FilePath&), FilePath> : public std::true_type {}; // Nope!
// For some reason, reference-ness isn't part of the templated type. It acts as if it was "template<typename T> void func(T& arg)" instead.
// Declare (WriteDocument, const FilePath&, const char*, bool) valid.
// template<> struct parameter_match<int (*)(const FilePath&, const char*, bool), const FilePath, const char*, bool> : public std::true_type {};
// template<> struct parameter_match<int (*)(const FilePath&, const char*, bool), const FilePath&, const char*, bool> : public std::true_type {};
template<> struct parameter_match<int (*)(const FilePath&, const char*, bool), FilePath, const char*, bool> : public std::true_type {};
// More reference-as-template-parameter wonkiness: Out of these three, only the last works.
} // namespace ParameterCheck
Here, we make a general-case struct that equates to std::false_type, then specialise it so that specific cases are true_type instead. What this does is tell the compiler, "These parameter lists are good, anything else is bad," where each list starts with a function pointer and ends with the arguments to the function. Then, you can do something like this for your caller:
// The actual calling function.
template<typename Func, typename... Ts> void caller2(std::true_type x, Func f, Ts... args) {
std::cout << "Now calling... ";
f(args...);
}
// Parameter mismatch overload.
template<typename Func, typename... Ts> void caller2(std::false_type x, Func f, Ts... args) {
std::cout << "Parameter list mismatch." << std::endl;
}
// Wrapper to check for parameter mismatch.
template<typename Func, typename... Ts> void caller(Func f, Ts... args) {
caller2(ParameterCheck::parameter_match<Func, Ts...>{}, f, args...);
}
As for return type deduction... that depends on where you want to deduce it:
Determine variable type from contents: Use auto when declaring the variable.
Determine return type from passed function return type: If your compiler is C++14-compatible, that's easy. Just use auto. [VStudio 2015 and GCC 4.8.0 (with -std=c++1y) are compatible with auto return type.]
The former can be done like this:
int i = 42;
int func1() { return 23; }
char func2() { return 'c'; }
float func3() { return -0.0f; }
auto a0 = i; // a0 is int.
auto a1 = func1(); // a1 is int.
auto a2 = func2(); // a2 is char.
auto a3 = func3(); // a3 is float.
The latter, however, is more complex.
std::string stringMaker() {
return std::string("Here, have a string!");
}
int intMaker() {
return 5;
}
template<typename F> auto automised(F f) {
return f();
}
// ...
auto a = automised(stringMaker); // a is std::string.
auto b = automised(intMaker); // a is int.
If your compiler isn't compatible with auto or decltype(auto) return type... well, it's a bit more verbose, but we can do this:
namespace ReturnTypeCapture {
// Credit goes to Angew ( https://stackoverflow.com/a/18695701/5386374 )
template<typename T> struct ret_type;
template<typename RT, typename... Ts> struct ret_type<RT (*)(Ts...)> {
using type = RT;
};
} // namespace ReturnTypeCapture
// ...
std::string f1() {
return std::string("Nyahaha.");
}
int f2() {
return -42;
}
char f3() {
return '&';
}
template<typename R, typename F> auto rtCaller2(R r, F f) -> typename R::type {
return f();
}
template<typename F> void rtCaller(F f) {
auto a = rtCaller2(ReturnTypeCapture::ret_type<F>{}, f);
std::cout << a << " (type: " << typeid(a).name() << ")" << std::endl;
}
// ...
rtCaller(f1); // Output (with gcc): "Nyahaha. (type: Ss)"
rtCaller(f2); // Output (with gcc): "-42 (type: i)"
rtCaller(f3); // Output (with gcc): "& (type: c)"
Furthermore, we can simplify it even more, and check the return type without a separate wrapper.
template<typename F> auto rtCaller2(F f) -> typename ReturnTypeCapture::ret_type<F>::type {
return f();
}
template<typename F> void rtCaller(F f) {
auto a = rtCaller2(f);
std::cout << a << " (type: " << typeid(a).name() << ")" << std::endl;
}
// ...
rtCaller(f1); // Output (with gcc): "Nyahaha. (type: Ss)"
rtCaller(f2); // Output (with gcc): "-42 (type: i)"
rtCaller(f3); // Output (with gcc): "& (type: c)"
// Same output.
