C++ avoid writing two similar functions - c++

I want to have two version a function by hiding or not hiding several lines of code at the middle and also near the end of the function with template or other means. How to do that?
The functions are performance critical. They got run a gazillion of gazillion times.

You could implement the first one with a default parameter:
int A(int a, int b, int c, int d = 0)
{
// stuff
}

You can factor out the common part and use a function object to pass the differing part:
template<class Fun>
int AB(Fun&& fun){
int x = 0;
Outer Loop{
Inner Loop{
x = std::forward<Fun>(fun)();
}
}
return x;
}
int a, b, c, d;
// ... initialize
int result1 = AB([a,b,c]{
return a + b;
});
int result2 = AB([a,b,c,d]{
return a + b + c*d;
});
You could make this even more general by templating the return type.
There are no branches and an optimizing compiler will be able to expand the function call inline. The latter is the reason to prefer function objects to function pointers.

Honestly, I would suggest you to re-implement your code. But the one thing that is coming to my mind is using function as parameter, see below (you may also use lambda expression):
int fun1(int a, int b, int c, int d) {
return a + b;
}
int fun2(int a, int b, int c, int d) {
return a + b + c*d;
}
template <int (*FUN)(int, int, int, int)> int fun_main(int a, int b, int c, int d = 0) {
int x = 0;
Outer Loop{
Inner Loop{
x += FUN(a, b, c, d);
}
}
return x;
}
Then somwhere in your code:
fun_main<fun1>(1, 2, 3, 4);

Related

C++ Is there any guarantee that literals conditions generated by a template will be optimized away?

Excuse any mistakes in my code, I'm still learning C++ syntax. My question is not about whether the code is correct but whether a literal expression will be optimized away.
Let's say I have a function generated from a non-type template like this:
template <bool add>
int addIt(int a, int b) {
if (add) {
return a + b;
} else {
return a - b;
}
}
int v = addIt<true>(10, 5);
From my understanding, the compiler should expand the template to:
int addIt_someID(int a, int b) {
if (true) {
return a + b;
} else {
return a - b;
}
}
int v = addIt_someID(10, 5);
But since it now says if (true) it should be able to remove that entire branch, resulting in this:
void addIt_someID(int a, int b) {
return a + b;
}
int v = addIt_someID(10, 5);
This should be standard compiler behavior... but is this behavior well enough established that I can be certain of it from all major compilers?
I'm relying upon this behavior for a transpiler, and if it's not guaranteed I will have to implement it myself... if it is guaranteed I can let the C++ compiler to do it and that will save me a lot of time in having to parse and evaluate this myself.
This is never guaranteed for regular if (although I would say chaneces are pretty high). There are two ways to be sure. Simpler one requires C++17 (btw addIt seems to return wrong type):
template <bool add>
int addIt(int a, int b) {
if constexpr (add) {
return a + b;
} else {
return a - b;
}
}
int v = addIt<true>(10, 5);
if constexpr guerantees that this will be evaluated in compile time.
Another option is using template metaprogramming/explicit template specialization. For your code this would be pretty simple:
template <bool add>
int addIt(int a, int b);
template<> int addIt<true>(int a, int b) { return a + b; }
template<> int addIt<false>(int a, int b) { return a - b; }
int v = addIt<true>(10, 5);
For other cases you would need some more work like using std::enable_if and stuff like this

How to employ a variable as parameter inside template of the Eigen::Map class

I encountered the following issue in Eigen taking a set of elements uniformly spaced within a vector employing the class Map.
void func (int A, int B)
{
Eigen::Map<VectorXf,0,Eigen::InnerStride<B> > myMap(v.data() + B - 1, A);
}
The issue is in the 3rd argument of the template "Eigen::InnerStride". The compiler says "error: 'B' is not a constant expression".
I tried to fix as follows:
constexpr int varToConst(int arg)
{
return arg;
}
void func (int A, int B)
{
Eigen::Map<VectorXf,0,Eigen::InnerStride<varToConst(B)> > myMap(v.data() + B - 1, A);
}
but I get the same error. The int B variable is passed by the main and unfortunately, inside the main, it cannot be a const.
Thank you in advance for any help.
You can use dynamic stride, like this:
void func (int A, int B) {
Eigen::Map<VectorXf,0,Eigen::InnerStride<>> myMap(v.data() + B - 1, A, Eigen::InnerStride<>(B));
}
If this section is performance critical, and if the number of feasible B's is small (like - maybe the only valid values are B=2 and B=3), then you can also template func() on B's value. Then you would have something like template <int B> func(int A), and func<2>(/*A=*/10); at the call site.

