struct to/from std::tuple conversion - c++

Assuming I have struct and std::tuple with same type layout:
struct MyStruct { int i; bool b; double d; }
using MyTuple = std::tuple<int,bool,double>;
Is there any standartized way to cast one to another?
P.S. I know that trivial memory copying can do the trick, but it is alignment and implementation dependent

We can use structured bindings to convert a struct into a tuple with a bit of work.
Struct-to-tuple is very awkward.
template<std::size_t N>
struct to_tuple_t;
template<>
struct to_tuple_t<3> {
template<class S>
auto operator()(S&& s)const {
auto[e0,e1,e2]=std::forward<S>(s);
return std::make_tuple(e0, e1, e2);
}
};
Now, write a to_tuple_t for each size you want to support. This gets tedious. Sadly I know of no way to introduce a parameter pack there.
template<std::size_t N, class S>
auto to_tuple(S&& s) {
return to_tuple_t<N>{}(std::forward<S>(s));
}
I know of no way to calculate the value of N required either. So you'd have to type the 3 in auto t = to_tuple<3>(my_struct); when you call it.
I am not a master of structured bindings. There is probably a && or & or a decltype that would permit perfect forwarding on these lines:
auto[e0,e1,e2]=std::forward<S>(s);
return std::make_tuple(e0, e1, e2);
but without a compiler to play with, I'll be conservative and make redundant copies.
Converting a tuple into a struct is easy:
template<class S, std::size_t...Is, class Tup>
S to_struct( std::index_sequence<Is...>, Tup&& tup ) {
using std::get;
return {get<Is>(std::forward<Tup>(tup))...};
}
template<class S, class Tup>
S to_struct( Tup&&tup ) {
using T=std::remove_reference_t<Tup>;
return to_struct(
std::make_index_sequence<std::tuple_size<T>{}>{},
std::forward<Tup>(tup)
);
}
SFINAE support based off tuple_size might be good for to_struct.
The above code works with all tuple-likes, like std::pair, std::array, and anything you custom-code to support structured bindings (tuple_size and get<I>).
Amusingly,
std::array<int, 3> arr{1,2,3};
auto t = to_tuple<3>(arr);
works and returns a tuple with 3 elements, as to_tuple is based on structured bindings, which work with tuple-likes as input.
to_array is another possibility in this family.

Unfortunately there is no automatic way to do that, BUT an alternative is adapt the struct to Boost.Fusion sequence. You do this once and for all for each new class.
#include <boost/fusion/adapted/struct/adapt_struct.hpp>
...
struct MyStruct { int i; bool b; double d; }
BOOST_FUSION_ADAPT_STRUCT(
MyStruct,
(int, i)
(bool, b)
(double, d)
)
The use MyStruct as if it where a Fusion.Sequence (it fits generically almost everywhere you already use std::tuple<...>, if you make those functions generic.) As a bonus you will not need to copy your data members at all.
If you really need to convert to std::tuple, after "Fusion-adapting" you can do this:
#include <boost/fusion/adapted/std_tuple.hpp>
#include <boost/fusion/algorithm/iteration/for_each.hpp>
#include <boost/fusion/algorithm/transformation/zip.hpp>
...
auto to_tuple(MyStruct const& ms){
std::tuple<int, bool, double> ret;
auto z = zip(ret, ms);
boost::fusion::for_each(z, [](auto& ze){get<0>(ze) = get<1>(ze);});
// or use boost::fusion::copy
return ret;
}
The truth is that std::tuple is a half-backed feature. It is like having STD containers and no algorithms. Fortunatelly we have #include <boost/fusion/adapted/std_tuple.hpp> that allows us to do amazing things.
Full code:
By including the std_tuple.hpp header from Boost.Fusion std::tuple is automatically adapted to a Boost.Fusion sequence, thus the following is possible by using Boost.Fusion as a bridge between your struct and std::tuple:
#include <iostream>
#include <string>
#include <tuple>
#include <boost/fusion/adapted/struct/adapt_struct.hpp>
#include <boost/fusion/algorithm/auxiliary/copy.hpp>
#include <boost/fusion/adapted/std_tuple.hpp>
struct foo
{
std::string a, b, c;
int d, e, f;
};
BOOST_FUSION_ADAPT_STRUCT(
foo,
(std::string, a)
(std::string, b)
(std::string, c)
(int, d)
(int, e)
(int, f)
)
template<std::size_t...Is, class Tup>
foo to_foo_aux(std::index_sequence<Is...>, Tup&& tup) {
using std::get;
return {get<Is>(std::forward<Tup>(tup))...};
}
template<class Tup>
foo to_foo(Tup&& tup) {
using T=std::remove_reference_t<Tup>;
return to_foo_aux(
std::make_index_sequence<std::tuple_size<T>{}>{},
std::forward<Tup>(tup)
);
}
template<std::size_t...Is>
auto to_tuple_aux( std::index_sequence<Is...>, foo const& f ) {
using boost::fusion::at_c;
return std::make_tuple(at_c<Is>(f)...);
}
auto to_tuple(foo const& f){
using T=std::remove_reference_t<foo>;
return to_tuple_aux(
std::make_index_sequence<boost::fusion::result_of::size<foo>::type::value>{},
f
);
}
int main(){
foo f{ "Hello", "World", "!", 1, 2, 3 };
std::tuple<std::string, std::string, std::string, int, int, int> dest = to_tuple(f);
// boost::fusion::copy(f, dest); // also valid but less general than constructor
std::cout << std::get<0>(dest) << ' ' << std::get<1>(dest) << std::get<2>(dest) << std::endl;
std::cout << at_c<0>(dest) << ' ' << at_c<1>(dest) << at_c<2>(dest) << std::endl; // same as above
foo f2 = to_foo(dest);
std::cout << at_c<0>(f2) << ' ' << at_c<1>(f2) << at_c<2>(f2) << std::endl;
}
I will not recommend reinterpret_cast<std::tuple<...>&>(mystructinstance.i) because that will result in negative votes and it is not portable.