Having that sticking off the end there is really ugly, though, so can't we do better than that? The answer is... yes! We can use an alias declaration to make a typedef, leaving a cleaner name. And thus, the final result here is:
namespace ReturnTypeCapture {
// Credit goes to Angew ( https://stackoverflow.com/a/18695701/5386374 )
template<typename T> struct ret_type;
template<typename RT, typename... Ts> struct ret_type<RT (*)(Ts...)> {
using type = RT;
};
} // namespace ReturnTypeCapture
template <typename F> using RChecker = typename ReturnTypeCapture::ret_type<F>::type;
std::string f1() { return std::string("Nyahaha."); }
int f2() { return -42; }
char f3() { return '&'; }
template<typename F> auto rtCaller2(F f) -> RChecker<F> {
return f();
}
template<typename F> void rtCaller(F f) {
auto a = rtCaller2(f);
std::cout << a << " (type: " << typeid(a).name() << ")" << std::endl;
}
So now, if we combine parameter checking & return type deduction...
// Parameter match checking.
namespace ParameterCheck {
template<typename T, typename... Ts> struct parameter_match : public std::false_type {};
// Declare (GetColor, int16_t*) valid.
template<> struct parameter_match<int (*)(int16_t*), int16_t*> : public std::true_type {};
// Declare (GetFile, FilePath&) valid.
template<> struct parameter_match<int (*)(FilePath&), FilePath> : public std::true_type {};
// Declare (WriteDocument, const FilePath&, const char*, bool) valid.
template<> struct parameter_match<int (*)(const FilePath&, const char*, bool), FilePath, const char*, bool> : public std::true_type {};
// Declare everything without a parameter list valid.
template<typename T> struct parameter_match<T (*)()> : public std::true_type { };
} // namespace ParameterCheck
// Discount return type deduction:
namespace ReturnTypeCapture {
// Credit goes to Angew ( https://stackoverflow.com/a/18695701/5386374 )
template<typename T> struct ret_type;
template<typename RT, typename... Ts> struct ret_type<RT (*)(Ts...)> {
using type = RT;
};
} // namespace ReturnTypeCapture
// Alias declarations:
template<typename F, typename... Ts> using PChecker = ParameterCheck::parameter_match<F, Ts...>;
template<typename F> using RChecker = typename ReturnTypeCapture::ret_type<F>::type;
// ---------------
int GetColor(int16_t* color);
int GetFile(FilePath& file);
int WriteDocument(const FilePath& file, const char* fileFormatName, bool askForParams);
std::string f1() { return std::string("Nyahaha."); }
int f2() { return -42; }
char f3() { return '&'; }
// ---------------
// Calling function (C++11):
// The actual calling function.
template<typename Func, typename... Ts> auto caller2(std::true_type x, Func f, Ts... args) -> RChecker<Func> {
std::cout << "Now calling... ";
return f(args...);
}
// Parameter mismatch overload.
template<typename Func, typename... Ts> auto caller2(std::false_type x, Func f, Ts... args) -> RChecker<Func> {
std::cout << "Parameter list mismatch." << std::endl;
return static_cast<RChecker<Func> >(0); // Just to make sure we don't break stuff.