C++ "Incomplete type is not allowed" trying to create array of functions inside a class

How do I get the below code example, that compiles and works just fine to work inside a class?
Below code works just fine
#include <iostream>
using namespace std;
typedef int (*IntFunctionWithOneParameter) (int a);
int function(int a){ return a; }
int functionTimesTwo(int a){ return a*2; }
int functionDivideByTwo(int a){ return a/2; }
void main()
{
IntFunctionWithOneParameter functions[] =
{
function,
functionTimesTwo,
functionDivideByTwo
};
for(int i = 0; i < 3; ++i)
{
cout << functions[i](8) << endl;
}
}
So the above code works fine, but I want to move it inside a class in a separate file, similar to the below NON-WORKING IDEA, where I get "incomplete type is not allowed" error at "functions[] =";
class myClass {
private:
typedef int (*IntFunctionWithOneParameter) (int a);
int function(int a){ return a; }
int functionTimesTwo(int a){ return a*2; }
int functionDivideByTwo(int a){ return a/2; }
IntFunctionWithOneParameter functions[] =
{
function,
functionTimesTwo,
functionDivideByTwo
};
};
So my question is how can I get it to work inside my class, where it is the ONLY place the functions are needed, meaning I do need to access the functions in main() or other places!
EDIT
Here is why I need an "array of functions". To save time spent on "if's" or more exactly "switches" as I am making a software (vst) synthesizer, and the less time spent in the processing, the more notes (polyphonic) the user can play at any given time. And multiply the 44100 times per second the function is run, with 8 tone generators, which each can have up to 16 unison voices, so actually the function needed, may be called up to 5,644,800 times per second, per note played! The exact function needed inside this main loop is known BEFORE entering loop, and ONLY changes when the user adjust a knob, so I do want to avoid ifs and switches. Now had it only been one function that occasionally changes, i could just duplicate main loop with variations for each function possible, HOWEVER the main audio processing loop, has several areas, each with a variety of ever growing functions possible, each which ONLY changes when user changes various knobs. So although I could, I am not going to make 5 * 20 * 23 (and growing) different versions of a main loop, to avoid if's and switches.
There's a bunch of things wrong with the code that you posted:
No semicolon after class definition.
Class instead of class
No fixed size set for the functions member, which is not allowed. You need to explicitly set the size of the array.
Member function pointers are not the same as "regular" function pointers. Member function pointers have an implicit this as first argument, since they need an object to be invoked on. So myFunction is not of type myArrayOfFunctions. If you make myFunction and myFunction2 static, then they can be stored as regular function pointers. Is this an option?
The name myArrayOfFunctions is very confusing, since it's not an array at all.
All but the last of these will cause your code not to compile.
This example may be what you've needed.
Note: I've changed typedef statement to using and changed function's signatures to take in plain int for testing convinience sake.
class myClass {
public:
using myArrayOfFunctions = float(myClass::*)(int a, int b, float c);
float myFunction1 (int a, int b, float c)
{
return a * b * c;
}
float myFunction2 (int a, int b, float c)
{
return a + b + c;
}
myArrayOfFunctions functions[2];
myClass()
{
functions[0] = &myClass::myFunction1;
functions[1] = &myClass::myFunction2;
};
void Invoke()
{
(this->*functions[0])(1, 2, 3);
(this->*functions[1])(3, 2, 1);
}
};
int main()
{
myClass a;
a.Invoke();
(a.*(a.functions[0]))(4, 5, 6);
return 0;
}
As you see, I'm getting the pointer to the class function but to call it I need to call it with an actual object (this in invoke() function and a object in main()).
You can write this:
class myClass
{
public:
typedef float (*myArrayOfStaticFunctions) (int& a, int& b, float& c);
typedef float (myClass::*myArrayOfFunctions) (int& a, int& b, float& c);
static float myFunction1 (int& a, int& b, float& c){cout<<"myFunction1"<<endl; return 0;}
static float myFunction2 (int& a, int& b, float& c){ cout<<"myFunction2"<<endl; return 0;}
float myFunction3 (int& a, int& b, float& c){ cout<<"myFunction3"<<endl; return 0;}
float myFunction4 (int& a, int& b, float& c){ cout<<"myFunction4"<<endl; return 0;}
myArrayOfStaticFunctions StaticArrayfunctions[2];
myArrayOfFunctions Arrayfunctions[2];
myClass (){
StaticArrayfunctions [0] =myFunction1;
StaticArrayfunctions [1] =myFunction2;
Arrayfunctions [0] = &myClass::myFunction3;
Arrayfunctions [1] = &myClass::myFunction4;
}
};
int _tmain(int argc, _TCHAR* argv[])
{
myClass m;
int a =0, b=0; float c;
m.StaticArrayfunctions[0] (a,b,c);
m.StaticArrayfunctions[1] (a,b,c);
myClass::myArrayOfFunctions func3 = m.Arrayfunctions[0];
myClass::myArrayOfFunctions func4 = m.Arrayfunctions[1];
(m.*func3)(a,b,c);
(m.*func4)(a,b,c);
return 0;
}