Is there any standartized way to cast one to another?
There is no way to "cast" the one to the other.
The easiest may be to use a std::tie to pack the tuple out into the struct;
struct MyStruct { int i; bool b; double d; };
using MyTuple = std::tuple<int,bool,double>;
auto t = std::make_tuple(42, true, 5.1);
MyStruct s;
std::tie(s.i, s.b, s.d) = t;
Demo.
You can further wrap this up in higher level macros or "generator" (make style) functions, e.g;
std::tuple<int, bool, double> from_struct(MyStruct const& src)
{
return std::make_tuple(src.i, src.b, src.d);
}
MyStruct to_struct(std::tuple<int, bool, double> const& src)
{
MyStruct s;
std::tie(s.i, s.b, s.d) = src;
return s;
}
I know that trivial memory copying can do the trick, but it is alignment and implementation dependent?
You mention the "trivial memory copy" would work - only for copying the individual members. So basically, a memcpy of the entire structure to the tuple and vice-versa is not going to always behave as you expect (if ever); the memory layout of a tuple is not standardised. If it does work, it is highly dependent on the implementation.

Tuple to struct conversion is trivial, but backward I think is impossible at current C++ level in general.
#include <type_traits>
#include <utility>
#include <tuple>
namespace details
{
template< typename result_type, typename ...types, std::size_t ...indices >
result_type
make_struct(std::tuple< types... > t, std::index_sequence< indices... >) // &, &&, const && etc.
{
return {std::get< indices >(t)...};
}
}
template< typename result_type, typename ...types >
result_type
make_struct(std::tuple< types... > t) // &, &&, const && etc.
{
return details::make_struct< result_type, types... >(t, std::index_sequence_for< types... >{}); // if there is repeated types, then the change for using std::index_sequence_for is trivial
}
#include <cassert>
#include <cstdlib>
int main()
{
using S = struct { int a; char b; double c; };
auto s = make_struct< S >(std::make_tuple(1, '2', 3.0));
assert(s.a == 1);
assert(s.b == '2');
assert(s.c == 3.0);
return EXIT_SUCCESS;
}
Live example.