}
// Wrapper to check for parameter mismatch.
template<typename Func, typename... Ts> auto caller(Func f, Ts... args) -> RChecker<Func> {
// return caller2(ParameterCheck::parameter_match<Func, Ts...>{}, f, args...);
return caller2(PChecker<Func, Ts...>{}, f, args...);
}
// ---------------
// Calling function (C++14):
// The actual calling function.
template<typename Func, typename... Ts> auto caller2(std::true_type x, Func f, Ts... args) {
std::cout << "Now calling... ";
return f(args...);
}
// Parameter mismatch overload.
template<typename Func, typename... Ts> auto caller2(std::false_type x, Func f, Ts... args) {
std::cout << "Parameter list mismatch." << std::endl;
}
// Wrapper to check for parameter mismatch.
template<typename Func, typename... Ts> auto caller(Func f, Ts... args) {
// return caller2(ParameterCheck::parameter_match<Func, Ts...>{}, f, args...);
return caller2(PChecker<Func, Ts...>{}, f, args...);
}
You should be able to get the functionality you want out of this, I believe. The only caveat is that if you do it this way, you need to explicitly declare functions valid in ParameterCheck, by making a template specialisation for the function & its parameter list, derived from std::true_type instead of std::false_type. I'm not sure if there's a way to get true dynamic parameter list checking, but it's a start.
[I'm not sure if you can just overload caller() or if you explicitly need to use caller2() as well. All my attempts to overload caller() via template parameters ended up crashing the compiler; for some reason, it chose template<typename Func, typename... Ts> void caller(Func f, Ts... args) as a better match for caller(std::true_type, f, args...) than template<typename Func, typename... Ts> caller(std::true_type x, Func f, Ts... args), even with the latter listed before the former, and tried to recursively expand it until it ran out of memory. (Tested on two online gcc compilers: Ideone, and TutorialsPoint's compiler (with -std=c++11). I'm not sure if this is a gcc problem, or if I was a bit off about how template matching works. Unfortunately, the online VStudio compiler is down for maintenance, and the only version of VS I have available to me offline at the moment doesn't support variadic templates, so I can't check which is the case.) Unless someone says otherwise, or says how to fix that particular issue, it's probably best to just use caller() as a wrapper & caller2() to do the heavy lifting.]
Examples of pretty much everything here that would be relevant to your problem: here
Also, note that you can't easily pull individual arguments from a parameter pack. You can use recursion to strip arguments off the front a few at a time, you can use them to initialise member variables in a constructor's initialisation list, you can check how many arguments are in the pack, you can specialise it (as we did for parameter_match), & you can pass the whole pack to a function that takes the right number of arguments, but I believe that's it at the moment. This can make them a bit more awkward than C-style varargs at times, despite being more efficient. However, if your ExecuteMethod()'s argument list consists of a function and its argument list, and nothing else, this isn't an issue. As long as the parameter match succeeds, we can just give the entire pack to the passed function, no questions asked. On that note, we can rewrite ExecuteMethod() into something like...
// Not sure what cx is, leaving it alone.
// Assuming you wanted ExecuteMethod to take parameters in the order (cx, function, function_parameter_list)...
// Parameter list match.
template<typename M, typename... Parameters>
static bool ExecuteMethodWorker(std::true_type x, JSContext* cx, M method, Parameters... params)
{
auto r = method(params...);
// ...
}
// Parameter list mismatch.
template<typename M, typename... Parameters>
static bool ExecuteMethodWorker(std::false_type x, JSContext* cx, M method, Parameters... params)
{
// Handle parameter type mismatch here.
// Omit if not necessary, though it's likely better to use it to log errors, terminate, throw an exception, or something.
}
// Caller.
template<typename M, typename... Parameters>
static bool ExecuteMethod(JSContext* cx, M method, Parameters... params)
{
return ExecuteMethodWorker(PChecker<M, Parameters...>{}, cx, method, params...);
}
Make sure to either prototype or define the worker functions before ExecuteMethod(), so the compiler can resolve the call properly.
(Apologies for any typoes I may have missed anywhere in there, I'm a bit tired.)