wrapping C callbacks with C++ lambdas, possible to use template polymorphism?

Okay, I have posted a few questions lately related to wrapping a C callback API with a C++11-ish interface. I have almost got a satisfying solution, but I think it could be more elegant and need the help of some template metaprogramming wizards :)
Bear with me, as the example code is a little long, but I've tried to demonstrate the problem in one shot. Basically, the idea is that, given a list of function pointers and data context pointers, I want to provide a callback mechanism that can be provided with,
Function pointers
Function objects (functors)
Lambdas
Moreover, I want to make these functions callable by a variety of prototypes. What I mean is, the C API provides about 7 different parameters to the callback, but in most cases the user code is really only interested in one or two of these. So I'd like the user to be able to specify only the arguments he is interested in. (This extends from the point of allowing lambdas in the first place... to allow conciseness.)
In this example, the nominal C callback takes an int and a float parameter, and an optional float* which can be used to return some extra data. So the intention of the C++ code is to be able to provide a callback of any of these prototypes, in any form that is "callable". (e.g. functor, lambda, etc.)
int callback2args(int a, float b);
int callback3args(int a, float b, float *c);
Here is my solution so far.
#include <cstdio>
#include <vector>
#include <functional>
typedef int call2args(int,float);
typedef int call3args(int,float,float*);
typedef std::function<call2args> fcall2args;
typedef std::function<call3args> fcall3args;
typedef int callback(int,float,float*,void*);
typedef std::pair<callback*,void*> cb;
std::vector<cb> callbacks;
template <typename H>
static
int call(int a, float b, float *c, void *user);
template <>
int call<call2args>(int a, float b, float *c, void *user)
{
call2args *h = (call2args*)user;
return (*h)(a, b);
}
template <>
int call<call3args>(int a, float b, float *c, void *user)
{
call3args *h = (call3args*)user;
return (*h)(a, b, c);
}
template <>
int call<fcall2args>(int a, float b, float *c, void *user)
{
fcall2args *h = (fcall2args*)user;
return (*h)(a, b);
}
template <>
int call<fcall3args>(int a, float b, float *c, void *user)
{
fcall3args *h = (fcall3args*)user;
return (*h)(a, b, c);
}
template<typename H>
void add_callback(const H &h)
{
H *j = new H(h);
callbacks.push_back(cb(call<H>, (void*)j));
}
template<>
void add_callback<call2args>(const call2args &h)
{
callbacks.push_back(cb(call<call2args>, (void*)h));
}
template<>
void add_callback<call3args>(const call3args &h)
{
callbacks.push_back(cb(call<call3args>, (void*)h));
}
template<>
void add_callback<fcall2args>(const fcall2args &h)
{
fcall2args *j = new fcall2args(h);
callbacks.push_back(cb(call<fcall2args>, (void*)j));
}
template<>
void add_callback<fcall3args>(const fcall3args &h)
{
fcall3args *j = new fcall3args(h);
callbacks.push_back(cb(call<fcall3args>, (void*)j));
}
// Regular C-style callback functions (context-free)
int test1(int a, float b)
{
printf("test1 -- a: %d, b: %f", a, b);
return a*b;
}
int test2(int a, float b, float *c)
{
printf("test2 -- a: %d, b: %f", a, b);
*c = a*b;
return a*b;
}
void init()
{
// A functor class
class test3
{
public:
test3(int j) : _j(j) {};
int operator () (int a, float b)
{
printf("test3 -- a: %d, b: %f", a, b);
return a*b*_j;
}
private:
int _j;
};
// Regular function pointer of 2 parameters
add_callback(test1);
// Regular function pointer of 3 parameters
add_callback(test2);
// Some lambda context!
int j = 5;
// Wrap a 2-parameter functor in std::function
add_callback(fcall2args(test3(j)));
// Wrap a 2-parameter lambda in std::function
add_callback(fcall2args([j](int a, float b)
{
printf("test4 -- a: %d, b: %f", a, b);
return a*b*j;
}));
// Wrap a 3-parameter lambda in std::function
add_callback(fcall3args([j](int a, float b, float *c)
{
printf("test5 -- a: %d, b: %f", a, b);
*c = a*b*j;
return a*b*j;
}));
}
int main()
{
init();
auto c = callbacks.begin();
while (c!=callbacks.end()) {
float d=0;
int r = c->first(2,3,&d,c->second);
printf(" result: %d (%f)\n", r, d);
c ++;
}
}
Okay, as you can see, this actually works. However, I find the solution of having to explicitly wrap the functors/lambdas as std::function types kind of inelegant. I really wanted to make the compiler match the function type automatically but this doesn't seem to work. If I remove the 3-parameter variant, then the fcall2args wrapper is not needed, however the presence of the fcall3args version of add_callback makes it apparently ambiguous to the compiler. In other words it seems to not be able to do pattern matching based on the lambda call signature.