Related

Access std::vector<std::variant> value by index

I would like to access a member of std::vector<std::variant> by index. Considering the following snippet:
struct Data {
using data_types = std::variant<std::basic_string<char>, double, int>;
public:
template <class T>
void push_back(const T& t) {
m_data.push_back(t);
}
private:
std::vector<data_types> m_data;
};
int main()
{
Data d;
d.push_back(0);
d.push_back("string");
d.push_back(3.55);
}
I would like to access the values like d[0] (should return int) or d[1] (should return std::string).
What I have tried so far but what isn't working is to add the following public method to the existing struct:
template <class T>
T& operator[](const size_t &index) {
return std::visit([](const T& value) {
return static_cast<T>(value);
}, m_data[index]);
}
Any ideas how to achieve the desired result?
The type of an expression in C++ cannot depend on runtime parameters; basically it can only depend on types of the arguments, plus non-type template arguments.
So d[0] and d[1] must have the same type, as the type of the pieces of the expression are identical, and there are no non-type template arguments.
std::get<int>(d[0]) vs std::get<double>(d[1]) can differ in type.
std::get<1>(d[0]) vs std::get<2>(d[1]) can differ in type.
std::visit is a mechanism used to get around this; here, we create every a function object call, one for each possible type, and then pick one at runtime to actually call. However, the type returned from the visit still follows the above rule: it doesn't depend on what type is stored in the variant, and every possible type in the variant must have a valid instantiation of the function.
C++ type system is not a runtime type system. It is compile-time. Stuff like variant and dynamic_cast and any give some runtime exposure to it, but it is intentionally minimal.
If you are wanting to print the contents of a variant, you can do this:
std::visit([](auto& x){
std::cout << x;
}, d[0]);
the trick here is that each of the various types of variant have a lambda function body written for them (so they all must be valid). Then, at run time, the one actually in the variant is run.
You can also test the variant and ask if it has a specific type, either via std::get or manually.
bool has_int = std::visit([](auto& x){
return std::is_same_v<int, std::decay_t<decltype(x)>>::value;
}, d[0]);
this gives you a bool saying if d[0] has an int in it or not.
The next bit is getting insane. Please don't read this unless you fully understand how to use variants and want to know more:
You can even extract out the type index of the variant and pass that around as a run time value:
template<auto I>
using konstant_t = std::integral_constant<decltype(I),I>;
template<auto I>
constexpr konstant_t<I> konstant_v{};
template<auto...Is>
using venum_t = std::variant< konstant_t<Is>... >;
template<class Is>
struct make_venum_helper;
template<class Is>
using make_venum_helper_t = typename make_venum_helper<Is>::type;
template<std::size_t...Is>
struct make_venum_helper<std::index_sequence<Is...>>{
using type=venum_t<Is...>;
};
template<std::size_t N>
using make_venum_t = typename make_venum_helper<std::make_index_sequence<N>>::type;
template<std::size_t...Is>
constexpr auto venum_v( std::index_sequence<Is...>, std::size_t I ) {
using venum = make_venum_t<sizeof...(Is)>;
constexpr venum arr[]={
venum( konstant_v<Is> )...
};
return arr[I];
}
template<std::size_t N>
constexpr auto venum_v( std::size_t I ) {
return venum_v( std::make_index_sequence<N>{}, I );
}
template<class...Ts>
constexpr auto venum_v( std::variant<Ts...> const& v ) {
return venum_v< sizeof...(Ts) >( v.index() );
}
now you can do this:
using venum = make_venum_t<3>;
venum idx = venum_v(d[0]);
and idx holds the index of the engaged type in d[0]. This is only somewhat useful, as you still need std::visit to use it usefully:
std::visit([&](auto I) {
std::cout << std::get<I>( d[0] );
}, idx );
(within the lambda, I is a std::integral_constant, which can be constexpr converted to an integer.)
but lets you do some interesting things with it.
To extract a value from variant, use std::get:
struct Data
{
...
template <class T>
T& operator[](size_t index)
{
return std::get<T>(m_data[index]);
}
};
However, because this overloaded operator is a template, you can't use simple operator syntax to call it. Use the verbose syntax:
int main()
{
Data d;
d.push_back(0);
d.push_back("string");
d.push_back(3.55);
std::cout << d.operator[]<double>(2);
}
Or rename it to use a plain name instead of the fancy operator[].
Visitor pattern:
#include <iostream>
#include <string>
#include <variant>
#include <vector>
template <class ...Ts>
struct MultiVector : std::vector<std::variant<Ts...>> {
template <class Visitor>
void visit(std::size_t i, Visitor&& v) {
std::visit(v, (*this)[i]);
}
};
int main() {
MultiVector<std::string, int, double> vec;
vec.push_back(0);
vec.push_back("string");
vec.push_back(3.55);
vec.visit(2, [](auto& e) { std::cout << e << '\n'; });
}