Edit: I've located the problem with passing references to a template. It seems that using templates to determine types does indeed remove reference-ness in and of itself, hence notation like template<typename T> void func(T&) for functions that take a reference. Sadly, I'm not yet sure how to fix this issue. I did, however, come up with a new version of PChecker that dynamically reflects types for any function that doesn't use reference types. So far, however, you still need to add references manually, and non-const references probably won't work properly for now.
namespace ParameterCheck {
namespace ParamGetter {
// Based on an answer from GManNickG ( https://stackoverflow.com/a/4693493/5386374 )
// Turn the type list into a single type we can use with std::is_same.
template<typename... Ts> struct variadic_typedef { };
// Generic case, to catch passed parameter types list.
template<typename... Ts> struct variadic_wrapper {
using type = variadic_typedef<Ts...>;
};
// Special case to catch void parameter types list.
template<> struct variadic_wrapper<> {
using type = variadic_typedef<void>;
};
// Generic case to isolate parameter list from function signature.
template<typename RT, typename... Ts> struct variadic_wrapper<RT (*)(Ts...)> {
using type = variadic_typedef<Ts...>;
};
// Special case to isolate void parameter from function signature.
template<typename RT> struct variadic_wrapper<RT (*)()> {
using type = variadic_typedef<void>;
};
} // namespace ParamGetter
template<typename... Ts> using PGetter = typename ParamGetter::variadic_wrapper<Ts...>::type;
// Declare class template.
template<typename... Ts> struct parameter_match;
// Actual class. Becomes either std::true_type or std::false_type.
template<typename F, typename... Ts> struct parameter_match<F, Ts...> : public std::integral_constant<bool, std::is_same<PGetter<F>, PGetter<Ts...> >{}> {};
// Put specialisations for functions with const references here.
} // namespace ParameterCheck
template<typename F, typename... Ts> using PChecker = ParameterCheck::parameter_match<F, Ts...>;
See here.
--
Edit 2: Okay, can't figure out how to grab the passed function's parameter list and use it directly. It might be possible using tuples, perhaps using the rest of GManNickG's code (the convert_in_tuple struct), but I haven't looked into them, and don't really know how to grab the entire type list from a tuple at the same time, or if it's even possible. [If anyone else knows how to fix the reference problem, feel free to comment.]
If you're only using references to minimise passing overhead, and not to actually change data, you should be fine. If your code uses reference parameters to modify the data that the parameter is pointing to, however, I'm not sure how to help you. Sorry.
--
Edit 3: It looks like RChecker might not be as necessary for C++11 function forwarding, we can apparently use decltype([function call]) for that. So...
// caller2(), using decltype. Valid, as args... is a valid parameter list for f.
template<typename Func, typename... Ts> auto caller2(std::true_type x, Func f, Ts... args) -> decltype(f(args...)) {
std::cout << "Now calling... ";
return f(args...);
}
// Parameter mismatch overload.
// decltype(f(args...)) would be problematic, since args... isn't a valid parameter list for f.
template<typename Func, typename... Ts> auto caller2(std::false_type x, Func f, Ts... args) -> RChecker<Func> {
std::cout << "Parameter list mismatch." << std::endl;
return static_cast<RChecker<Func> >(0); // Make sure we don't break stuff.
}
// Wrapper to check for parameter mismatch.
// decltype(caller2(PChecker<Func, Ts...>{}, f, args...)) is valid, but would be more verbose than RChecker<Func>.
template<typename Func, typename... Ts> auto caller(Func f, Ts... args) -> RChecker<Func> {
// return caller2(ParameterCheck::parameter_match<Func, Ts...>{}, f, args...);
return caller2(PChecker<Func, Ts...>{}, f, args...);
}
However, as noted, decltype can have issues when it can't find a function call that matches what it's passed exactly. So, for any case where the parameter mismatch version of caller2() is called, trying to use decltype(f(args...)) to determine return type would likely cause issues. However, I'm not sure if decltype(auto), introduced in C++14, would have that issue.
Also, in C++14-compatible compilers, it's apparently better to use decltype(auto) than just auto for automatic return type determination; auto doesn't preserve const-ness, volatile-ness, or reference-ness, while decltype(auto) does. It can be used either as a trailing return type, or as a normal return type.