A second problem is that I'm of course making copies of the functor/lambda objects using new, but not deleteing this memory. I'm not at the moment sure what the best way will be to track these allocations, although I guess in a real implementation I could track them in an object of which add_callback is a member, and free them in the destructor.
Thirdly, I don't find it very elegant to have specific types call2args, call3args, etc., for each variation of the callback I want to allow. It means I'll need an explosion of types for every combination of parameters the user might need. I was hoping there could be some template solution to make this more generic, but I am having trouble coming up with it.
Edit for explanation: The definition in this code, std::vector<std::pair<callback*,void*>> callbacks, is part of the problem definition, not part of the answer. The problem I am trying to solve is to map C++ objects onto this interface--therefore, proposing better ways to organize this std::vector doesn't solve the problem for me. Thanks. Just to clarify.
Edit #2: Okay, forget the fact that my example code uses std::vector<std::pair<callback*,void*>> callbacks to hold the callbacks. Imagine instead, as this is the actual scenario, that I have some C library implementing the following interface:
struct someobject *create_object();
free_object(struct someobject *obj);
add_object_callback(struct someobject *obj, callback *c, void *context);
where callback is,
typedef int callback(int a,float b,float *c, void *context);
Okay. So "someobject" will experience external events of some kind, network data, or input events, etc., and call its list of callbacks when these happen.
This is a pretty standard implementation of callbacks in C. Importantly, this is an existing library, something for which I cannot change, but I am trying to write a nice, idiomatic C++ wrapper around it. I want my C++ users to be able to add lambdas as callbacks. So, I want to design a C++ interface that allows users to be able to do the following:
add_object_callback(struct someobject *obj, func);
where func is one of the following:
a regular C function that doesn't use context.
a functor object
a lambda
Additionally, in each case, it should be possible for the function/functor/lambda to have either of the following signatures:
int cb2args(int a, float b);
int cb2args(int a, float b, float *c);
I think this should be possible, and I got about 80% of the way there, but I'm stuck on template polymorphism based on the call signature. I don't know offhand whether it's possible. Maybe it needs some voodoo involving function_traits or something, but it's a little beyond my experience. In any case, there are many, many C libraries that use such an interface, and I think it would be great to allow this kind of convenience when using them from C++.
Since you are using the C API in C++11, you could as well just wrap the whole thing in a C++ class. This is also necessary, as you mentioned in the 2nd problem, to solve the resource leak.
Also remember that a lambda expression without capture can be implicitly converted to a function pointer. This could remove all the call<*> because they can be moved into the add_callbacks.
And finally, we could use SFINAE to remove the fcall3args types. Here is the result.
class SomeObject {
// The real object being wrapped.
struct someobject* m_self;
// The vector of callbacks which requires destruction. This vector is only a
// memory store, and serves no purpose otherwise.
typedef std::function<int(int, float, float*)> Callback;
std::vector<std::unique_ptr<Callback>> m_functions;
// Add a callback to the object. Note the capture-less lambda.
template <typename H>
void add_callback_impl(H&& h) {
std::unique_ptr<Callback> callback (new Callback(std::forward<H>(h)));
add_object_callback(m_self, [](int a, float b, float* c, void* raw_ctx) {
return (*static_cast<Callback*>(raw_ctx))(a, b, c);
}, callback.get());
m_functions.push_back(std::move(callback));
}
public:
SomeObject() : m_self(create_object()) {}
~SomeObject() { free_object(m_self); }
// We create 4 public overloads to add_callback:
// This only accepts function objects having 2 arguments.
template <typename H>
auto add_callback(H&& h) -> decltype(h(1, 10.f), void()) {
using namespace std::placeholders;
add_callback_impl(std::bind(std::forward<H>(h), _1, _2));
}
// This only accepts function objects having 3 arguments.
template <typename H>
auto add_callback(H&& h) -> decltype(h(1, 1.0f, (float*)0), void()) {
add_callback_impl(std::forward<H>(h));
}
// This only accepts function pointers.
void add_callback(int(*h)(int, float)) const {
add_object_callback(m_self, [](int a, float b, float* c, void* d) {
return reinterpret_cast<int(*)(int, float)>(d)(a, b);
}, reinterpret_cast<void*>(h));
}
// This only accepts function pointers.