boost::combine, range-based for and structured bindings

Is there a way to make boost::combine work with structured bindings and range-based for (so that identifiers in the structure binding actually point to containers' elements instead of nested tuples of whatever boost::combine uses under the hood)? The following (live example) fails to compile:
#include <boost/range/combine.hpp>
#include <iostream>
int main()
{
std::vector<int> a{1,2,3};
std::vector<int> b{2,3,4};
for (auto [f, s] : boost::combine(a, b))
{
std::cout << f << ' ' << s << std::endl
}
}
The real answer is to use either boost::tie or grab the range-v3 zip() which actually yields a std::tuple.
The for educational purposes only answer is just to adapt the structured bindings machinery for boost::tuples::cons. That type already has a get() which works with ADL and does the right thing, so all we need to do is provide tuple_size and tuple_element (which ends up being really easy to do since these exact traits already exist in Boost):
namespace std {
template <typename T, typename U>
struct tuple_size<boost::tuples::cons<T, U>>
: boost::tuples::length<boost::tuples::cons<T, U>>
{ };
template <size_t I, typename T, typename U>
struct tuple_element<I, boost::tuples::cons<T, U>>
: boost::tuples::element<I, boost::tuples::cons<T, U>>
{ };
}
But don't actually do that in real code, since really only the type author should opt-in to this kind of thing.
That'll make the structured binding just work.
You can use boost::tie to accomplish this.
#include <boost/range/combine.hpp>
#include <iostream>
int main()
{
std::vector<int> a{1,2,3};
std::vector<int> b{2,3,4};
int f, s;
for (auto var : boost::combine(a, b))
{
boost::tie(f, s) = var;
std::cout << f << ' ' << s << std::endl;
}
}
Demo.

Avoid if-else branching in string to type dispatching

Usually when you write a CLI tool which accepts parameter you have to deal with them. Most of the time you want to switch between behaviours based on the value of an argument.
The following is a common use case, where the program accepts a type and then prints something based on that type. I am using Boost to pre-process and auto generate the whole if-else branches.
This is very nice in terms of maintainability as I only need to update a define when I introduce a new type. On the other hand it is quite far from being modern and elegant.
I thought about using better-enums to avoid using the if-else to convert from string into an enum using the _from_string utility function. But then the way to go from enum to a type is still obscure to me.
Any suggestion on how to keep the nice maintainability of the current implementation but avoid to use pre-processor and macro functionalities?
#include <iostream>
#include <cstdlib>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/preprocessor/seq/for_each.hpp>
#include <type_traits>
using a_type = int;
using b_type = long;
using c_type = float;
using d_type = double;
#define TYPES (a)(b)(c)(d)
template<typename T>
void foo(){
T num = 1;
std::cout << typeid(decltype(num)).name() << " : "<< num << std::endl;
};
int main(int argc, char **argv)
{
if (argc < 1) {
return 1;
}
std::string type = argv[1];
if (false) {
#define LOOP_BODY(R, DATA, T) \
} \
else if (type == BOOST_PP_STRINGIZE(T)) { \
foo<BOOST_PP_CAT(T, _type)>(); \
BOOST_PP_SEQ_FOR_EACH(LOOP_BODY, _, TYPES);
#undef LOOP_BODY
} else {
std::cout << "ERROR: Unknown type " << type << std::endl;
}
}
Working example at https://wandbox.org/permlink/60bAwoqYxzU1EUdw
Another way is to use a plain array and std::find_if instead of if-else:
#include <algorithm>
#include <iostream>
#include <iterator>
#include <string>
#include <typeinfo>
struct Handler {
char const* name;
void(*fn)(std::string const&); // Or std::function<> to accept lambdas.
};
struct A {};
struct B {};
template<class T>
void foo(std::string const& name) {
std::cout << "foo<" << typeid(T).name() << ">: " << name << '\n';
}
int main(int, char** av) {
Handler const handlers[] = {
{"a", foo<A>}
, {"b", foo<B>}
};
std::string const name = av[1];
auto handler = std::find_if(std::begin(handlers), std::end(handlers), [&name](auto const& h) {
return name == h.name;
});
if(handler != std::end(handlers))
handler->fn(name);
}
You don't need to use the preprocessor to store an arbitrary list of types and generate code for them. We can use variadic templates and compile-time strings. You can isolate preprocessor usage to the generation of pairs of names and types.
Firstly, let's define a wrapper for a compile-time sequence of characters. Note that the use of the _cs literal is non-Standard, but available in every major compiler and likely to be part of C++20:
template <char... Cs>
using ct_str = std::integer_sequence<char, Cs...>;
template <typename T, T... Cs>
constexpr ct_str<Cs...> operator""_cs() { return {}; }
We can then define an empty type that stores a pair of a name and a type:
template <typename Name, typename T>
struct named_type
{
using name = Name;
using type = T;
};
And a macro to conveniently instantiate it:
#define NAMED_TYPE(type) \
named_type<decltype(#type ## _cs), type>
You can now use an empty variadic template class to store your types:
template <typename... Ts>
struct named_type_list { };
using my_types = named_type_list<
NAMED_TYPE(int),
NAMED_TYPE(long),
NAMED_TYPE(float),
NAMED_TYPE(double)
>;
Now, let's see how our main should look:
int main()
{
const std::string input{"float"};
handle(my_types{}, input, [](auto t)
{
print(typename decltype(t)::name{});
});
}
The above will print out "float". We can implement handle by unpacking the list of named_type types and using a fold expression to find the matching type name:
template <typename... Ts, typename F>
void handle(named_type_list<Ts...>, const std::string& input, F&& f)
{
( (same(input, typename Ts::name{}) && (f(Ts{}), true) ) || ...);
}
Checking for equality between std::string and ct_str is annoying, but doable:
template <std::size_t... Is, char... Cs>
bool same_impl(const std::string& s,
std::integer_sequence<char, Cs...>,
std::index_sequence<Is...>)
{
return ((s[Is] == Cs) && ...);
}
template <char... Cs>
bool same(const std::string& s, std::integer_sequence<char, Cs...> seq)
{
return s.size() >= sizeof...(Cs)
&& same_impl(s, seq, std::make_index_sequence<sizeof...(Cs)>{});
}
final result live on wandbox.org
Note that this answer uses C++17 fold expressions. You can replace them in C++14 with one of the following techniques:
Recursive variadic template function, where the base case returns the default accumulation value, and the recursive case performs an operation between the tail and the head.
C++11 pack expansion tricks such as for_each_argument.
The dispatching does short-circuit:
( (same(input, typename Ts::name{}) && (f(Ts{}), true) ) || ...);
This fold expression will stop at the first invocation of f thanks to the , true expression and the || operator.
empirical proof on wandbox.org