// caller2(), using decltype(auto).
template<typename Func, typename... Ts> decltype(auto) caller2(std::true_type x, Func f, Ts... args) {
std::cout << "Now calling... ";
return f(args...);
}
decltype(auto) can also be used when declaring variables. See here for more information.
Edit 4: I believe I may have found a potential solution that preserves the passed function's parameter list properly, using functors. However, it may or may not create unwanted overhead, I'm not sure.
// Default functor.
template<typename... Ts>
struct Executor { };
// General case.
template<typename M, typename ReturnType, typename... Params>
struct Executor<M, ReturnType (*)(Params...)> {
public:
// Parameter match:
bool operator()(M method, Params... params) {
ReturnType r = method(params...);
// ...
}
// Parameter mismatch:
template<typename... Invalid_Params>
bool operator()(M method, Invalid_Params... ts) {
// Handle parameter type mismatch here.
}
};
// Special case to catch void return type.
template<typename M, typename... Params>
struct Executor<M, void (*)(Params...)> {
public:
// Parameter match:
bool operator()(M method, Params... params) {
method(params...);
// ...
}
// Parameter mismatch:
template<typename... Invalid_Params>
bool operator()(M method, Invalid_Params... ts) {
// Handle parameter type mismatch here.
}
};
// Variadic function-like macro to automatically create, use, and destroy functor.
// Uncomment whichever one is appropriate for the compiler used.
// (The difference being that Visual C++ automatically removes the trailing comma if the
// macro has zero variadic arguments, while GCC needs a hint in the form of "##" to tell
// it to do so.)
// Also note that the "do { ... } while (false)" structure is used to swallow the trailing
// semicolon, so it doesn't inadvertently break anything; most compilers will optimise it
// out, leaving just the code inside.
// (Source: https://gcc.gnu.org/onlinedocs/cpp/Swallowing-the-Semicolon.html )
// MSVC:
// #define ExecuteMethod(C, M, ...) \
// do { \
// Executor<decltype(&M), decltype(&M)> temp; \
// C = temp(M, __VA_ARGS__); \
// } while (false)
// GCC:
#define ExecuteMethod(C, M, ...) \
do { \
Executor<decltype(&M), decltype(&M)> temp; \
C = temp(M, ##__VA_ARGS__); \
} while (false)
In this case, you can use it as:
ExecuteMethod(return_value_holder, function_name, function_parameter_list);
Which expands to...
do {
Executor<decltype(&function_name), decltype(&function_name)> temp;
return_value_holder = temp(function_name, function_parameter_list);
} while (false);
With this, there's no need to manually go through the parameter pack and make sure each one matches the passed function's parameters. As the passed function's parameter list is quite literally built into Executor as Params..., we can simply overload the function call operator based on whether the arguments it was passed match Params... or not. If the parameters match the function, it calls the Parmas... overload; if they don't, it calls the Invalid_Params... overload. A bit more awkward than true reflection, IMO, but it seems to match everything properly.
Note that:
I'm not sure whether using functors liberally can cause any performance or memory use overhead. I'm... not all that familiar with them at the moment.
I don't know if it's possible to combine the general case and the "void return type" special case into a single functor. The compiler complained when I tried, but I'm not sure if it's because it isn't possible or because I was doing it wrong.
Considering #2, when modifying this version of ExecuteMethod()'s parameters, you have to modify it and both versions of Executor to match.
Like so, where JSContext* cx is added to the parameter list:
template<typename M, typename ReturnType, typename... Params>
struct Executor<M, ReturnType (*)(Params...)> {
public:
bool operator()(JSContext* cx, M method, Params... params);
};
template<typename M, typename... Params>
struct Executor<M, void (*)(Params...)> {
public:
bool operator()(JSContext* cx, M method, Params... params);
};
#define ExecuteMethod(C, cx, M, ...) \
do { \
Executor<decltype(&M), decltype(&M)> temp; \
C = temp(cx, M, ##__VA_ARGS__); \
} while (false)
This may be the solution, but it requires further testing to see if it has any negative impacts on performance. At the very least, it'll make sure const-ness and reference-ness is preserved by ExecuteMethod(), and it's a lot cleaner than my old ideas.