void add_callback(int(*h)(int, float, float*)) const {
add_object_callback(m_self, [](int a, float b, float* c, void* d) {
return reinterpret_cast<int(*)(int, float, float*)>(d)(a, b, c);
}, reinterpret_cast<void*>(h));
}
// Note that the last 2 overloads violates the C++ standard by assuming
// sizeof(void*) == sizeof(func pointer). This is valid in POSIX, though.
struct someobject* get_raw_object() const {
return m_self;
}
};
So the init() becomes:
void init(SomeObject& so) {
// A functor class
class test3 { ... };
so.add_callback(test1);
so.add_callback(test2);
// Some lambda context!
int j = 5;
so.add_callback(test3(j));
so.add_callback([j](int a, float b) -> int {
printf("test4 -- a: %d, b: %f", a, b);
return a*b*j;
});
so.add_callback([j](int a, float b, float *c) -> int {
printf("test5 -- a: %d, b: %f", a, b);
*c = a*b*j;
return a*b*j;
});
}
The full testing code (I'm not putting that to ideone here, because g++ 4.5 doesn't support implicitly converting a lambda to a function pointer, nor the range-based for.)
#include <vector>
#include <functional>
#include <cstdio>
#include <memory>
struct someobject;
struct someobject* create_object(void);
void free_object(struct someobject* obj);
void add_object_callback(struct someobject* obj,
int(*callback)(int, float, float*, void*),
void* context);
class SomeObject {
// The real object being wrapped.
struct someobject* m_self;
// The vector of callbacks which requires destruction. This vector is only a
// memory store, and serves no purpose otherwise.
typedef std::function<int(int, float, float*)> Callback;
std::vector<std::unique_ptr<Callback>> m_functions;
// Add a callback to the object. Note the capture-less lambda.
template <typename H>
void add_callback_impl(H&& h) {
std::unique_ptr<Callback> callback (new Callback(std::forward<H>(h)));
add_object_callback(m_self, [](int a, float b, float* c, void* raw_ctx) {
return (*static_cast<Callback*>(raw_ctx))(a, b, c);
}, callback.get());
m_functions.push_back(std::move(callback));
}
public:
SomeObject() : m_self(create_object()) {}
~SomeObject() { free_object(m_self); }
// We create 4 public overloads to add_callback:
// This only accepts function objects having 2 arguments.
template <typename H>
auto add_callback(H&& h) -> decltype(h(1, 10.f), void()) {
using namespace std::placeholders;
add_callback_impl(std::bind(std::forward<H>(h), _1, _2));
}
// This only accepts function objects having 3 arguments.
template <typename H>
auto add_callback(H&& h) -> decltype(h(1, 1.0f, (float*)0), void()) {
add_callback_impl(std::forward<H>(h));
}
// This only accepts function pointers.
void add_callback(int(*h)(int, float)) const {
add_object_callback(m_self, [](int a, float b, float* c, void* d) {
return reinterpret_cast<int(*)(int, float)>(d)(a, b);
}, reinterpret_cast<void*>(h));
}
// This only accepts function pointers.
void add_callback(int(*h)(int, float, float*)) const {
add_object_callback(m_self, [](int a, float b, float* c, void* d) {
return reinterpret_cast<int(*)(int, float, float*)>(d)(a, b, c);
}, reinterpret_cast<void*>(h));
}
// Note that the last 2 overloads violates the C++ standard by assuming
// sizeof(void*) == sizeof(func pointer). This is required in POSIX, though.
struct someobject* get_raw_object() const {
return m_self;
}
};
//------------------------------------------------------------------------------
int test1(int a, float b) {
printf("test1 -- a: %d, b: %f", a, b);
return a*b;
}
int test2(int a, float b, float *c) {
printf("test2 -- a: %d, b: %f", a, b);
*c = a*b;
return a*b;
}
void init(SomeObject& so) {
// A functor class
class test3
{
public:
test3(int j) : _j(j) {};
int operator () (int a, float b)
{
printf("test3 -- a: %d, b: %f", a, b);
return a*b*_j;
}
private:
int _j;
};
so.add_callback(test1);
so.add_callback(test2);
// Some lambda context!
int j = 5;
so.add_callback(test3(j));
so.add_callback([j](int a, float b) -> int {
printf("test4 -- a: %d, b: %f", a, b);
return a*b*j;
});
so.add_callback([j](int a, float b, float *c) -> int {
printf("test5 -- a: %d, b: %f", a, b);
*c = a*b*j;
return a*b*j;
});
}
//------------------------------------------------------------------------------
struct someobject {
std::vector<std::pair<int(*)(int,float,float*,void*),void*>> m_callbacks;
void call() const {
for (auto&& cb : m_callbacks) {
float d=0;
int r = cb.first(2, 3, &d, cb.second);
printf(" result: %d (%f)\n", r, d);
}
}
};
struct someobject* create_object(void) {
return new someobject;
}
void free_object(struct someobject* obj) {
delete obj;
}
void add_object_callback(struct someobject* obj,
int(*callback)(int, float, float*, void*),
void* context) {
obj->m_callbacks.emplace_back(callback, context);
}
//------------------------------------------------------------------------------
int main() {
SomeObject so;
init(so);
so.get_raw_object()->call();
}