Copy two tuples with different sizes

I am experimenting with some tuples, and I find myself in the weird position of asking this: how can I copy two tuples that differ in their sizes? Of course, this is intended limited to the minimum length of the two tuples.
So, for instance, let's create three tuples:
std::tuple<int, char, float> a(-1, 'A', 3.14);
std::tuple<int, char, double> b = a;
std::tuple<long, int, double, char> c;
Now, a and b differ in types, and the assignment work (obviously). As for a and c the things get a little more confusing.
My first implementation failed, since I don't know how to recurse on variadic templates with a specific type, so something like this won't work:
template <class T, class U>
void cp(std::tuple<T> from, std::tuple<U> to)
{
}
template <class T, class... ArgsFrom, class U, class... ArgsTo>
void cp(std::tuple<T, ArgsFrom...> from, std::tuple<U, ArgsTo...> to)
{
std::get<0>(to) = std::get<0>(from);
// And how to generate the rest of the tuples?
}
That function won't do anything. So I've devised a second failing attempt, using not the types, but the sizes:
template<class From, class To, std::size_t i>
void copy_tuple_implementation(From &from, To &to)
{
std::get<i>(to) = std::get<i>(from);
copy_tuple_implementation<From, To, i - 1>(from, to);
}
template<>
void copy_tuple_implementation<class From, class To, 0>(From &from, To &to)
{
}
template<class From, class To>
void copy_tuple(From &from, To &to)
{
constexpr std::size_t from_len = std::tuple_size<From>::value;
constexpr std::size_t to_len = std::tuple_size<To>::value;
copy_tuple_implementation<From, To, from_len < to_len ? from_len - 1 : to_len - 1>(from, to);
}
But that won't compile. I have too many errors to display here, but the most significant ones are:
Static_assert failed "tuple_element index out of range"
No type named 'type' in 'std::__1::tuple_element<18446744073709551612, std::__1::__tuple_types<> >'
Read-only variable is not assignable
No viable conversion from 'const base' (aka 'const __tuple_impl<typename __make_tuple_indices<sizeof...(_Tp)>::type, int, int, double>') to 'const __tuple_leaf<18446744073709551615UL, type>'
The interesting part is the index out of range, and the fact that I cannot copy an element with std::get<>.
Can anyone help me in this?
Thanks!
Here's one possibility, using C++14's ready-made integer sequence template (but this is easily reproduced manually if your library doesn't include it):
#include <tuple>
#include <utility>
template <std::size_t ...I, typename T1, typename T2>
void copy_tuple_impl(T1 const & from, T2 & to, std::index_sequence<I...>)
{
int dummy[] = { (std::get<I>(to) = std::get<I>(from), 0)... };
static_cast<void>(dummy);
}
template <typename T1, typename T2>
void copy_tuple(T1 const & from, T2 & to)
{
copy_tuple_impl(
from, to,
std::make_index_sequence<std::tuple_size<T1>::value>());
}
Example:
#include <iostream>
int main()
{
std::tuple<int, char> from { 1, 'x' };
std::tuple<int, char, bool> to;
copy_tuple(from, to);
std::cout << "to<0> = " << std::get<0>(to) << "\n";
}
Another option is to use operator overloading to simulate partial-specialization of your function:
template <std::size_t N>
struct size_t_t {};
template<class From, class To, std::size_t i>
void copy_tuple_implementation(From &from, To &to, size_t_t<i>)
{
std::get<i>(to) = std::get<i>(from);
copy_tuple_implementation(from, to, size_t_t<i-1>{});
}
template<class From, class To>
void copy_tuple_implementation(From &from, To &to, size_t_t<0>)
{
std::get<0>(to) = std::get<0>(from);
}
Or you could just use a helper class:
template<class From, class To, std::size_t i>
struct CopyTuple
{
static void run(From &from, To &to)
{
std::get<i>(to) = std::get<i>(from);
CopyTuple<From,To,i-1>::run(from, to);
}
};
template<class From, class To>
struct CopyTuple<From,To,0>
{
static void run(From &from, To &to)
{
std::get<0>(to) = std::get<0>(from);
}
};
The goal here is to get a clean syntax at point of use.
I define auto_slice which takes a tuple, and auto slices it for the expression.
The intended use is
auto_slice(lhs)=auto_slice(rhs);
and it just works.
// a helper that is a slightly more conservative `std::decay_t`:
template<class T>
using cleanup_t = std::remove_cv_t< std::remove_reference_t< T > >;
// the workhorse. It holds a tuple and in an rvalue context
// allows partial assignment from and to:
template<class T,size_t s0=std::tuple_size<cleanup_t<T>>{}>
struct tuple_slicer{
T&&t;
// Instead of working directly within operators, the operators
// call .get() and .assign() to do their work:
template<class Dest,size_t s1=std::tuple_size<Dest>{}>
Dest get() && {
// get a pack of indexes, and use it:
using indexes=std::make_index_sequence<(s0<s1)?s0:s1>;
return std::move(*this).template get<Dest>(indexes{});
}
template<class Dest,size_t s1=std::tuple_size<Dest>{},size_t...is>
Dest get(std::index_sequence<is...>) && {
// We cannot construct a larger tuple from a smaller one
// as we do not know what to populate the remainder with.
// We could default construct them, I guess?
static_assert(s0>=s1,"use auto_slice on target");
using std::get;
return Dest{ get<is>(std::forward<T>(t))... };
}
// allows implicit conversion from the slicer:
template<class Dest>
operator Dest()&&{
return std::move(*this).template get<Dest>();
}
// now we are doing the assignment work. This function
// does the pack expansion hack, excuse the strangeness of the
// code in it:
template<class Src, size_t...is>
void assign(std::index_sequence<is...>,tuple_slicer<Src>&&rhs)&&{
using std::get;
int _[]={0,(void(
get<is>(std::forward<T>(t))=get<is>(std::forward<Src>(rhs.t))
),0)...};
(void)_; // remove warnings
}
// assign from another slicer:
template<class Src,size_t s1>
void operator=(tuple_slicer<Src,s1>&&rhs)&&{
using indexes=std::make_index_sequence<(s0<s1)?s0:s1>;
std::move(*this).assign(indexes{},std::move(rhs));
}
// assign from a tuple. Here we pack it up in a slicer, and use the above:
template<class Src>
void operator=(Src&& src)&&{
std::move(*this) = tuple_slicer<Src>{ std::forward<Src>(src) };
}
};
// this deduces the type of tuple_slicer<?> we need for us:
template<class Tuple>
tuple_slicer<Tuple> auto_slice(Tuple&&t){
return {std::forward<Tuple>(t)};
}
The slice is only required on whichever side is smaller, but can be done on both sides (for generic code) if required.
It also works at construction. On the right hand side, it should work with std::arrays and pairs and tuples. On the left hand side, it may not work with arrays, due to requirement to construct with {{}}.
live example
Here is the recursive solution your were originally trying to figure out:
#include <tuple>
// Limit case
template<std::size_t I = 0, typename ...From, typename ...To>
typename std::enable_if<(I >= sizeof...(From) || I >= sizeof...(To))>::type
copy_tuple(std::tuple<From...> const & from, std::tuple<To...> & to) {}
// Recursive case
template<std::size_t I = 0, typename ...From, typename ...To>
typename std::enable_if<(I < sizeof...(From) && I < sizeof...(To))>::type
copy_tuple(std::tuple<From...> const & from, std::tuple<To...> & to)
{
std::get<I>(to) = std::get<I>(from);
copy_tuple<I + 1>(from,to);
}
You do not need std::index_sequence or similar apparatus, and this
solution has two strengths that your accepted one does not:
It will compile, and do the right thing, when from is longer than to: the
excess trailing elements of from are ignored.
It will compile, and do the right thing, when either from or to is an
empty tuple: the operation is a no-op.
Prepend it to this example:
#include <iostream>
int main()
{
std::tuple<int, char> a { 1, 'x' };
std::tuple<int, char, bool> b;
// Copy shorter to longer
copy_tuple(a, b);
std::cout << "b<0> = " << std::get<0>(b) << "\n";
std::cout << "b<1> = " << std::get<1>(b) << "\n";
std::cout << "b<2> = " << std::get<2>(b) << "\n\n";
// Copy longer to shorter
std::get<0>(b) = 2;
std::get<1>(b) = 'y';
copy_tuple(b,a);
std::cout << "a<0> = " << std::get<0>(a) << "\n";
std::cout << "a<1> = " << std::get<1>(a) << "\n\n";
// Copy empty to non-empty
std::tuple<> empty;
copy_tuple(empty,a);
std::cout << "a<0> = " << std::get<0>(a) << "\n";
std::cout << "a<1> = " << std::get<1>(a) << "\n\n";
// Copy non-empty to empty
copy_tuple(a,empty);
return 0;
}
(g++ 4.9/clang 3.5, -std=c++11)