See here.
There are further improvements that can be made, however. As I'm out of space, see here.
Notes:
int16_t (a.k.a. std::int16_t) is in the header <cstdint>.
std::true_type and std::false_type are in the header <type_traits>.
It's difficult to tell from your description, but this is my closest interpretation to what you asked:
auto foo(int) { cout << "foo int" << endl; }
auto foo(float) { cout << "foo float" << endl; }
//... other foo overloads...
template <class T>
auto uber_function(T t)
{
foo(t);
}
template <class T, class... Args>
auto uber_function(T t, Args... args)
{
foo(t);
uber_function(args...);
}
auto main() -> int
{
uber_function(3, 2.4f);
return 0;
}
Of course this can be improved to take references, to make forwarding. This is just for you to have a starting point. As you weren't more clear, I can't give a more specific answer.

Deducing type for overloaded functions - currying

Given a callable object ( a function ) a, and an argument b ( or a series of arguments ), I would like to deduce the type returned from f considering that f is overloaded with multiple signatures.
one of my many attempts is
#include <iostream>
#include <cstdint>
#include <string>
#include <functional>
#include <utility>
#include <typeinfo>
int foo(uint32_t a) { return ((a + 0) * 2); }
bool foo(std::string a) { return (a.empty()); }
/*template <typename A, typename B> auto bar(A a, B b) -> decltype(a(b)) {
return (a(b));
}*/
/*template <typename A, typename B> decltype(std::declval<a(b)>()) bar(A a, B b)
{
return (a(b));
}*/
template <typename A, typename B> void bar(std::function<A(B)> a, B b) {
std::cout << a(b) << "\n";
}
int main() {
// the following 2 lines are trivial and they are working as expected
std::cout << foo(33) << "\n";
std::cout << typeid(decltype(foo(std::string("nothing")))).name() << "\n";
std::cout << bar(foo, 33) << "\n";
//std::cout << bar(foo, std::string("Heinz")) << "\n";
return (0);
}
and 2 templates options are commented out and included in the previous code.
I'm using declval result_of auto decltype without any luck.
How does the overloading resolution process works at compile time ?
If anyone wants to know why I'm trying to get creative with this, is that I'm trying to implement some Currying in C++11 in a workable/neat way.
The problem is that you can't easily create a function object from an overload set: when you state foo or &foo (the function decays into a function pointer in most case, I think) you don't get an object but you get an overload set. You can tell the compiler which overload you want by either calling it or providing its signature. As far as I can tell, you don't want either.
The only approach I'm aware of is to turn your function into an actual function object which makes the problem go away:
struct foo_object
{
template <typename... Args>
auto operator()(Args&&... args) -> decltype(foo(std::forward<Args>(args)...)) {
return foo(std::forward<Args>(args)...);
}
};
With that wrapper which is unfortunately needed for each name, you can trivially deduce the return type, e.g.:
template <typename Func, typename... Args>
auto bar(Func func, Args&&... args) -> decltype(func(std::forward<Args>(args)...)) {
// do something interesting
return func(std::forward<Args>(args)...);
}
int main() {
bar(foo_object(), 17);
bar(foo_object(), "hello");
}
It doesn't quite solve the problem of dealing with overload sets but it gets reasonably close. I experimented with this idea, essentially also for the purpose of currying in the context of an improved system of standard library algorithms and I'm leaning towards the algorithms actually being function objects rather than functions (this is desirable for various other reasons, too; e.g., you don't need to faff about when you want to customize on algorithm with another one).