Multi-dimensional array

I need to create a function that has a parameter which is a multi-dimensional array with two dimensions being user-specified, e.g.
int function(int a, int b, int array[a][b])
{
...
}
How would I do that in C++ ?
Are the dimensions known at compile-time? In that case, turn them into template parameters and pass the array by reference:
template<int a, int b>
int function(int(&array)[a][b])
{
...
}
Example client code:
int x[3][7];
function(x);
int y[6][2];
function(y);
Assuming the dimensions are not known at compile time, you emulate a two dimensional array with a one dimensional array:
int& getat(int x, int y, int r, int c, int *array) {return array[y*c+x];}
int function(int a, int b, int *array) {
getat(4, 2, a, b, array) = 32; //array[4,2] = 32
}
or, for safety, wrap it all in a class:
template <class T>
class array2d {
std::vector<T> data;
unsigned cols, rows;
public:
array2d() : data(), cols(0), rows(0) {}
array2d(unsigned c, unsigned r) : data(c*r), cols(c), rows(r) {}
T& operator()(unsigned c, unsigned r) {
assert(c<cols&&r<rows);
return data[r*cols+c];
}
};
or, best yet, use Boost's Multidimensional Array, which will be better than anything mere mortals could write.
I'm not sure if this work, because your question and code are not the same, according to your code the function can have 3 parameters, so this would work:
int function(int a, int b, int** &array)
{
array = new int*[a];
for (int i =0;i<a;i++)
array[i] = new int[b];
// I don't know why you are returning int, probably doing something here....
}
However your question says that your function can take only one parameter, so:
if the dimensions are known at compile time, then Fred's Answer is the best (it charmed me in fact! :) ).
if not, I can't see any possible solution that allows passing more than one user-specified value other than encapsulating all these values in one object.
Like this:
class Foo {
public:
Foo(int d1, int d2)
{ a = d1; b = d2; }
int a,b;
int** array;
};
int function(Foo &f)
{
f.array = new int*[f.a];
for (int i = 0;i<f.a;i++)
f.array[i] = new int[f.b];
// I don't know why you are returning int, probably doing something here....
}
Though I find it a bad idea, in fact the function could be a parameterless method instead:
class Foo {
public:
Foo(int d1, int d2)
{ a = d1; b = d2; }
void Create() // Or could do this right in the Constructor
{
array = new int*[a];
for (int i = 0;i<a;i++)
array[i] = new int[b];
}
private:
int a,b;
int** array;
};
Still this is a bad idea, because you are reinventing the wheel, as there are a perfect class in the STL to do all the work for you:
vector< vector<int> > v; // Now v is a 2D array