Translating a std::tuple into a template parameter pack

I have a
typedef std::tuple<A, B> TupleType;
and would like to use the list of classes
for a "template".
Suppose I have:
template<typename... args>
std::tuple<args...> parse(std::istream &stream) {
return std::make_tuple(args(stream)...);
}
and that I can successfully use it with:
auto my_tuple = parse<A, B>(ifs);
is it possible to avoid having to specify the class list A,B if I already have a
typedef std::tuple<A,B> TupleType;
where the list A,B is already present?
an example:
#include <cstdlib> // EXIT_SUCCESS, EXIT_FAILURE
#include <iostream> // std::cerr
#include <fstream> // std::ifstream
#include <tuple> // std::tuple
class A {
public:
A(std::istream &); // May throw FooBaarException
};
class B {
public:
B(std::istream &); // May throw FooBaarException
};
template<typename... args>
std::tuple<args...> parse(std::istream &stream) {
return std::make_tuple(args(stream)...);
}
int main() {
std::ifstream ifs;
ifs.exceptions(ifstream::eofbit | ifstream::failbit | ifstream::badbit);
int res = EXIT_FAILURE;
try {
ifs.open("/some/file/path", std::ios::in | std::ios::binary);
auto my_tuple = parse<A, B>(ifs); // my_tuple is of the type std::tuple<A,B>
/* Here do something interesting with my_tuple */
res = EXIT_SUCCESS;
} catch (ifstream::failure e) {
std::cerr << "error: opening or reading file failed\n";
} catch (FooBaarException e) {
std::cerr << "error: parsing in a constructor failed\n";
}
return res;
}
The underlying problem in your situation seems to be that you'd like to specialize the function template parse for the special case when the template argument is a std::tuple. Unfortunately, this kind of specialization isn't possible with function templates.
However, it is possible with class templates.
So, as a first step, you could define parse as a static function of a struct, like this:
using std::istream;
using std::tuple;
using std::make_tuple;
struct A { A(const istream &) {} };
struct B { B(const istream &) {} };
template <typename... Args>
struct parser
{
/* Your original function, now inside a struct.
I'm using direct tuple construction and an
initializer list to circumvent the order-of-
construction problem mentioned in the comment
to your question. */
static tuple<Args...> parse(const istream &strm)
{ return tuple<Args...> {Args(strm)...}; }
};
template <typename... Args>
struct parser<tuple<Args...>>
{
/* Specialized for tuple. */
static tuple<Args...> parse(const istream &strm)
{ return parser<Args...>::parse(strm); }
};
You can then call it in the desired way:
int main()
{
typedef tuple<A,B> tuple_type;
auto tup = parser<tuple_type>::parse(std::cin);
return 0;
}
As a second step, you can define a function template (again) which passes the arguments on to the right specialization of the struct:
template <typename... Args>
auto parse(const istream &strm) -> decltype(parser<Args...>::parse(strm))
{ return parser<Args...>::parse(strm); }
And now you can use it in exactly the way you wanted:
int main()
{
typedef tuple<A,B> tuple_type;
auto tup = parse<tuple_type>(std::cin);
return 0;
}
(And you can still use it in the old way, too: auto tup = parse<A,B>(std::cin).)
Remark. As mentioned in the comment to parser::parse(), I used direct tuple construction instead of make_tuple to avoid problems with the order of construction of the tuple elements. This is not directly related to your question, but a good thing to do. See how to avoid undefined execution order for the constructors when using std::make_tuple.
There is a standard idiom for this kind of thing. [1]
// Define the "shape" of the template
template<typename Tuple> struct TupleMap;