If foo is overloaded, you need to use the following:
#include <type_traits>
int foo(int);
float foo(float);
int main() {
static_assert(std::is_same<decltype(foo(std::declval<int>())), int>::value, "Nope.");
static_assert(std::is_same<decltype(foo(std::declval<float>())), float>::value, "Nope2.");
}
If it's not, then this will suffice:
#include <type_traits>
bool bar(int);
int main() {
static_assert(std::is_same<std::result_of<decltype(bar)&(int)>::type, bool>::value, "Nope3.");
}
Yes, it is verbose because you're trying to explicitly extract what implicit ad-hoc overloading does for you.
This is actually already implemented for you std::result_of. Here is a possible implementation
template<class>
struct result_of;
// C++11 implementation, does not satisfy C++14 requirements
template<class F, class... ArgTypes>
struct result_of<F(ArgTypes...)>
{
typedef decltype(
std::declval<F>()(std::declval<ArgTypes>()...)
) type;
};

Is &decltype(object)::memfn a misuse?

I had some class like this:
class Test {
public:
bool bar(int &i, char c) // some arguments are passed by ref, some are by value
{/*...*/}
bool foo(/*...*/)
{}
};
And I don't want repeatly call bar1/bar2, etc. and then check the return value again and again, so I wrote a macro and variadic template to handle those things
#define help_macro(object, memfn, ...) help_func(#object "." #memfn, \
object, &decltype(object)::memfn, ##__VA_ARGS__)
template<class T, typename Func, typename... Args>
void help_func(char const * name, T &&object, Func memfn, Args&&... args)
{
auto ret = (object.*memfn)(forward<Args>(args)...);
cout<<name<<":\t"
<<(ret ? "OK" : "Oops") // maybe I'll throw an exception here
<<endl;
}
And use it like this
int i = 0;
Test t;
help_macro(t, bar, i, 'a');
It works on g++-4.7/Debian, but ICC13.0/Win refuses to compile it(a very strange error message)
main.cpp(37): error : type name is not allowed
help_macro(t, bar, i, 'a');
^
main.cpp(37): error : expected a ")"
help_macro(t, bar, i, 'a');
^
I turn on the C++11 for ICC, and confirmed that ICC13 support variadic template and decltype
Do I use it incorrectly or it's ICC's problem?
Edit: Having actually bothered to test my theory it turns out I was wrong, in that context decltype(t) is Test as can be shown by a static_assert(std::is_same<decltype(t), Test>::value, "not a reference")
So ICC (or the EDG front end it uses) probably just doesn't properly support using decltype in nested-name-specifiers, which was changed by DR 743
Using std::decay does make ICC accept it though, and so is a useful workaround.
Original, wrong, answer:
I think ICC is right here, decltype(object) is actually Test& and a reference type cannot have members, so &decltype(t)::memfn is ill-formed.
The code can be simplified to:
struct Test {
void foo() {}
};
int main()
{
Test t;
auto p = &decltype(t)::foo;
}
Which G++ and Clang accept, but ICC rejects, correctly IMHO.
You can fix it by using std::remove_reference or std::decay
#include <type_traits>
// ...
Test t;
auto p = &std::decay<decltype(t)>::type::foo;
I think the reason is there is no 'bar' function in class Test but not sure as I don't have access to this compiler. However the error message you posted shows there is an attempt to use 'bar'.
The following works on both gcc and clang
class Test {
public:
bool bar1(int &i, char c) // some arguments are passed by ref, some are by value
{return true;}
bool bar2(int &i, char c)
{return true;}
};
#define help_macro(object, memfn, ...) help_func(#object "." #memfn, \
object, &decltype(object)::memfn, ##__VA_ARGS__)
template<class T, typename Func, typename... Args>
void help_func(char const * name, T &&object, Func memfn, Args&&... args)
{
auto ret = (object.*memfn)(std::forward<Args>(args)...);
std::cout<<name<<":\t"
<<(ret ? "OK" : "Oops") // maybe I'll throw an exception here
<<std::endl;
}
int main()
{
int i = 0;
Test t;
//help_macro(t, bar, i, 'a');
help_macro(t, bar2, i, 'a');
}