// Specialize it for std::tuple
template<typename...T> struct TupleMap<std::tuple<T...>> {
using type = std::tuple<T...>; // not necessary but saves typing
// ... inside here, you have access to the parameter pac
}
Here's an example of using it, which might or might not fit your expectations (your example doesn't really indicate your expected use, since it lacks the typedef you promise in your question): liveworkspace.org.
Since litb raised the point, it is possible to force the tuple-components to be constructed in left-to-right order, illustrating another interesting idiom: comb inheritance. See lws.
(Since lws might disappear again, who knows, I'll paste the code here as well):
#include <iostream>
#include <tuple>
#include <type_traits>
#include <utility>
// Define the "shape" of the template
template<typename Tuple> struct TupleMap;
// Specialize it for std::tuple
template<typename...T> struct TupleMap<std::tuple<T...>> {
using type = std::tuple<T...>; // not necessary but saves typing
type value;
template<typename Arg>
TupleMap(Arg&& arg)
: value(T(std::forward<Arg>(arg))...) {
}
operator type() { return value; }
};
//Try it out:
using std::get; // Note 2
using Numbers = std::tuple<char, double, int>;
// Note 3
std::ostream& operator<<(std::ostream& out, const Numbers& n) {
return out << get<0>(n) << ' ' << get<1>(n) << ' ' << get<2>(n);
}
int main() {
std::cout << TupleMap<Numbers>(93.14159);
return 0;
}
[1] At least, I think it's a standard idiom. I use it a lot, and think of it as the "can-opener" pattern.
[2] This is needed (or at least, it's my style) to allow the use of get with tuple-like templates defined outside of std. Doing it this way allows ADL to find the appropriate definition of get without forcing me to add specializations to std::get. In this way, it's similar to the standard ADL idiom for begin and end.
[3] You can search SO for a cool hack to specialize operator<< for all tuples. There's a simpler one which can be used for specific tuples, but that's all off-topic for this question, so I just did something easy and dependency free. Note that this works because of the conversion operator in TupleMap
The basic approach is to create a sequence of indices 0, ..., std::tuple_size<Tuple>::value - 1 as a parameter pack Indices and call your function with parse<typename std::tuple_element<Tuple, Indices>::type...>(stream). You'd probably encapsulate the logic into a function parse_tuple<Tuple>(stream) (and some function this one delegates to) which in the end delegates to parse<...>(stream).
First, here is a class template and a function to create a sequence of indices based on the size of a std::tuple. The indices are needed to obtain a list of type from std::tuple:
template <int... Indices> struct indices;
template <>
struct indices<-1> { // for an empty std::tuple<> there is no entry
typedef indices<> type;
};
template <int... Indices>
struct indices<0, Indices...> { // stop the recursion when 0 is reached
typedef indices<0, Indices...> type;
};
template <int Index, int... Indices>
struct indices<Index, Indices...> { // recursively build a sequence of indices
typedef typename indices<Index - 1, Index, Indices...>::type type;
};
template <typename T>
typename indices<std::tuple_size<T>::value - 1>::type const*
make_indices() {
return 0;
}
With this in place, it is quite easy to extract the sequence of types from a std::tuple<T...>:
template<typename T, int... Indices>
T parse_tuple(std::istream &stream, indices<Indices...> const*) {
return parse<typename std::tuple_element<Indices, T>::type...>(stream);
}
template <typename T>
T parse_tuple(std::istream& stream) {
return parse_tuple<T>(stream, make_indices<T>());
}